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ABSTRACT

This paper extends and develops the results of a previous paper Malinovskii
(2007). Dealing with a simplistic diffusion multi-year model of insurance oper-
ations, this paper illustrates the adaptive control approach when the object of
control is the balance of solvency and equity. Compared to the previous paper,
a new element is the “scenario of nature”, or the incomplete knowledge of future
risk, which is quite often the case in insurance. It introduces a new and inevitable
randomness in the model and leads to a qualitative difference in its behavior.
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1. INTRODUCTION

In the papers Malinovskii (2007) – Malinovskii (2008b) the insurance process
is viewed as a series of periods (years). Each period starts with a manager’s
adaptive, or sensitive to the previous years-’s financial results, control decision.
Insurance operations are represented by a “probability mechanism”. The man-
ager’s decision concerns tariffs, reserves and other operational characteristics
of this mechanism. By the nature of insurance, that decision typically remains
in force throughout the entire year until the next year-end financial report and
appropriate changes are made.

The adaptive control approach in insurance modeling is inspired by many
scholars including Karl Borch who claimed back in 1967 that “general formu-
lation of the actuary’s problem leads directly to the general theory of optimal
control processes1 or adaptive control processes1” and “the theory of control
processes seems to be tailor-made for the problems which actuaries have
struggled to formulate for more than a century” (Borch (1967), p. 451).
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The object of control set forth in Malinovskii (2007) – Malinovskii (2008b)
was the balance of solvency and equity. Solvency means that a prescribed value
of the probability of non-ruin always must be secured, whatever the previous
years-’s financial results may be and regardless of outside factors. Equity
requires premiums well-balanced with claims and loaded with an amount nec-
essary to provide adequate security for the insureds rather than to benefit those
who seek unearned profit. It means that the insureds ought to pay premiums
which are sensibly concentrated around the long-term mean value of their
losses. In that sense the customers will not be overcharged; but only in the
long run (i.e., over a period of several years).

In some years the premiums may be above or below that mean value. Insur-
ers spreading the cost of random losses among the policyholders, and over
time, act as a buffer against claim fluctuations in consecutive years.

A related problem is the discrimination of the risk reserves, capital and
special purpose provisions2 (see, e.g., Dacorogna and Rüttener (2006)). Bearing
in mind the principle of equity, risk reserves must be large enough to remain
solvent, but at the expected level called “target” or “fair” capital value. Other-
wise, one could argue that the reserves are being used to cover the unexpected.
However, the probability that the risk reserve will end up at the expected level
at the end of the year is small. It will most probably be above or below and
occasionally much above or below. The more the manager’s prediction dis-
agrees with reality, the greater is the difference. Thus, developing the appropri-
ate risk-based provisions to keep the risk reserve over many years at the expected
level is an important problem for insurance management. This paper addresses
that problem from the theoretical premises of annual dynamic solvency control.

The economics of the object of control considered in Malinovskii (2007) –
Malinovskii (2008b) and in this paper is therefore a cautious and equitable
asset-liability and solvency adaptive management. Sophistication of the model
may lead to additional rational priorities and to more complicated objects of
control but does not change the fundamental nature of the adaptive control
concept of this paper.

It should be emphasized that adaptive, rather than optimal, control is the
main theme of this paper. Optimal control usually directs single-purposed
objectives, like maximization of the insurer’s profit3. Even under some restric-
tions on ruin and some kind of equity determined by the market, it yields quite
a different mathematical game which lies outside the scope of this paper. Opti-
mal control is the traditional setup in actuarial mathematics (see Asmussen
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2 Many parties to the insurance business are very attentive to that problem by other reasons than
equity: reserves belong legally to the policyholders while capital belongs to the shareholders; risk
reserve should be invested at the risk free rate, while the capital can be invested in riskier and more
rewarding assets; taxation of risk reserves and capital is different.

3 Standing by the side of insurers, wise is to care for the insureds as good shepherd cares for his
sheep. In that sense the position of those who wish to win clients’ loyalty, or merely avoid they
outflow, may agree with the object of control set forth in the paper. More technical discussion is
deferred to Section 2.4.
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and Taksar (1997), Taksar and Zhou (1998)) but the objectives of optimal
control are “to find the policy which maximizes the expected total discounted div-
idend pay-outs until the time of bankruptcy” (Taksar and Zhou (1998), p. 105).
These objectives were severely criticized as deficient in the insurance context
(see quotation from C.-O. Segerdhal on p. 392 of Malinovskii (2007)).

It is clear that insurance deals with such uncertainties as random claim
arrival and random claim severity. Even more uncertainty looms for the insur-
ance business because of the randomness called scenario of nature. Quoting
Norbert Wiener (see Wiener (1966), p. 90), it results in a resemblance of that
economic game — insurer vs. nature — to the Queen’s croquet game in “Alice
in Wonderland”. Wiener emphasized that such resemblance exists in all eco-
nomic games where the rules are subject to important and, additionally, ran-
dom revisions. In particular, the changes of climate around us impact and will
increasingly impact many sectors of business and society. The most profound
effects are likely to be associated with changes in rainfall and severe weather.

It is recognized (see e.g., Borch (1967), p. 451) that the insurance company,
being incompletely informed, needs to devise

(i) an information system for observing the insurance process as it develops,

(ii) a decision function: a set of rules for translating the observations into action.
The latter means that a manager’s control needs to fine-tune tariffs, reserves
and other operational characteristics of the probability mechanism of insur-
ance over several years. This is called a strategy and is developed with a lack
of information. It should be thoroughly analyzed by actuaries to insure
that its impact on the insurer’s business is clearly understood.

Two commonly accepted techniques used to evaluate the impact of the lack of
information on the insurer’s business are scenario analysis and stress testing.
The former considers typical, favorable and unfavorable scenarios. The latter
refers to the shifting of values of individual parameters in the model that affects
critically the insurer’s financial position. Largely, both use simulation.

This paper’s purpose is to accentuate the risk theory-based, analytical
approach. As to the general multi-period model of risk (the control-oriented
reader may wish to start from formal definitions in Section 3 below), each tra-
jectory may be diagrammed as 

k0

- -

$ $ $ $ $ .u uk k

kst year th year

0 1 1 1

1

k k k1 1
g g- -

- -g p p g p0 1w w ww
1 2 3444 444 1 2 34444 4444

(1)

According to this diagram4 (for k = 1, 2, …), at the end of (k – 1)-th year the
state variable wk – 1 is observed. It describes the insurer’s position at that moment
and may be more complex than just a real-valued surplus. At the beginning of
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4 In the case of our particular interest (see Section 3) the state variables wk, the control variables uk

and the other components of the scheme (1) are yielded explicitly.
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the k-th year the nature selects, in a certain scenario, a value influencing the
forthcoming annual risk. Then the insurer applies the control rule gk – 1 to
choose the control variable uk – 1. The structural assumption is that nature is
acting first, before the insurer, at the beginning of the insurance year and the
lag between these actions is negligible. It may be easily weakened. In what fol-
lows in this paper this is accepted for simplicity. Typically, making his control
decision, the insurer remains ignorant about nature’s choice though he may be
aware of nature’s scenario. If so, he acts bearing in mind the limitations induced
by the scenario and applying the past-year data5 wk – 1 to the control rule gk – 1.
Thereupon the k-th year “probability mechanism” of insurance unfolds; the
transition function of this mechanism is denoted by pk. It defines the insurer’s
position at the end of the k-th year, and the process repeats anew.

