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In this paper, we are interested in the nilpotent centre problem of planar analytic

monodromic vector fields. It is known that the formal integrability is not enough to

characterize such centres. More general objects are considered as the formal inverse

integrating factors. However, the existence of a formal inverse integrating factor is not

sufficient to describe all the nilpotent centres. For the family studied in this paper, it is enough.
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1 Introduction

We consider planar differential systems that can be written as

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P and Q are analytic functions that vanish at the origin. It is known that system

(1.1) has a centre at a singular point only if it is monodromic and it has either linear part

of centre type, i.e. with imaginary eigenvalues (non-degenerate point), or nilpotent linear

part (nilpotent point) or null linear part (degenerate point). A non-degenerate singular

point is a centre if and only if it has a formal (actually analytic) first integral around the

singular point. In contrast, the formal integrability does not characterize the nilpotent or

degenerate centres, see for instance [16,18] although some nilpotent or degenerate centres

have analytic first integral, see for instance [6]. On the other hand, a non-degenerate

singular point is a centre if, and only if, there is a non-zero analytic inverse integrating

factor around the singular point, see [24] and [17].

In this work, we focus on the nilpotent centre problem which consists in characterizing

when a monodromic nilpotent singular point is a centre. In fact this problem is solved and

several methods can be used. One is blowing-up the singularity by means of generalized

polar coordinates, see for instance [9]. Another one is applying normal form theory up

to some order to transform the system into a suitable Liénard normal form, see [10].

Other method to find the centres of a family is to study the orbitally reversibilitity due

to the result that any nilpotent system has a centre at the origin if and only if it is
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orbitally reversible, see [12]. This method has been used in [1] to study certain families

of nilpotent systems. Finally, the last method is embedding the nilpotent singularity as

the limit of a family of non-degenerate centres, see [16,18] and the final corrected version

in [14]. Moreover, in [4], it is proved that in order to determine certain nilpotent centres

we can use the existence of a C∞ Lyapunov function. However, no version is based in

the construction of a formal power series which gives the obstructions to the existence

of a nilpotent centre. This is because neither the first integral nor the inverse integrating

factors are, in general, formal power series for nilpotent centres, see [2, 19]. In [19], it is

proved that any (possibly degenerate) centre of an analytic planar system admits a C∞

inverse integrating factor and a C∞ Lie symmetry in a neighbourhood of the singularity.

The monodromy problem consists in characterizing when a singular point is either a

focus or a centre. Andreev in [11] solved this problem for nilpotent singular points.

Theorem 1.1 (Andreev ) Consider the analytic system

ẋ = y + P (x, y), ẏ = Q(x, y), (1.2)

where P and Q are analytic functions around the origin without constant and linear terms

and with an isolated singularity at the origin. Let y = φ(x) be the solution of y+P (x, y) = 0

passing through the origin. Consider the functions

ψ(x) = Q(x, φ(x)) = axα + O(xα+1)

Δ(x) = div(P ,Q)(x, φ(x)) = bxβ̃ + O(xβ̃+1),

with a� 0, α � 2 and b� 0, β̃ � 1 or Δ(x) ≡ 0. Then, the origin of (1.2) is monodromic if

and only if a < 0, α = 2ñ − 1 is an odd number and one of the following conditions holds:

(i) β̃ > ñ− 1; (ii) β̃ = ñ− 1 and b2 + 4ña < 0; (iii) Δ(x) ≡ 0.

The Andreev number n of a monodromic singular point at the origin of system (1.2) is

the integer ñ � 2 given in Theorem 1.1. Recently in [13], using the Andreev number n is

proved that if n is even and there exists an inverse integrating factor then the system (1.1)

has a centre at the singular point. If n = 2, then the existence of an inverse integrating

factor characterizes all the centres. Finally, if there is an inverse integrating factor with

minimum “vanishing multiplicity” at the singularity then, generically, the system (1.1) has

a centre at the singular point.

In this work, we are interested in deepening knowledge of the methods based on formal

power series for the nilpotent centre problem. We prove that for certain nilpotent systems

the existence of a centre is equivalent to the existence of a formal inverse integrating

factor generalizing the results obtained in [20, 21]. For more general families, we do not

know if there exists a formal power series to characterize if a nilpotent singular point is

a centre or not.
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2 Nilpotent centres and inverse integrating factors

A scalar function f is quasi-homogeneous of type t = (t1, t2) ∈ �2 and degree k if

f(εt1x, εt2y) = εkf(x, y).