Paramount in (1) is the annual probability mechanism of insurance6. In
Malinovskii (2008a) and Malinovskii (2008b) it is generated by the Poisson-
Exponential collective risk model. In Malinovskii (2007) and in this paper it
is diffusion. Thus, the annual probability mechanism of insurance is produced
(see Section 3) by the claim payout process Vs(M ) = Ms + s(M ) Ws, 0 G s G t.
The annual risk reserve process is 

Rs(u, c, M ) = u + cs – Vs (M ), 0 G s G t. (2)

Here u is the risk reserve at the beginning of the year, called either initial risk
reserve or starting capital, c is the premium intensity, M is the random claim
payout rate, s(·) is a known function assuming positive values and s2(M ) is
the random volatility; Ws, 0 G s G t, is the standard Brownian motion. In (2),
sensible control leverages are both the initial risk reserve and the premium
intensity, so that the control variable is bivariate.

Having specified the annual mechanism of insurance, it is paramount to
keep track of how the information is revealed in time. Going back to the dia-
gram (1), introduce the sequence {Ws

[k], 0 G s G t}, k = 1, 2, …, of independent
Brownian motions and the sequence Mk, k = 1, 2, …, of random claim inten-
sities. Assume that these sequences are independent of each other. These two
independent assumptions are sensible. The former guarantees mutual indepen-
dence of the annual claim payout processes Vs

[k] (Mk), k = 1, 2, …, as the claim
intensities are fixed. The latter reflects independence of nature’s choice from
the annual insurance process. To concatenate the annual probability mecha-
nisms (see formalities in Section 3) introduce a simplistic scenario of nature.

DEFINITION 1.1. By the volatile (homogeneous and with known generic risk)
scenario of nature associated with the multi-period model (1) and with the
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5 Or, more generally, all the past history �k – 1 = (u0, …, uk – 2, w0, …, wk – 1). The control based on �k – 1

is called non-Markov (see Malinovskii (2007)), the control uk – 1 = gk – 1(wk – 1) is called Markov.
6 The scheme (1) is fit to model dissimilar dynamics of the insurance process by means of addressing

different annual probability mechanisms of insurance.
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annual mechanisms of insurance (2) we mean the sequence of independent
and identically distributed claim intensities Mk, k = 1, 2, …, with known generic
distribution G.

Bearing in mind the independence of M and {Ws, 0 G s G t} under the volatile
scenario of nature, one has 

EVt (M ) = E (Mt + s(M )Wt) = EM · t, (3)

and in the multi-period model (1)-(2) the “fair” premium rate c = EM. Indeed,
by the law of large numbers the annual premium on the right hand side of
Eq. (3) equalizes in the long run the multi-year average value of the annual
claims.

The goal of the adaptive control in (1)-(2) is to find the strategy which
compensates for fluctuations of the claims payout process around the “target”
or “fair” capital value which corresponds to the “fair” premium rate. This “fair”
premium rate will be defined later on the base of solvency requirements. The
origin of the fluctuations may be twofold: the pure randomness and the dif-
ference between the unknown, but actual, realization of the random variable M
and the heuristic, but average, value EM.

Supplement the analysis of a model with a clear warning of its restricted
applicability, as recommended in Daykin et al. (1996) [Chapter 1, Section 5.5,
p. 154]: emphasize that the diffusion annual mechanism and the volatile scenario
are simplistic indeed. That allows a transparent mathematics and yields a telling
illustration of the adaptive control approach. Extensions on more general cases
are straightforward. The computer-oriented person may apply a numerical solu-
tion of the basic equations of Section 2. A more realistic probability background
may be achieved by applying the technique of Malinovskii (2008a) and Mali-
novskii (2008b) in the Poisson-Exponential framework. Overall, the simplistic
models may hint on how to attack more realistic insurance risk models, where
no explicit formulae may exist.

The rest of the paper is arranged as follows.
Section 2 describes the annual controls.
Section 3 deals with multi-period diffusion model under the volatile scenario

of nature and addresses equity and solvency of several adaptive control strate-
gies.

Section 4 formulates auxiliary results.

2. SYNTHESIS OF THE ANNUAL ADAPTIVE CONTROLS

This section is devoted to the annual development of the insurance process.
It precedes multi-period modeling and strategy design of Section 3. We denote
by F(x) the standard normal distribution function and by f(x) its density
function. For 0 < g < 1, denote by kg = F–1(1 – g) the (1 – g)-quantile of F(x).
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2.1. Annual solvency criteria

Formulate an assumption and two definitions.

ASSUMPTION 1. In the diffusion generic model (2) the random parameter M
is non-degenerate, with c.d.f. G and support M 1 R+.

In the framework of diffusion generic model (2), for m ! M, set 

ct(u, c, m) = P{ inf
s t0 G G

Rs(u, c, M ) < 0 | M = m}, t H 0. (4)

The control variable is bivariate (u, c). In the sequel it will be a function of the
previous year-end capital. Introduce two annual solvency criteria which modify
the standard one.

DEFINITION 2.1. Assume that w is the previous year-end capital. The adaptive
control (u (w), c(w)) satisfies the a-level (0 < a < 1) conservative, or uniform,
solvency criterion if

sup
> , Mw m0 !

ct(u (w), c(w), m) G a. (5)

DEFINITION 2.2. Assume that w is the previous year-end capital. The adaptive
control (u (w), c(w)) satisfies the a-level integral solvency criterion if

sup
>w 0

P{ inf
s t0 G G

Rs(u(w), c(w), M ) < 0} = sup
>w

t
M0

c# (u (w), c(w), m) G (dm) G a.
(6)

REMARK 2.1. In the particular case of the bounded support M = [ mmin, mmax],
0 < mmin < mmax < 3, the claim intensity mmax is known to be the most unfavor-
able case for the insurer since 

sup
> , Mw m0 !

ct(u (w), c(w), m) = sup
>w 0

ct(u (w), c(w), mmax).

The control ((u (w), c(w)) satisfies the a-level conservative solvency criterion if

sup
>w 0

ct(u (w), c(w), mmax) G a. (7)

ASSUMPTION 2. The support M = [ mmin,3) is unbounded and known is the lower
value 0 < mmin < 3 of the claim intensity. The value mmin is the most favorable
case for the insurer.

The conservative solvency criterion may be called “egalitarian” with respect to
all realizations of M. It treats indifferently moderate and large values of M and
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looks exceedingly restrictive. More probabilistic is the integral solvency criterion
which attributes (by means of c.d.f. G) proper weights to the different choices.

Recall that ma(0 < a < 1) such that P{M > ma} = a, or G( ma) = 1 – a, is called
(1 – a)-quantile of c.d.f. G. Introduce for simplicity the following assumption
which guarantees that ma exists and is unique. The cases of discrete c.d.f. G and
bounded support M are similar.

ASSUMPTION 3. The distribution function G is absolutely continuous.

DEFINITION 2.3. Assume that w is the previous year-end capital, ma1
is the

(1 – a1)-quantile of c.d.f. G and ai ! (0,1/2), i = 1,2. The adaptive control
(u (w), c(w)) satisfies the (a1,a2)-solvency criterion if

sup
> ,w m m0 a1G

ct(u (w), c(w), m) G a2. (8)

The adaptive control (u(w), c(w)) satisfies the (a1,a2)-solvency criterion sharply
if

ct(u (w), c(w), ma1
) = a2

for all w > 0.

THEOREM 2.1. (Sufficient conditions of integral solvency). If the adaptive control
(u(w), c(w)) satisfies the (a1,a2)-solvency criterion, then it satisfies the (a1 + a2)-
level integral solvency criterion.

PROOF OF THEOREM 2.1. It is noteworthy that 

sup
> ,w m m0 a1G

ct(u (w), c(w), m) = sup
>w 0

ct(u (w), c(w), ma1
).

Bearing in mind (6), the result is yielded by

sup
>w 0

P{ inf
s t0 G G

Rs(u(w), c(w), M ) < 0} G sup
>w

t
m m0 a1G

c# (u (w), c(w), m) G (dm)

G dm
>m ma1

+ # ] g G sup
> ,w m m0 a1G

ct(u (w), c(w), m) + P{M > ma1
}

= sup
>w 0

ct(u (w), c(w), ma1
) + a1 G a2 + a1.

¡

We are dealing with controls which satisfy the (a1,a2)-solvency criterion and,
consequently, the (a1 + a2)-level integral solvency criterion. It means that we
can confine ourselves to m ! [ mmin, ma1

], mmin > 0, and disregard the other out-
comes “of rare occurrence”.
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2.2. Level capital and premium intensity

Introduce two key components of the adaptive control rules. The existence and
the structure of these components in the diffusion framework will be discussed
in Theorems 4.4 and 4.5.

DEFINITION 2.4. For ai ! (0,1/2), i = 1, 2, and for the (1 – a1)-quantile ma1
of

c.d.f. G the solution ua2, t(c, ma1
) of the equation 

ct(u, c, ma1
) = a2 (9)

with respect to u is called a2-level initial capital corresponding to the claim
intensity ma1

and to the premium intensity c. The solution ca2,t(u, ma1
) of Eq. (9)

with respect to c is called a2-level premium intensity corresponding to the claim
intensity ma1

and to the initial capital u.

REMARK 2.2. By definition, ca2,t(ua2,t(c, ma1
), ma1

) = c, ua2,t(ca2,t(u, ma1
), ma1

) = u.

2.3. Rigid (non-adaptive) controls

Solvent control may be safe, but unsatisfactory. Demonstrate it by means of two
simple illustrations. For the previous year-end capital w consider ai ! (0,1/2),
i = 1, 2, and m ! [ mmin, ma1

], mmin > 0, and set cmin = mmin and cmax = ma1
.

EXAMPLE 2.1. (Lowest premiums and highest starting capital). The control 

u`(w) / ua2, t(cmin, ma1
), c`(w) / cmin (10)

with highest starting capital and lowest premiums7 satisfies the (a1, a2)-solvency
criterion sharply. Indeed,

ct(u`(w), c`(w), ma1
) / ct(ua2, t(cmin, ma1

), cmin, ma1
) = a2

by definition of ua2, t(cmin, ma1
). By Theorem 2.1, the control (10) satisfies the

(a1 + a2)-level integral solvency criterion.
This control undercharges the insureds and contradicts the principle of

equity even in its most primitive form: “no premium – no insurance”. It implies
borrowing and freezes the insurer’s capital. Moreover, it is liable to a rightful
argument that it is being used to cover the unexpected.

EXAMPLE 2.2. (Highest premiums and lowest starting capital). The opposite
extreme case of hedging against insolvency is yielded by the control 

u`(w) / ua2, t(cmax, ma1
), c`(w) / cmax (11)

656 V.K. MALINOVSKII

7 Assume that a premium rate which is less than the least possible value of the claims intensity level
mmin is considered a kind of self-inflicting behavior and is prohibited.
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with lowest starting capital and highest premiums8. Again, it satisfies the (a1,
a2)-solvency criterion sharply: by definition of ua2, t(cmax, ma1

), one has 

ct(u`(w), c`(w), ma1
) / ct(ua2, t(cmax, ma1

), cmax, ma1
) = a2.

By Theorem 2.1, the control (11) satisfies the (a1 + a2)-level integral solvency
criterion.

When this control is applied, the insurer’s capital is not frozen, but the
insureds are severely overcharged, which will not be appreciated by the cus-
tomers or the regulatory authorities.

Both controls (10) and (11) are rigid (non-adaptive) in the sense that they
are not sensitive to the previous year-’s financial results and extensively use the
premium and the reserve capacities of the insurer.

2.4. “Fair” capital and ultimate equity

The controls (10) and (11) fail to comply with the principle of equity. That prin-
ciple requires “fair” premiums, well-balanced with the claims, so the customers
will not be overcharged in the long run. Since in our model 

EVt (M ) = EM · t, (12)

“fair” long-time average premium rate is EM.
Recall that the nature’s choice is first, and assume that it selects the worst

possible: the largest claims intensity ma1
. Assume that the insurer is unaware

of and continues to apply the “long-time-average” premium rate EM. In this
case the least initial capital needed to keep the probability of non-ruin within
time t equal to 1 – a2 is equal to ua2,t(EM, ma1

). It follows from Eq. (9). Therefore,
the capital ua2, t(EM, ma1

) may appear “fair” to those customers who prefer to
pay premiums which are priced around the average for their guaranteed insur-
ance protection.

We term equitable those controls (u (w), c(w)) which are keeping the risk
reserve large enough to secure solvency, but at the expected level i.e., around
the “fair” capital value ua2,t(EM, ma1

).

DEFINITION 2.5. Assume that w is the previous year-end capital. The adaptive
control (u (w), c(w)) is called ultimately equitable9, if

ERt(u (w), c(w), ma1
) = ua2,t(EM, ma1

)

uniformly in w ! R+.
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8 Assume that the highest premium rate cmax can not exceed the upper claims intensity ma1
for ethical

reasons, or restrictions imposed by regulatory authorities.
9 It may be also called balanced around the “fair” capital value ua2,t(EM, ma1

), or targeted at that “fair”
capital value.
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2.5. Adaptive control satisfying solvency criterion sharply

For ai ! (0,1/2), i = 1, 2, introduce 
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(13)

where cmin = mmin, cmax = ma1
. The adaptive control (u(w), c(w)) is more sensitive

to the previous year-end capital w than (10) and (11).

THEOREM 2.2. The control (u(w), c(w)) satisfies the (a1, a2)-solvency criterion
sharply. Moreover, it satisfies the (a1+ a2)-level integral solvency criterion.