The vector space of quasi-homogeneous scalar function of type t and degree k is denoted

by Pt
k . A vector field F = (P ,Q)T is quasi-homogeneous of type t and degree k if P ∈ Pt

k+t1

and Q ∈ Pt
k+t2

. The vector space of quasi-homogeneous vector field of type t and degree k

is denoted by Qt
k . Given an analytic vector field F, we can write it as a quasi-homogeneous

expansion corresponding to a fixed type t:

F(x) = Fr(x) + Fr+1(x) + · · · ,

where x ∈ �2, r ∈ � and Fk ∈ Qt
k i.e. each term Fk is a quasi-homogeneous vector field

of type t and degree k. Any Fk ∈ Qt
k can be uniquely written as

Fk = μkD0 + Xhk , (2.3)

where μk = 1
r+|t| div (Fk) ∈ Pt

k , hk = 1
r+|t|D0 ∧ Fk ∈ Pt

k+|t|, D0 = (t1x, t2y)
T , and

Xhk = (− ∂hk
∂y
, ∂hk

∂x
)T is the Hamiltonian vector field with Hamiltonian function hk (see [3,

Proposition 2.7]).

In this work, we consider analytic nilpotent differential system of the form:

ẋ = F(x) :=

F1︷ ︸︸ ︷(
y

−x3

)
+ d x

(
x

2y

)
+

∑
j>1

Fj , (2.4)

with d ∈ �, Fj ∈ Qt
j , t = (1, 2), and where the conservative-dissipative decomposition of

the first quasi-homogeneous component of (2.4) is given by

F1 = Xh + d xD0, with D0 = (x, 2y)T , and h = − 1
4

(
2y2 + x4

)
.

Remark Notice that any generic monodromic nilpotent vector field can be expressed in the

form (2.4). More concretely, a normal form of system (1.2) is (ẋ, ẏ) = (y,
∑

i�2 aix
i +∑

i�1 bix
iy)T . If a2 � 0, by Theorem 1.1 the origin of (1.2) is not monodromic. By Theorem

1.1, the origin of (1.2) is monodromic in the generic case a3 � 0, b2
1 + 8a3 < 0. In this case,

the change of variables u = x, v = γy − γ
4
b1x

2 and the rescaling in the time dt = γdT , with

γ =
√

8/
√

|b2
2
+8a3 | transforms the system (1.2) into (2.4) with d = b1γ

4
.

A non-null C1 class function V is an inverse integrating factor of system ẋ = F(x) on

U if satisfies the linear partial differential equation ∇V · F = div (F)V , being div (F) :=

∂P/∂x + ∂Q/∂y the divergence of F. We will say that V is a formal inverse integrating

factor of system if V ∈ �[[x, y]], where �[[x, y]] is the algebra of the power series in x

and y with coefficients in �, convergent or not.
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Lemma 2.2 Let V (x) be a formal function, F(x) a vector field, x = Φ(y) a change of

variables with G = Φ∗F (where ∗ is the pull-back of Φ) and Ṽ := V (Φ(y)), then

∇yṼ · G(y) = ∇xV (x) · F(x).

Proof ∇Ṽ · G = ∇V (Φ(y)) · G = ∇V (Φ(y))DΦ(y) · [DΦ(y)]−1 F(Φ(y)) = ∇V (x) · F(x). �

Lemma 2.3 Let Φ be a diffeomorphism and μ a function on U ⊂ �2 such that det (DΦ)

has no zero on U and μ(0)� 0, let F a vector field and G = Φ∗(μF), let f, V functions. If

∇V · F − div (F)V = f,

then

∇W · G − div (G)W = g,

where W (y) = μ(Φ(y))V (Φ(y)) det (DΦ(y))−1 and g(y) = μ(Φ(y))2 det (DΦ(y))−1 f (Φ(y)).

Proof We define Ṽ (y) = V (Φ(y)) and J = det (DΦ(y)) then we can write W (y) =

μ(Φ(y))J−1Ṽ (y). Applying Lemma 2.2 and the known result div (G) = div (F) − ∇J · G/J

(see [22]), we have

g(y) = ∇W · G − div (G)W = ∇( μ
J
Ṽ ) · G − div (G) μ

J
Ṽ

= μ
J

∇Ṽ · G + Ṽ
J

∇μ · G − μṼ
J2 ∇J · G −

(
div (μF) − ∇J·G

J

)
μ
J
Ṽ

= μ
J

∇V · (μF) + Ṽ
J

∇μ · (μF) − μṼ
J

∇μ · F − μ2V
J

div (F)

= μ2

J
∇V · F + μṼ

J
∇μ · F − μṼ

J
∇μ · F − μ2V

J
div (F)

= μ2

J
(∇V · F − div (F)V ) = μ2

J
f. �

Definition 2.4 Let us consider two vector fields F, G. We say that F is orbital equivalent to

G if there exist a diffeomorphism Φ and a function μ with μ(0) = 1 such that G = Φ∗ (μF).