PROOF OF THEOREM 2.2. The proof is straightforward. By definition of ca2,t(w, ma1
),

for each ua2, t(cmax, ma1
) G w G ua2, t(cmin, ma1

)

ct(u(w), c(w), ma1
) = ct(w, ca2, t(w, ma1

), ma1
) / a2,

for w > ua2, t(cmin, ma1
)

ct(u(w), c(w), ma1
) / ct(ua2, t(cmin, ma1

), cmin, ma1
) = a2,

for 0 < w < ua2, t(cmax, ma1
)

ct(u(w), c(w), ma1
) / ct(ua2, t(cmax, ma1

), cmax, ma1
) = a2,

and the adaptive control (u(w), c(w)) satisfies the (a1, a2)-solvency criterion
sharply. For the rest of the proof apply Theorem 2.1. ¡

REMARK 2.3. When ua2, t(cmax, ma1
) G w G ua2, t(cmin, ma1

) in (13), no need is to
resort to borrowing. When the previous year-end capital w falls below ua2,t(cmax,
ma1

), the capital deficiency must be covered by borrowing. In the opposite case,
when w is above ua2,t(cmin, ma1

), the excess of capital must be adsorbed (e.g., dis-
tributed as dividends). It would be smarter to set provisions10 to store in the

658 V.K. MALINOVSKII

10 That is suggested by practice. It is known that taxation of the risk reserves is less than taxation of
capitals. It makes raising capital more expensive than, e.g., holding equalization reserves (see Dacorogna
and Rüttener (2006)).
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latter case, say, in the “years of plenty” in order to cover deficiencies in the for-
mer case, say, in the “years of famine”.

2.6. Adaptive control with linearized premiums

A technical drawback of the control (13) is that ca2, t(w, ma1
) has to be calcu-

lated for each w, i.e., the non-linear function has to be determined. Introduce 

ta2, t(w) =
, t ,

,
E

t
w M a2 1-

- a mu _ i
(14)

where EM is “fair” in the sense of Eq. (12), or ultimately equitable premium
rate. Recall that cmin = mmin, cmax = ma1

and introduce the control with linearized
adaptive premium rates 

(15)
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On the one hand, the unique value ua2,t(EM, ma1
) is easier to calculate than a non-

linear function ca2,t(w, ma1
). On the other hand, it casts more light on equity.

The rate EM + ta2, t(w), where EM is the average price and ta2, t(w) is the
adaptive loading, either positive or negative, depends on the deviation of the
previous year-end risk reserve w from the “fair” capital value ua2, t (EM, ma1

)
linearly. The case ta2,t(w) > 0 corresponds to the previous year-end deficit below
ua2,t(EM, ma1

), whereas the case ta2, t(w) < 0 corresponds to the previous year-
end surplus over ua2,t(EM, ma1

).

THEOREM 2.3. The control (u (w), c(w)) is ultimately equitable.

PROOF OF THEOREM 2.3. Set z(w) = w – ua2,t(EM, ma1
). When ua2, t(cmax, ma1

) G
w G ua2, t(cmin, ma1

), one has 

Rt(u (w), c(w),M ) = u(w) + c(w)t – Vt(M )

= z(w) + ua2, t(EM, ma1
) + EM t

z w
-

]
d

g
n t – Vt(M )

= ua2, t(EM, ma1
) + EM · t – Vt(M ).

SCENARIO ANALYSIS FOR A MULTI-PERIOD DIFFUSION MODEL OF RISK 659

https://doi.org/10.2143/AST.39.2.2044652 Published online by Cambridge University Press

https://doi.org/10.2143/AST.39.2.2044652


In two other cases, when w > ua2, t(cmin, ma1
) and 0 < w < ua2, t(cmax, ma1

), the
similar expression for Rt(u (w), c(w),M ) is evident. Bearing in mind Eq. (12),
one has 

ERt(u (w), c(w), ma1
) = ua2, t(EM, ma1

)

uniformly in w ! R+. ¡

REMARK 2.4. It is noteworthy that the lower premium intensity EM +
ta2, t(ua2, t(cmin, ma1

)) in Eq. (15) is close to cmin because of the following. While
the insurance years in the model (1) are numbered, the time within each sep-
arate insurance year is set operational rather than calendar. The operational time
is known to be proportional to the size of the insurance portfolio. Therefore,
provided the insurance portfolio is large, time t in the generic model (2)
may be assumed large. It makes the asymptotical analysis eligible, as t "3.
By Theorem 4.4,

EM + ta2, t(ua2, t(cmin, ma1
)) = EM –

, ,t t, ,E
t

Mmin a a2 1 2 1
-ca am mu u_ _i i

(16)

= cmin + s( ma1
)

/ /
,

E

t

c t M ts smina a a a2 1 1 2 1 1
- + -a am m m mz z_ _` _ _`i ij i ij

where za2
(·) is the function introduced in Theorem 4.4, 0 < ka2

G za2
((ma1

– EM )
t /s(ma1

)) G ka2/2, 0 < ka2
G za2

((ma1
– cmin) t /s(ma1

)) G ka2/2. As t "3, the
second summand in the right hand side of Eq. (16) is tending to zero, being
the term of order O– (t –1/2). The lower premium intensity in Eq. (15) remains
close to cmin. By the similar arguments, the upper premium intensity in Eq. (15)
is close to cmax.

Unfortunately, the control (u (w), c(w)) with linearized adaptive premium
rates satisfies no more the (a1, a2)-solvency criterion: the upper bound for the
annual probabilities of ruin 

m
sup

m a1G

ct(u (w), c(w), m) = ct(u (w), c(w), ma1
)

may exceed a2 for some w ! R+.

THEOREM 2.4. One has 

,
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(17)
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PROOF OF THEOREM 2.4. Introduce 

L(w) = ca2, t(w, ma1
) – (EM + ta2, t(w)), w H 0, (18)

and note that L(ua2, t(EM, ma1
)) = 0. It is straightforward from ca2, t(ua2, t(EM,

ma1
), ma1

) = EM and ta2, t (ua2, t(EM, ma1
)) = 0 (see Remark 2.2 and Eq. (14)).

Theorem 4.4. and Theorem 4.5 yield

,
E

L w t
w

t t
w

t

M ts

s

s

s
a

a

a

a

a1

2

1

1

2

1

1= - -
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m
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m
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_
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O
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i

i

i

i

i
w H 0, (19)

where za2
(·) and va2

(·) are the functions introduced in Theorems 4.4 and 4.5.
Continuous function L(w) is monotone decreasing since v�a2

(z) > 1 for z H 0 by
Theorem 4.5, and 

L�(w) =
2a < ,t v

t
w

s
1

1 0
a1

-
m

�
J

L

K
K _

N

P

O
Oi

R

T

S
SS

V

X

W
WW

w H 0.

It completes the proof. ¡

Theorem 2.4 claims that the linearized control overcharges the insureds when
the past year capital w exceeds the target value ua2,t(EM, ma1

) and undercharges
them otherwise. In that sense linearization deteriorates the control (13). Our
next goal is to cure that deficiency.

2.7. Zone-adaptive control with linearized premiums

Improve the control with linear adaptive loading (15) seeking for controllable sol-
vency. For the level b such that 0 < a2 G b < 1/2, introduce the strip zone with the
lower bound u– b,t = ua2,t(EM, ma1

) + zb,t, where zb,t < 0 is a solution of the equation 

ct(z + ua2, t(EM, ma1
), EM – t

z , ma1) = b (20)

with respect to z, and with an upper bound ub, t such that 

ua2, t(cmax, ma1
) G u– b,t G ua2, t(EM, ma1

) G ub,t G ua2, t(cmin, ma1
).