Proposition 2.5 System (2.4) is orbitally equivalent to

(a) (ẋ, ẏ) = (y,−x3)T + hf0(h)D0 + xhf1(h)D0 + x2f2(h)D0 for d = 0 where fi(h) =∑
j�0 a

(i)
j h

j , i = 0, 1, 2.

(b) (ẋ, ẏ) = (y + dx2,−x3 + 2dxy)T + hf0(h)D0 + x2f2(h)D0 for d � 0 where fi(h) =∑
i�0 a

(i)
j h

j , i = 0, 2.

Proof The proof of statement (a) is given in [7, Theorem 16]. Following the same ideas

it is possible to prove (b).

Remark In Proposition 2.5, it is not necessary neither the convergence of the transformation

nor the convergence of the transformed vector field. In fact, we only need the formal part
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of the transformed vector field since when system (2.4) is monodromic the Poincaré map is

analytic, see [23].

More specifically, in this case, we consider a vector field F ∈ �ω with a monodromic

nilpotent singular point at the origin. The transformed system is given by F̃ + τ(x, y), where

F̃ is a formal vector field and where τ is a flat vector field at the origin. By Moussu, see [23],

we know that the Poincaré map for F is given by Π(x) = x +
∑

n�2 anx
n ∈ �ω and the

Poincaré map of F̃ is the formal map Π̃(x) = x+
∑

n�2 ãnx
n.

Moreover, if a2 = . . . = an−1 = 0 and an � 0, that is F has a focus at the origin this

implies that ã2 = . . . = ãn−1 = 0 and ãn � 0. Otherwise if ãn = 0 for n � 2, then Π̃(x) = x

that implies an = 0 for n � 2 and Π(x) = x, that is, the origin is a centre for F and hence

we do not need the convergence of the transformation.

The following proposition is proved in [7, Theorem 6].

Proposition 2.6 System (2.4) with d = 0 has a formal inverse integrating factor if and only

if F is orbitally equivalent to (ẋ, ẏ) = (y,−x3)T + xhf1(h)D0, where f1(h) =
∑

j�0 a
(1)
j h

j .

The next proposition characterizes when system (2.4) has a centre at the origin.

Proposition 2.7 System (2.4) has a centre at the origin if and only if F is orbitally equivalent

to

(a) (ẋ, ẏ) = (y,−x3)T + xhf1(h)D0 for d = 0, where f1(h) =
∑

j�0 a
(1)
j h

j .

(b) (ẋ, ẏ) = (y + dx2,−x3 + 2dxy)T for d� 0.

Proof We give the proof for each statement.

Case d = 0 Applying Proposition 2.5 statement (a), the origin of F is a centre if and

only if the origin of (ẋ, ẏ) = G := (y,−x3)T + hf0(h)D0 + xhf1(h)D0 + x2f2(h)D0 is a

centres.

The sufficient condition is trivial because, if f0 ≡ f2 ≡ 0, then G is monodromic and is

invariant by the symmetry (x, y, t) �→ (−x, y,−t) and therefore has a centre at the origin.

To prove the necessity of the condition, we assume that f2
0 + f2

2 � 0 and we define

Ĝ = (y,−x3)T + xhf1(h)D0 whose origin is a centre. The wedge product G ∧ Ĝ measures

the direction of the orbits of ẋ = G(x) crossing the ovals of the centre ẋ = Ĝ(x).

G ∧ Ĝ =
(
Ĝ + (hf0(h) + x2f2(h))D0

)
∧ Ĝ = (hf0(h) + x2f2(h))D0 ∧ Ĝ

= (hf0(h) + x2f2(h))D0 ∧ Xh = 4h(hf0(h) + x2f2(h)).

We claim that this wedge product is semi-definite. To prove our claim, we consider

k = min{i ∈ � ∪ {0} : a(2)
i � 0 or a(0)

i � 0}. If the minimum is a(0)
k , then G ∧ Ĝ =

4hk+2(a(0)
k + · · · ) which is definite. If the minimum is a(2)

k , then G ∧ Ĝ = 4x2hk+1(a(2)
k + · · · )

which is semi-definite. In both cases, the orbits of ẋ = G(x) cross the ovals of the centre

of ẋ = Ĝ(x) in the same direction which implies that the origin of system (2.4) cannot be

a centre.
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Case d� 0 Applying Proposition 2.5 statement (b), the origin of F is a centre if and

only if the origin of (ẋ, ẏ) = G := (y + dx2,−x3 + 2dxy)T + hf0(h)D0 + x2f2(h)D0 is a

centre.