There are different ways to select the upper bound ub,t . For example (recall that
cmin = mmin, cmax = ma1

), one may take ub,t = ua2,t(cmin, ma1
), or11 ub,t = ua2,t(EM, ma1

).
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Introduce the control 

m

, t

, > ,

, ,

, < < ,

, > ,

,

, < <

E

w

u w u

w u w u

u w u

w

w u

M w u w u

w u

u

c

0

0
2

G G

G G

=

= +

, tb

m

a

, ,

, ,

, ,

,

, ,

,

t t

t t

t t

t

t t

t

b b

b b

b b

b

b b

b, tb

t

]

] ]

g

g g

Z

[

\

]
]

]
]

Z

[

\

]
]

]
]

(21)

called zone-adaptive annual control with linearized premiums, where 

m
,
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THEOREM 2.5. For 0 < a1 < 1/2, 0 < a2 G b < 1/2, the control (u(w), c(w)) is ulti-
mately equitable and satisfies the (a1, b )-solvency criterion sharply.

PROOF OF THEOREM 2.5. The proof of the first assertion is straightforward.
It consists in verification, similarly to the proof of Theorem 2.3, that the equation 

ERt(u(w), c(w),M ) = ua2, t(EM, ma1
)

holds true uniformly in w ! R+. The second assertion needs no proof since 

m
sup

m a1G

ct(u (w), c(w), m) = ct(u (w), c(w), ma1
) / b (22)

uniformly in w ! R+, by Eq. (20).

THEOREM 2.6. For z ! [a,b], where –ua2,t(EM, ma1
) < a < 0 < b < EM · t, the prob-

ability in the left hand side of Eq. (20) regarded as a function of z, is monotone
decreasing, as z increases.

PROOF OF THEOREM 2.6. Bearing in mind Eq. (4), the proof is straightforward
from

ct(z + ua2, t(EM, ma1
), EM – t

z , ma1)
= P{ inf

< s t0 G
[(1 – t

s ) z + (EM – ma1
) s – s(ma1

) Ws ] < – ua2, t(EM, ma1
)},
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since 1 – t
s
H 0 under the infimum sign. ¡

2.8. Strip width

Address existence, uniqueness and analytical structure of zb,t < 0, which is a
solution of Eq. (20).

THEOREM 2.7. For 0 < a1 < 1/2, 0 < a2 G b < 1/2, set12 za2,t = za2
(( ma1

– EM ) t /
s(ma1

)), where za2
(·) is the function introduced in Theorem 4.4. The unique solution

of Eq. (20) may be written as

zb,t = – [(ma1
– EM)t + s(ma1

) t xb,t ],

where xb,t > 0 is the unique root of the equation

1 – F(za2,t) + exp{–2x(za2,t – x)} F(2x – za2,t) = b. (23)

REMARK 2.5. For any 0 < a2 G b G 1/2 and t H 0 the solution of Eq. (23) is
bounded from above by a constant, 0 < xb, t G za2,t G ka2/2.

PROOF OF THEOREM 2.7. Bearing in mind Theorem 4.4, Theorem 2.6 and
Eq. (32), it requires just some direct algebra. ¡

2.9. Asymptotic analysis and rules of thumb

Summarize the results of the previous sections as recommendations. It yields
certain “rules of thumb”, as t is large (see Remark 2.4).

The magnitude of the target capital value is paramount: it yields a benchmark
for the size of the “long-run mean value”, or “appropriate risk-based provisions”.
That magnitude appears dramatically larger for the volatile scenario than for
the complete knowledge case13 since 

ua2, t(EM, ma1
) = (ma1

– EM ) t + s(ma1
) t za2,t

= (ma1
– EM ) t + O– ( t), as t "3.

In particular, unless ma1
equals EM, the “fair” or “target” capital value is the

term of order t rather than of order t . The latter was the case for the com-
pletely known risk (see Theorem 2.1 in Malinovskii (2007)).
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Besides the above asymptotics for ua2,t(EM, ma1
), which is the upper bound

of the strip zone defined in (21), for the lower bound one has 

u– b,t = ua2, t(EM, ma1
) + zb, t

= s(ma1
) t [za2,t – xb, t] = O– ( t), as t " 3.

For the width of the strip zone one has therefore 

|zb, t | = (ma1
– EM )t + s(ma1

) t xb, t.

Bearing in mind Remark 2.5, one has 0 < xb, t G za2, t = za2
((ma1

– EM ) t /
s(ma1

)) G ka2/2.
Extend Remark 2.4 as follows. For 0 G a2 G 1/2 and for the capital wt such

that wt – s(ma1
) t " +3, as t "3, the linearized premium rate EM + ta2, t(wt)

differs from the original premium rate ca2, t(wt, ma1
) by the terms of order t .

Deterioration of the original premium rate is therefore rather small in magni-
tude. By Lemma 4.1, one has va2

(z) = z – ka2
+ o (1), as z " +3, for the func-

tion va2
(·) introduced in Theorem 4.5. Eq. (19) yields 

L(wt) = ca2, t(wt, ma1
) – (EM + ta2, t(wt)) =

t
s a1-

m_ i
(za2,t – ka2

) + o(t –1/2),
as t "3.

Bearing in mind that 0 < ka2
G za2,t = za2

((ma1
– EM ) t /s(ma1

)) G ka2 /2, the
right hand side of this equation is O– (t – 1/2), as t "3. It is also noteworthy that
for 0 < a2 G b G 1/2

0 < ca2, t(wt, ma1
) – cb,t(wt, ma1

) =
t

s a1
m_ i

(ka2
– kb) + o(t –1/2), as t "3.

3. MULTI-PERIOD MODEL OF RISK UNDER VOLATILE SCENARIO

A rigorous definition of the multi-period controlled risk model, with realizations
matching diagram (1), over the elementary state space (W,F ) is equivalent to
the definition of a controlled random sequence (see Malinovskii (2007) – Mali-
novskii (2008b)). In our particular case of the

(a) annual mechanisms of insurance introduced by Eq. (2),

(b) volatile scenario of nature introduced in Definition 1.1,

(c) adaptive controls introduced in Section 2

the state space W and the control space U are R ≈ {0,1} ≈ M and R+ ≈ R+

respectively.
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It is noteworthy that assuming14 all probability mechanisms of insurance pk,
k = 1,2,…, complying with the same generic model (2), we deal with the homo-
geneous multi-period model. It matches well the homogeneous volatile scenario
of nature set forth in Definition 1.1.

REMARK 3.1. Bearing in mind e.g., inflation, the “long run” multi-period model
becomes more realistic when the probability mechanisms of insurance pk are
endowed with discount factors. It will be done elsewhere, since our concern in
this paper is the homogeneous case. Bearing in mind Remark 2.4, emphasize
it that “long run” refers here to a large number of insurance years rather than
to the length of each separate insurance year.

The first component of the state vector wk = (wk
G1H, wk

G2H, wk
G3H) ! W is the k-th

year-end capital of the company. The second component indicates whether
ruin has occurred, or not, in the k-th year. The third component is the outcome
of the next-year claims intensity which is the choice of the nature. The two com-
ponents of the control vector uk – 1 = (uG1H

k – 1, uG2H
k – 1) ! U are the starting capital

and the premium intensity in Eq. (2), respectively.
It is known (see, e.g., §1 of Chapter 1 in Gihman and Skorokhod (1979))

that under certain mild regularity conditions the couple p = {pk, k = 1, 2, …}
and g = {gk, k = 0,1,…} is a sufficient background for a rigorous definition of
the controlled random sequence (Wk, Mk +1,Uk), k = 0,1,…, on the probability
space (W, F, Pp,g). This random sequence will assume values in the product
space (W ≈ U, W 7 U ).