The sufficient condition, as before, is trivial because if f0 ≡ f2 ≡ 0 then G is monodromic

and is invariant by the symmetry (x, y, t) �→ (−x, y,−t) and therefore has a centre at the

origin.

To prove the necessity of the condition, we assume that f2
0 + f2

2 � 0 and we define

Ĝ = (y + dx2,−x3 + 2dxy)T whose origin is a centre. We compute the wedge product

G ∧ Ĝ that is given by

G ∧ Ĝ =
(
Ĝ + (hf0(h) + x2f2(h))D0

)
∧ Ĝ = (hf0(h) + x2f2(h))D0 ∧ Ĝ

= (hf0(h) + x2f2(h))D0 ∧ Xh = 4h(hf0(h) + x2f2(h)).

We are going to see that this expression is also semi-definite. We define, as before,

k = min{i ∈ � ∪ {0} : a(2)
i � 0or a(0)

i � 0}. If the minimum is a(0)
k , then G ∧ Ĝ =

4hk+2(a(0)
k + · · · ) which is definite. If the minimum is a(2)

k , then G ∧ Ĝ = 4x2hk+1(a(2)
k + · · · )

which is semi-definite. In both cases, the orbits of system ẋ = G(x) cross the ovals of the

centre of ẋ = Ĝ(x) in the same direction which implies that the origin of system (2.4)

cannot be a centre.

The next theorems are the main results of this work and they give a new characterization

of the centres of the nilpotent differential system (2.4). This characterization provides a

scalar procedure to determine the centres of system (2.4).

Theorem 2.8 The origin of system (2.4) with d = 0 is a centre if and only if F has a formal

inverse integrating factor.

Proof Applying Proposition 2.7 statement (a), we have that the origin of system (2.4)

is a centre if and only if F is orbitally equivalent to G := (y,−x3) + xf1(h)D0 and by

Proposition 2.6, this condition is equivalent to have a formal inverse integrating factor.

Theorem 2.8 is not satisfied for others nilpotent vector fields different from system (2.4).

For instance, we provide an example where the necessary condition of Theorem 2.8 is not

satisfied, that is, we give a vector field which has a centre at the origin but it does not

have a formal inverse integrating factor.

Proposition 2.9 The origin of system (ẋ, ẏ)T = F := (y,−x5) + d x3(x, 3y)T is a centre but

it does not have any formal inverse integrating factor.

Proof The origin of the system is a centre because the system is monodromic and is

invariant by the symmetry (x, y, t) �→ (−x, y,−t). However, the system has not a formal

inverse integrating factor. If we define h = − 1
6

(
3y2 + x6

)
and D0 = (x, 3y)T , then

F = Xh + dx3D0 and V = h7/6 is a non-formal inverse integrating factor. In [7] is proved

that this inverse integrating factor is unique up to a constant multiplicative because any
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invariant curve has the form hαu, where u ∈ �[[x, y]] is a unity element. Moreover, in

order to be hαu an inverse integrating factor it is enough to take α = 7/6 and u = 1.

Now we give an example where the sufficient condition of Theorem 2.8 is not satisfied

for nilpotent systems different from system (2.4), that is, we find a vector field that has

a formal inverse integrating factor. Nevertheless, this vector field has not a centre at the

origin.

Proposition 2.10 The origin of system (ẋ, ẏ)T = F := (y,−x5) + d x2h(x, 3y)T , with h =

− 1
6
(3y2 + x6), is not a centre but this system has a formal inverse integrating factor.

Proof The system has a formal inverse integrating factor V = h2. However, the origin of

the system is not a centre because the wedge product

F ∧ Xh = dx2hD0 ∧ Xh = dx2h∇h · D0 = 6dx2h2

is definite and therefore the origin is a focus. �

For these last systems, we do not have a characterization of the centres using an scalar

algorithm and these systems require further studies.

3 Characterization of the centres of system (2.4)

The following results give the characterization of the nilpotent centres for system (2.4).

Lemma 3.11 Let F be the associated vector field to system (2.4). There exist a formal

function V = h + · · · and some numbers α ∈ �, α� 0 m ∈ � and A ∈ � ∪ {0} ∪ {+∞}
such that one of the following conditions is satisfied:

(a) ∇V · F − (1 + A)−1div (F)V = 0,

(b) ∇V · F − (1 + A)−1div (F)V = αx2hm + O(|x, y|4m+2),

(c) ∇V · F − (1 + A)−1div (F)V = αhm + O(|x, y|4m).

Moreover, if d� 0, then A = 0.

Proof We divide the proof in two cases.

(i) If d � 0, by Proposition 2.5 statement (b), F is orbitally equivalent to G := (y +

dx2,−x3 +2dxy)T +x2f2(h)D0 +hf4(h)D0 with fi(h) =
∑∞

j=0 a
(i)
j h

j for i = 2, 4, where

a
(j)
i ∈ �. Taking A = 0, we have

∇h · G − div (G) h = 4h
(
dx+ x2f2(h) + hf4(h)

)
−h

(
4dx+ 5x2f2(h) + 4x2f′

2(h)h+ 7hf4(h) + 4h2f′
4(h)

)
,

= x2g2(h) + hg4(h),
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where g2(h) = −hf2(h) − 4h2f′
2(h), g4(h) = −3hf4(h) − 4h2f′

4(h), that is, gi(h) =∑
j>0 c

(i)
j h

j for i = 2, 4.

(i.1) If g2(h) ≡ g4(h) ≡ 0, then we are in the same situation (a) for A = 0.

(i.2) If g2(h)
2 + g4(h)

2 � 0, we consider

m0 = min
{
m ∈ � ∪ {0} .

(
c(2)
m

)2
+

(
c(4)
m

)2
� 0

}
,

i0 = min
{
i ∈ {2, 4} : c(i)m0

� 0
}
.

(i.2.a) If i0 = 2, we have

∇h · G − div (G) h = 4c(2)
m0
x2hm0+1 − (5 + 4m0)c

(2)
m0
x2hm0h+ · · · ,

= −(4m0 + 1)c(2)
m0
x2hm0+1 + · · ·

defining α := −(4m0 + 1)c(2)
m0

� 0 and m := m0 + 1. If G = Φ(μF), ap-

plying Proposition 2.3 and considering V = μ(Φ(x)) (DΦ)−1 h (Φ(x)) =

h+ · · · the statement (b) is satisfied for A = 0.

(i.2.b) If i0 = 4, we have

∇h · G − div (G) h = 4c(4)
m0
hm0+1 − (7 + 4m0)c

(2)
m0
hm0h+ · · · ,

= −(4m0 + 3)c(4)
m0
hm0+1 + · · ·

defining α := −(4m0 + 3)c(4)
m0

� 0 and m := m0 + 1. If G = Φ(μF), ap-

plying Proposition 2.3 and considering V = μ(Φ(x)) (DΦ)−1 h (Φ(x)) =

h+ · · · statement (c) is satisfied.

(ii) If d = 0, by Proposition 2.5 statement (a), F is orbitally equivalent to G := (y,−x3)T+

x2f2(h)D0 + hf4(h)D0 + xhf5(h)D0 with fi(h) =
∑∞

j=0 a
(i)
j h

j for i = 2, 4, 5, where

a
(j)
i ∈ �. If f2(h) ≡ f4(h) ≡ f5(h) ≡ 0, then h is a first integral of G and F is also

integrable with a first integral of the form V = h+ · · · and the statement (a) with

A = +∞ is satisfied.

Assume now that f2
2(h) + f2

4(h) + f2
5(h) � 0 in this case, we consider

m0 = min
{
m ∈ � ∪ {0} .

(
a(2)
m

)2
+

(
a(4)
m

)2
+

(
a(5)
m

)2
� 0

}
,

i0 = min
{
i ∈ {2, 4, 5} : a(i)

m0
� 0

}
.

• If i0 = 2 for any value of A, we have

∇h · G − 1

1 + A
div (G) h = 4a(2)

m0
x2hm0+1 − 1

1 + A
(5 + 4m0)a

(2)
m0
x2hm0h+ · · · ,

=
4(A− m0) − 1

1 + A
a(2)
m0
x2hm0+1 + · · ·

https://doi.org/10.1017/S0956792516000103 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000103


Nilpotent centres via inverse integrating factors 789

defining α := 4(A−m0)−1
1+A

a(2)
m0

� 0 and m := m0 + 1. If G = Φ(μF), applying

Proposition 2.3 and considering V = μ(Φ(x)) (DΦ)−1 h (Φ(x)) = h+ · · · statement

(b) is satisfied.

• If i0 = 4 for any value of A, we have

∇h · G − 1

1 + A
div (G) h = 4a(4)

m0
hm0+2 − 1

1 + A
(3 + 4(m0 + 1))a(4)

m0
hm0+1h+ · · · ,

=
4(A− m0) − 3

1 + A
a(4)
m0
hm0+2 + · · ·

defining α := 4(A−m0)−3
1+A

a(4)
m0

� 0 and m := m0 + 2. If G = Φ(μF), applying

Proposition 2.3 and considering V = μ(Φ(x)) (DΦ)−1 h (Φ(x)) = h+ · · · statement

(c) is satisfied.