In this paper we deal with Markov (see, e.g., Section 3 of Malinovskii (2007)
for definitions and particulars) annual probability mechanisms of insurance pk

and pure Markov strategies15 g = {gk, k = 0,1,…}. Therefore, the controlled
random sequence (Wk, Mk + 1, Uk), k = 0,1,…, may be reduced to a homoge-
neous Markov chain on the state space W with the transition probability 

P(wk–1; dwk) = PwG3H
k– 1

(wG1H
k–1; dwk

G1H ≈ dwk
G2H) G (dwk

G3H),

where 

Pm(wG1H
k–1; dwk

G1H ≈ {0}) = P{Rt(gk–1(wk–1))

! dwk
G1H, inf

s t0 G G
Rs(gk –1(wk –1)) > 0 | Mk = m},

(24)
Pm(wG1H

k–1; dwk
G1H ≈ {1}) = P{Rt(gk–1(wk–1))

! dwk
G1H, inf

s t0 G G
Rs(gk –1(wk –1)) < 0 | Mk = m}
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insurance and different annual controls. The unique technical difficulty is that the non-homogeneous
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and c.d.f. G is the common distribution of the independent random variables
Mk, k = 1,2,….

REMARK 3.2. In the premises of the diffusion model (2), one can easily write
the explicit expression for

Pm(wG1H
k–1; dwk

G1H ≈ {0,1}) = P{Rt(gk–1(wk–1)) ! dwk
G1H | Mk = m}

= P{gG1H
k–1(wk–1) + gG2H

k–1(wk–1) t – (mt + s(m)Wt) ! dwk
G1H}.

Theorem 4.3 provides the explicit expressions for the right hand sides of
Eq. (24) i.e., for the transition probability P(wk – 1; dwk).

We use notation Pp,g{·} for the Markov chain with transition probability P.
We denote by Ep,g the mean with respect to that measure. Further, we denote
by Pm

p,g{·} the conditional distribution Pp,g{· | M = m}, where M = {Mk, k =
1, 2, …} ! M = M3 is the sequence of independent and identically distributed
random variables and m is its realization. In words, Pm

p,g{·} corresponds to the
case when the trajectory m of the scenario of nature is fixed. Write Em

p,g for the
respective conditional expectation.

3.1. Solvency

The following results are fundamental.

THEOREM 3.1. Assume that the starting capital in the homogeneous multi-period
model is w ! R+. For the homogeneous pure Markov strategy g generated by the
annual control (13),

sup
Rw ! +

Pp,g ,first ruin in year

as starting capital is

k

w
( 2 G a1 + a2, k = 1, 2, …. (25)

For the homogeneous pure Markov strategy g generated by the zone-adaptive
annual control with linearized premiums (21),

sup
Rw ! +

Pp,g ,first ruin in year

as starting capital is

k

w
( 2 G a1 + b, k = 1, 2, …. (26)

PROOF OF THEOREM 3.1. The proof of (25) is immediate from

Pp,g ,first ruin in year

as starting capital is

k

w
G

R M
=

#
#( 2 (dm1)Pm1

(w; dw1
G1H ≈ {0}) … 

… G
R M#
# (dmk –1) Pmk–1

(wG1H
k –2; dwG1H

k –1 ≈ {0}) G
R M#
# (dmk)Pmk

(wG1H
k –1; R ≈ {1}),
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k 1-

sup G
R

M
w !G H1

# (dmk)Pmk
(wG1H

k –1; R ≈ {1})

G

k 1-

sup
Rw !G H1

ct(u(wG1H
k –1), c(wG1H

k –1), ma1
) + P{Mk > ma1

}

and Theorem 2.2. The proof of the bound (26) is quite analogous and applies
Theorem 2.5. ¡

COROLLARY 3.1. Assume that the starting capital in the homogeneous multi-period
model is w ! R+. For the homogeneous pure Markov strategy g generated by
the annual control (13),

sup
Rw ! +

Pp,g ,
sup

ruin within years

as starting capital is

n

w
Rwk

n

1

G
!= +

!' 1 Pp,g ,kfirst ruin in year

as starting capital is w
' 1 G n(a1 + a2)

for n = 1,2,…. For the homogeneous pure Markov strategy g generated by the
zone-adaptive annual control with linearized premiums (21) the above relations
hold true with n(a1 + b ) instead of n(a1 + a2).

3.2. Equity

In the homogeneous multi-period model with the starting capital w ! R+ the
homogeneous pure Markov strategy g generated by the annual control (15)
with linearized premiums is equitable by Theorem 2.3. It means that uniformly
in w ! R+ and for k = 1,2,…,

m
,

E E
capital at the end of year

as starting capital is
k

w
,p g

=d n< F ua2, t(EM, ma1
).

That strategy directs the risk reserve at the “target” value ua2,t(EM, ma1
) which makes

the risk reserver process balanced around that value in a long-time perspective.
The similar property holds true for the strategy g generated by Eq. (21).

THEOREM 3.2. For the homogeneous pure Markov strategy g generated by the
zone-adaptive annual control with linearized premiums (21), Eq. (27) holds true.

PROOF OF THEOREM 3.2. Note first that for m = (m1, m2, …)

mm
,

E
capital at the end of year

as starting capital is
k

w
,

R

p g
1

= P#d n (w; dw1
G1H ≈ {0,1})

m...
R k 1-

P# (wG1H
k –2; dwG1H

k –1 ≈ {0,1})
R
# wG1H

k Pmk
(wG1H

k –1; dwG1H
k ≈ {0,1}). (28)
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Bearing in mind Remark 3.2 and Eq. (21), one has

R
# wG1H

k Pmk
(wG1H

k –1; dwG1H
k ≈ {0,1})

=
R
# wG1H

k P{u(wG1H
k –1) + c(wG1H

k –1) t – (mkt + s(mk)Wt) ! dwG1H
k }

k

k

k

1

1

1

-

-

-

,

,

,

t

t

t

, , > ,

, , ,

, , < < .

E E

E E

E E

M m t M u

M m t M u u

M m t M u

w

w

w0

G H

G H

G H

a

a

a

k

k

k

1

1

1

2 1

2 1

2 1

G G=

- +

- +

- +

a

a

a

m

m

m

u

u

u

,

, ,

,

t

t t

t

b

b b

b

^ _

^ _

^ _

h i

h i

h i

Z

[

\

]
]]

]
]]

It is noteworthy that the right hand side is independent on wG1H
k –1. Put it in (28).

The proof completes by taking expectation over the outcomes m of the scenario
of nature. ¡

REMARK 3.3. The homogeneous pure Markov strategy g generated by the
zone-adaptive annual control with linearized premiums (21) is both solvent and
equitable.

3.3. Dynamic solvency provisions

Provisions similar to equalization reserves are set to face a large deficit at
the end of the insurance year. Commonly, these provisions are invested,
but in this paper we disregard the investment aspects; one may see that the
price which we do not wish to pay for it is just more cumbersome transition
probabilities.