• If i0 = 5, we will see that it is possible to choose a value of A and a function

b(h) = 1 +
∑∞

i=1 bih
i, bi ∈ � such that

∇V · G − 1
1+A

div (G)V = x2g2(h) + hg4(h),

where V := hb(h) with g2(h) =
∑

i>m0
c
(2)
i h

i and g4(h) =
∑

i>m0
c
(4)
i h

i. We must

eliminate the odd terms in h.

∇hb(h) · G − 1
1+A

div (G) hb(h) =
[
b(h) + hb′(h)

]
∇h · G − 1

1+A
div (G) hb(h)

= 4h
[
b(h) + hb′(h)

] (
x2f2(h) + hf4(h) + xhf5(h)

)
− 1

1+A

[
5x2f2(h) + 4x2f′

2(h)h+ 7hf4(h) + 4h2f′
4(h)

+8xhf5(h) + 4xh2f′
5(h)

]
hb(h).

The odd terms in h of the right-hand side are

4xh2b(h)f5(h)
1+A

[
(1 + A)

(
1 + hb′(h)

b(h)

)
− 2 − hf′

5(h)

f5(h)

]
. (3.5)

Taking into account that
hf′

5(h)

f5(h)
=

m0a
(5)
m0
hm0 +···

a
(5)
m0
hm0 +···

= m0+· · · := m0+f̃5(h) with f̃5(0) = 0

and imposing 1 + A− 2 − m0 = 0, that is, A = m0 + 1, the odd terms in h are

4xh3b(h)f5(h)
[
(log (b(h)))′ − f̃5(h)

(m0+2)h

]
.

In order to vanish these terms, we just take b(h) = exp
(

f̃5(h)
(m0+2)h

)
.

Now we come back to the functions g2(h) and g4(h). If g2(h) ≡ g4(h) ≡ 0, we

have that statement (a) is satisfied. If (g2(h))
2 + (g4(h))

2 � 0 considering the non-

zero terms of lower degree, we have that statement (b) or (c) would be satisfied.

Theorem 3.12 The origin of system (2.4) is a centre if and only if there exist a formal

function V = h+ · · · and a unique value A ∈ � ∪ {0} ∪ {+∞} such that

∇V · F − 1
1+A

div (F)V = 0.

Moreover, if A = +∞, then the centre is integrable and if d� 0, then A = 0.
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Proof Applying Theorem 2.8, the origin of system (2.4) is a centre if and only if its

vector field associated F, has a formal inverse integrating factor. The factors of the

inverse integrating factor are invariant curves. Furthermore, the first quasi-homogeneous

component of the formal invariant curve must be invariant curve of the first quasi-

homogeneous component of F, that is, of F1. Notice that the unique irreducible invariant

curve of F1 are the factors of h. Therefore, the inverse integrating factor is of the form

W = h1+A + · · · := V 1+A with A ∈ � ∪ {0} and V = h+ · · · . Consequently,

0 = ∇W · F − div (F)W = (1 + A)VA∇V · F − div (F)V 1+A

= (1 + A)VA
(
∇V · F − 1

1+A
div (F)V

)
,

and from here the statement of the theorem follows. We can include the case A = +∞
and in this case ∇V · F = 0, that is, F would be integrable. Applying Lemma 3.11, we

have the condition A = 0 if and only if d� 0.

We note that Lemma 3.11 and Theorem 3.12 give us a method to compute the necessary

conditions to have a nilpotent centre for system (2.4).

Theorem 3.13 Consider system (2.4) with d � 0 and F its associated vector field. The

following conditions are equivalent:

(a) The origin of system (2.4) is a centre.

(b) F is orbitally reversible.

(c) There exists a formal inverse integrating factor V = h+ · · · of F.

(d) There exist G = D0 + · · · and a scalar function μ with μ(0) = 1 such that [F,G] = μF.

Proof To see that statement (a) is equivalent to statement (b), it is sufficient to apply

Proposition 2.7 statement (b). The equivalence between statement (a) and (c) follows

from Theorem 3.12. Finally, the equivalence between statements (a) and (d) follows from

Proposition 2.7 statement (b) and Theorem 1.3 of [5].

4 Applications

In this section, we apply the scalar algorithm obtained in order to find nilpotent centres.

Example 1 We consider the planar differential system(
ẋ

ẏ

)
=

(
y

−x3

)
+

(
a11xy + a30x

3

b02y
2 + b21x

2y + b40x
4

)
. (4.6)

The centre conditions of this family are studied, using a generalization of the Cherkas’

method, in [15, Proposition 33]. We find the same centre conditions using the algorithm

derived in the previous section.

Theorem 4.14 System (4.6) has a centre at the origin if and only if one of the following

conditions holds:
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(i) a30 = b21 = 0.

(ii) 3a30 + b21 = 2b02 + a11 = 0, a30 � 0.

(iii) 3a30 + b21 = b02 + b40 − a11 = 2b2
40 + b40b02 + 6a2

30 = 0, a30(2b02 + a11)� 0.

(iv) 3a30 +b21 = b02 +b40 −a11 = 3b40 +2b02 = 0, a30(2b02 +a11)(2b
2
40 +b40b02 +6a2

30)� 0.

Proof First, we will see the necessity. We impose the condition ∇V · F − 1
1+A

div (F)V = 0

of Theorem 3.12 degree by degree of quasi-homogeneity. We consider V = h +
∑

j�5 Vj ,

where Vj ∈ P
(1,2)
j and we chose V5 in order to cancel the maximum number of terms and

we obtain

∇V · F − 1
1+A

div (F)V = 2(4A−1)(3a30+b21)
15(1+A)

x2h+ · · · .

Taking into account that 4A− 1� 0, the first condition is 3a30 + b21 = 0.

Now we chose V6 ∈ P
(1,2)
6 . In this case, we can choose V6 such that all the terms of

degree 7 cancel in ∇V · F − 1
1+A

div (F)V .

Next, we consider V7 ∈ P
(1,2)
7 . After a good choice of V7, we have that

∇V · F − 1
1+A

div (F)V = 4(4A−3)a30(2b02+a11)(b02−a11+b40)
189(1+A)

h2 + · · · .

Taking into account that 4A − 3 � 0, we have three possibilities either a30 = 0, or

2b02 + a11 = 0, or b02 − a11 + b40 = 0.

The case a30 = 0 corresponds to statement (i).

The case 2b02 + a11 = 0, a30 � 0 corresponds to statement (ii).

The remaining case is a11 = b02 + b40, a30(2b02 + a11) � 0. After a good choice of

V8 ∈ P
(1,2)
8 , we obtain

∇V · F − 1
1+A

div (F)V =
a30(b40+3b02)(2b

2
40+b40b02+6a2

30)(A−1)

18(1+A)
xh2 + · · · .

Taking into account that a30 � 0, we have three possibilities (c1) b40 + 3b02 = 0, (c2)

b40 + 3b02 � 0 and 2b2
40 + b40b02 + 6a2

30 = 0, and (c3) (b40 + 3b02)(2b
2
40 + b40b02 + 6a2

30)� 0

with A = 1. (c1) If b40 + 3b02 = 0, this implies 2b02 + a11 = 0 which corresponds to

statement (ii). (c2) If b40 + 3b02 � 0 and 2b2
40 + b40b02 + 6a2

30 = 0, we have the case of

statement (iii). (c3) If (b40 + 3b02)(2b
2
40 + b40b02 + 6a2

30) � 0 with A = 1. After a good

choice of V9 ∈ P
(1,2)
9 , we obtain

∇V · F − 1
1+A

div (F)V =
4a30(b40+3b02)(3b40+2b02)(2b

2
40+b40b02+6a2

30)

2025
x2h2 + · · · .

Taking into account that a30(b40 + 3b02)(2b
2
40 + b40b02 + 6a2

30) � 0, the unique possibility

is 3b40 + 2b02 = 0 which corresponds with statement (iv).

Now we will see the sufficiency.

In the case (i), that is, a30 = b21 = 0, system (4.6) is time-reversible because is invariant

by the the symmetry (x, y, t) �→ (x,−y,−t) and, as the origin is monodromic, the origin is

a centre.
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In the case (ii), that is, 3a30+b21 = 2b02+a11 = 0, we have that the divergence div (F) = 0

and consequently F is a Hamiltonian vector field and, as the origin is monodromic, the

origin is a centre.

In the case (iii), that is, 3a30 + b21 = b02 + b40 − a11 = 2b2
40 + b40b02 + 6a2

30 = 0, with

a30(2b02 + a11)� 0, the vector field F associated to system (4.6) has the inverse integrating

factor V = (1+a30b02y+b02x− b40b02

2
x2)α, where α = (b40 +3b02)/b02. We note that b02 � 0

because the case b02 = 0 implies 0 = b2
40 + 3a2

30 which corresponds to a particular case of

case (i). Moreover, we also consider the case b40 +3b02 � 0 because the case b40 +3b02 = 0

implies b2
02 + 2a2

30 = 0 which also corresponds to a particular case of case (i). Therefore,

F is integrable and the origin of system (4.6) is a centre.