For zone-adaptive control with ub,t = ua2,t(EM, ma1
) and with linearized pre-

miums (21) introduce the variable 

Dt(w) =

, ,

, > ,

, < <

u w u

w u w u

u w w u

0

0

G G

-

- -

, ,

, ,

, ,

t t

t t

t t

b b

b b

b ba k

Z

[

\

]
]]

]
]]

called annual excess (of either sign) of capital. The mean aggregate excess (of
either sign) of capital within n years for the strategy g, or the mean aggregate
dynamic solvency provisions, is 

k km m .E EE EW WD D, ,G H G H
t

k

n

t
k

n
p g p g1

1

1

1

=
= =

! !` `j j> 9H C
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The following theorem demonstrates that application of the homogeneous pure
Markov strategy g generated by the zone-adaptive annual control with linearized
premiums (21) increases the mean aggregate dynamic solvency provisions.

THEOREM 3.3. For the homogeneous pure Markov strategy g generated by the
zone-adaptive annual control with linearized premiums (21) and for k = 1, 2, …,
one has 

km >E E WD 0, G H
t

p g 1
` j9 C

uniformly in w ! R+.

PROOF OF THEOREM 3.3. With the starting capital w ! R+ and with m = (m1,
m2, …),

k m k k

k k k

k k k

1 2 1

1

1

k

k

- -

-

-

m

m

m

m , , ... ; ,

; ,

; , .

E W w d d

u d

u d

w w w

w w w

w w w

D 0 1 0 1

0 1

0 1

>

<

,

R R

G H G H G H G H

G H G H G H

G H G H G H

t

u

u

w

w

p g 1 1 1 1

1 1 1

1 1 1
H

k

k

k

1 1
# #

# #

#

=

-

- -

-

G H

G

1

1

t

t

P P

P

P

,

,

t

t

b

b

,

,

b

b

# #

#

#

` ` `

a `

a `

j j j

k j

k j

! !

$
* !

$
!

+ +

.
+

.
+ 4

(29)

Bearing in mind Remark 3.2, apply the explicit expression to the integrand 

Pmk
(wG1H

k –1; dwG1H
k ≈ {0,1}) = P{u(wG1H

k –1) + c(wG1H
k –1) t – (mkt + s(mk)Wt) ! dwG1H

k }

in (29). Direct integration completes the proof. ¡

4. AUXILIARY RESULTS

4.1. Mill’s ratio and Brownian motion

The most well-known results (see, e.g., Patel and Read (1982)) for Mill’s ratio 

M (x) = f x
xF1 -

]

]

g

g = ex2/2 ,e dt/t

x

223 -# x ! R, (30)

are 

M (x) > 0, dx
d

M (x) = xM (x) – 1 < 0,
dx
d

2

2

M (x) = M (x) (1+x2) – x > 0, x ! R,

(31)
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so that M (x) is concave and decreasing from 3 to 0, as x increases from – 3
to 3. Since 

dx
d (xM (x)) =

dx
d

2

2

M (x) > 0, x ! R,

the function xM (x) is increasing from –3 to 1, as x increases from –3 to +3.
For reader’s convenience, we collect some formulae for real-valued Brownian

motion with linear drift, qt + sWt, t H 0, where q ! R, s > 0.

THEOREM 4.1. For x H 0, one has P{sup0 G s G t Ws > x} = 2P{Wt > x}.

THEOREM 4.2. For x H 0 and q ! R, s > 0, one has

2
s / .sup expP s x

t
x t x

t
x t

q
s

q
q s

s
q

F F2
s t0

G+ =
-

-
- -

G G

Ws^ c ch m m( $2 .

THEOREM 4.3. For x H 0  and q ! R, s > 0, one has

P{qt + sWt ! dy, sup
s t0 G G

(qs + sWs) G x} = P{qt + sWt ! dy}

– P{qt + sWt ! dy, sup
s t0 G G

(qs + sWs) H x},

where P{qt + sWt ! dy} =
ts p2

1 exp{– ( y – qt)2/2s2t}dy and 

P{qt + sWt ! dy, sup
s t0 G G

(qs + sWs) H x}

=
ts p2

1 exp{(2qyt – q2t2 – (|y – x | + x)2) /2s2t}dy.

These three results are well known. Theorem 4.1 is formula 1.1.4 in Part II,
Chapter 1 of Borodin and Salminen (1996). For Theorem 4.2 see formula 1.1.4
in Part II, Chapter 2 of Borodin and Salminen (1996). For Theorem 4.3 see
formulae 1.0.6 and 1.1.8 in Part II, Chapter 2 of Borodin and Salminen (1996).

4.2. Level values

Bearing in mind the level values introduced in Definition 2.4, address the solu-
tion ua,t(c, m) of the equation 

ct(u, c, m) = a

with respect to u and the solution ca,t(u, m) of that same equation with respect
to c. In the diffusion framework this problem may be solved analytically in a
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comprehensive way. The generalization of the results of this paper would
require mostly the alternative methods of that analysis, e.g. numerical evaluation
or more complicated analytical technique.

THEOREM 4.4. For 0 G a G 1/2, the a-level initial capital corresponding to the
claim intensity m is 

ua,t(c, m) =
, ,

, ,

m t m
m c t

m
m c t

m c

m t m
m c t

m c

s s s

s s

a

a

H

G

-
+

-

-

z

z

]
]

]

]

]
d

]
]

]
d

g
g

g

g

g
n

g
g

g
n

< F

Z

[

\

]
]

]
]

where za(v) is continuous and monotone increasing, as v increases from – 3 to 0,
with 

0 = za(–3) G za(v) G za(0) = ka/2,

and monotone decreasing, as v increases from 0 to +3, with

ka/2 = za(0) H za(v) H za(–3) = ka H 0.

REMARK 4.1. One can supplement Theorem 4.4 by the observation that ua,t(c, m),
which depends on m and c only through the difference m – c, is a monotone
function of this difference. To be more specific, if m – c increases from –3 to 0,
the capital ua,t(c, m) = ua,t(m – c) is monotone increasing from 0 to s(m) t ka/2.
If m – c increases from 0 to +3, the capital ua, t(m – c) is monotone increasing
from s(m) t ka/2 to +3.

Theorem 4.4 is illustrated by the following numerical calculations.
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TABLE 4.1.

VALUES OF ua, t(m – c) FOR t =100, s(m) = 1.

m – c = 0 m – c = 0.01 m – c = 0.02 m – c = 0.03 m – c = 0.04

a = 0.3 10.3643 10.6166 10.8823 11.1841 11.5440
a = 0.1 16.4485 16.8379 17.2536 17.7159 18.2422
a = 0.05 19.5996 20.0331 20.4988 21.0161 21.6000

m – c = 0 m – c = –0.01 m – c = –0.02 m – c = –0.03 m – c = –0.04

a = 0.3 10.3643 9.7120 9.0895 8.4983 7.9396
a = 0.1 16.4485 15.6601 14.8907 14.1422 13.4161
a = 0.05 19.5996 18.7682 17.9517 17.1515 16.3691
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FIGURE 1: Three graphs: F1(z,0) H F1(z,1) H F1(z,2) with z H 0.
It is noteworthy that F1(0, +3) = 1/2.

THEOREM 4.5. For u H 0, the a-level premium intensity corresponding to the claim
intensity m is 

ca,t(u, m) = m – ,
t
m

m t
us

sav]

]
d

g

g
n

where va(z), z H 0, is continuous, convex and monotone increasing from –3 to 0,
as z increases from 0 to ka/2, zero at z = ka/2 and monotone increasing from 0 to 3,
as z increases from ka /2 to 3. Furthermore, v�a(z) > 1 for z H 0.

PROOF OF THEOREM 4.4. Applying Theorem 4.2, one has 

ct(u, c, m) = P{ inf
s t0 G G

[u + (c – m) s – s(m)Ws ] < 0}

= P{ sup
s t0 G G

[(m – c)s + s(m)Ws ] > u}

(32)

.exp

m t
u

m
m c t

m t
u

m
m c t

m t
u

m
m c t

s s

s s s s

F

F

1

2 1

= - -
-

+
-

- +
-

] ]

]
d

] ]

]

] ]

]
dd

g g

g
n

g g

g

g g

g
nn( 2

Consider the cases m H c and m G c separately. In the former case, bearing in
mind (32), rewrite Eq. (9) with respect to u as 

, ,aF
m t
u

m
m c t

m
m c t

s s s1 -
- -

=
] ]

]

]

]
d

g g

g

g

g
n (33)
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where F1(z, v) = 1 – F(z) + exp{2v[v + z]}(1 – F(2v + z)). The solution z = za(v)
of the equation 

F1(z,v) = a, v H 0, 0 G a G 1/2,

with respect to z exists, is unique, for a fixed is monotone decreasing, as v
increases from 0 to +3, and is bounded, ka/2 = za(0) H za(v) H za(+3) = ka H 0.
For a fixed, v + za(v) is monotone increasing, as v increases from 0 to +3.
Moreover, for v fixed, za(v) is monotone decreasing, as a increases, and 3 =
z0(v) H za(v) H z1(v) = 0.

To prove monotonicity of za(v), apply the implicit function derivative
theorem and note that16

, ,dv
d

v dv
d

F z v dz
d

F z v v v z
v v z
M
M

2 1
2 2 1

0
( ) ( )

a
z z v z z v

1 1

1

a a

G= - = -
+ -
+ --

= =

z ] ]c ]c
]

]
g gm gm

g

g

since for z,v H 0

dv
d F1(z,v) = exp{2v[v + z]}4v(1 – F(2v + z)) – 2exp{2v[v + z]}f(2v + z)

= 2exp{2v[v + z]}f(2v + z) [2vM (2v + z) – 1] G 0,

dz
d F1(z,v) = –f(z) + exp{2v[v + z]}2v(1 – F(2v + z)) – exp{2v[v + z]}f(2v + z)

= 2exp{2v[v + z]}f(2v + z) [vM (2v + z) – 1] G 0.

The inequalities 2vM (2v + z) – 1 < 2v / (2v + z) – 1 G 0 and vM (2v + z) – 1 < v /
(2v + z) – 1 G – 1/2 follow from Eq. (31). Furthermore,

,

dv
d v v dv

d v v v z
v v z

v v z
v v z

M
M

M
M

1 1 2 1
2 2 1

2 1
2

0

( )

( )

a a
z z v

z z v

a

a

H

+ = + = -
+ -
+ -

= -
+ -

+

=

=

z z]^ ]
]

]

]

]

gh g
g

g

g

g

which yields monotonicity of v + za(v). Bearing in mind that F1(z,3) = 1 – F(z)
and F1(z,0) = 2(1 – F(z)), the analysis in the case m H c is completed.

Address the case m G c. Bearing in mind (32), rewrite Eq. (9) with respect
to u as 

, ,a
m t
u

m
m c t

s s2
-

=F
] ]

]
d

g g

g
n (34)
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16 Here M (x), x ! R, is Mill’s ratio, see Eq. (30).
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FIGURE 2: Three graphs: F2(z,0) H F2(z, –1) H F2(z, –2) with z H 0.

where17 F2(z,v) = 1 – F(z – v) + exp{2zv}(1 – F(z + v)). The solution z = za(v)
of the equation 

F2(z,v) = a, v G 0, 0 G a G 1/2,

with respect to z exists, is unique, for a fixed is monotone increasing, as v
increases from –3 to 0, and is bounded, 0 = za(– 3) G za(v) G za(0) = ka /2.
For v fixed, za(v) is monotone decreasing, as a increases, and 3 = z0(v) H
za(v) H z1(v) = 0.

To prove monotonicity of za(v), apply the implicit function derivative
theorem and note that

2 2, ,dv
d

v dv
d

F z v dz
d

F z v v z v
z z v

M
M

1 0
( ) ( )

a
z z v z z v

1

a a

H= - = -
+ -

+-

= =

z ] ]c ]c
]

]
g gm gm

g

g

since for z H 0 and v G 0

dv
d F2(z,v) = f(z – v) + exp{2zv}2z(1 – F(z + v)) – exp{2zv}f(z + v)

= exp{2zv}2z(1 – F(z + v)) H 0,

dz
d F2(z,v) = –f(z – v) + exp{2zv}2v (1 – F(z + v)) – exp{2zv}f(z + v)

= exp{2zv}2v (1 – F(z + v)) – 2exp{2zv}f(z + v)

= 2exp{2zv}f(z + v) [vM (z + v) – 1] < 0.
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17 One may put F2(z, v) = F1(z – v, v) for v ! R, though our concern is F1(z,v) for v H 0 and F2(z,v) for
v G 0.
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The inequality vM (z+v) – 1 < vM (v) – 1 < 0 is evident from Eq. (31). Bear also
in mind that F2(z, 0) = 2(1 – F(z)). ¡

PROOF OF THEOREM 4.5. Bearing in mind (32), rewrite Eq. (9) with respect to c as 

, .a
m t
u

m
m c t

s s2
-

=F
] ]

]
d

g g

g
n (35)

The solution v = va(z) of the equation 

F2(z, v) = a, z H 0, 0 G a G 1/2, (36)

with respect to v exists, is unique and has the following properties. For a fixed,
va(z), z H 0, is continuous, convex and monotone increasing from –3 to 0, as z
increases from 0 to ka /2, zero at z = ka /2 and monotone increasing from 0 to 3,
as z increases from ka /2 to 3. Furthermore, v�a(z) > 1 for z H 0.

To prove monotonicity of va(z), apply the implicit function derivative the-
orem and note that 

2 2, , >dz
d

z dz
d

F z v dv
d

F z v z z v
v z v

M
M 1

1
( ) ( )

a
v z z v v z

1

a a

= - = -
+

+ --

= =

v ] ]c ]c
]

]
g gm gm

g

g

since (see Eq. (31)) for z H 0 and v ! R

> .z z v
v z v

z z v
z v z v

M
M

M
M1

1
1

0-
+

+ -
- =

+
- + +

]

]

]

] ]

g

g

g

g g

The proof is completed. ¡

LEMMA 4.1. The solution of Eq. (36) with respect to v is such that

va(z) = z – ka + o (1), as z " +3.

PROOF OF LEMMA 4.1. Note that 

exp{2zv}(1 – F(z + v)) = exp{2zv} f(z + v) M (z + v) = f(z – v) M (z + v)

and rewrite Eq. (36) as 

1 – F(z – v) = a – f(z – v) M (z + v).

By Theorem 4.5, va(z) " +3, as z " +3. Since M (x) " 0, as x " +3, and ƒ(x)
is bounded, the proof is completed. ¡
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