In the case (iv), system (4.6) takes the form(
ẋ

ẏ

)
=

(
y

−x3

)
+

(
a30x

3 − b40

2
xy

b40x
4 − 3a30x

2y − 3b40

2
y2

)
.

Applying the change of variables u = (1 − b40

2
x)−1, v =

[
y

(
1 − b40

2
x
)
+

a30x
3
] (

1 − b40

2
x
)−4

, dT =
(
1 + b40

2
u
)
dt, and denoting by ′ = d/dT , system (4.6) becomes

(
u′

v′

)
=

(
v

−u3

)
+

(
0(

3a2
30 +

b2
40

4

)
u5 − 7

2
a30b40u

3v

)
−

(
0

3
4
a2

30b
2
40u

7

)
,

which is monodromic and time-reversible because is invariant by the symmetry (u, v, t) �→
(−u, v,−t) and consequently the origin is a centre.

Example 2 We now consider the differential system

ẋ = y + axy + by2,

ẏ = −x3 + kxy + cy3.
(4.7)

Applying the change of variables x = u, y = v + k
4
u2, system (4.7) can be written as

(
u̇

v̇

)
=

F1︷ ︸︸ ︷(
v

( k
2

8
− 1)u3

)
+ k

4
u

(
u

2v

)
+

(
ak
4
u3 + auv

− k2a
8
u4 − ka

2
u2v

)
(4.8)

+

(
k2b
16
u4 + kb

2
u2v + bv2

− k3b
32
u5 − k2b

4
u3v − kb

2
uv2

)
+

(
0

k3c
64
u6 + 3k2c

16
u4v + 3kc

4
u2v2 + cv3

)
.

Lemma 4.15 The origin of system (4.7) is monodromic if, and only if, k2 < 8.

Proof The Hamiltonian function of system (4.8) is

h(x, y) =
1

4

(
k2

8
− 1

)
u4 − 1

2
v2.
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If k2 − 8 > 0, then h has two simple factor and consequently the origin of system (4.7)

is not monodromic, see [8, Proposition 6].

If k2 − 8 = 0, then h = − 1
2
v2 has a double factor v which is not a factor of the

divergence and applying [8, Proposition 6], we have that the origin of system (4.7) is not

monodromic.

Finally, if k2 − 8 < 0, then h is negative defined, does not vanish in a neighbourhood of

the origin and hence, the origin of system (4.7) is monodromic, see [8, Proposition 5].

Theorem 4.16 System (4.7) has a centre at the origin if and only if k2 < 8 and any of the

following conditions holds:

(i) a = c = 0, k� 0.

(ii) k = a = c = 0.

(iii) k = b = c = 0.

Proof Necessity: We recall that to have a monodromic singular point at the origin

by Lemma 4.15, we have that k2 < 8. From Theorem 3.12, we impose the condition

∇V · F − 1
1+A

div (F)V = 0, where V = h +
∑

j�5 Vj , Vj ∈ P
(1,2)
j degree by degree of

homogeneity in the equivalent system (4.8). We divide the study in the two case k� 0 and

k = 0.

In the case k� 0, we have A = 0. We chose V5 in order to cancel the maximum number

of terms and we obtain

∇V · F − div (F)V = − 2ka
3k2−25

x2h+ · · · .

Taking into account that k� 0, we have that the first condition is a = 0. Now we chose

V6 ∈ P
(1,2)
6 . In this case, we can choose V6 in such way that all the terms of degree 7 in

∇V ·F−div (F)V vanish. Now we consider V7 ∈ P
(1,2)
7 . After a good choice of V7, we have

∇V · F − div (F)V = (2k2−21)c
5k2−49

h2 + · · · .

Taking into account that 2k2 − 21 � 0, we get c = 0 which corresponds to the statement

(i).

In the case k = 0, we have A > 0 and we can chose V5 and V6 in such way that all the

terms of degree 6 and 7 vanish in ∇V · F − 1
1+A

div (F)V . Now we chose V7 in order to

cancel the maximum number of terms and we obtain

∇V · F − 1
1+A

div (F)V = (4A−3)(ab−3c)
21(1+A)

h2 + · · · .

Taking into account that 4A− 3� 0, we get that ab− 3c = 0. Next, we chose V8 in order

to cancel the maximum number of terms and we have

∇V · F − 1
1+A

div (F)V = − (A−1)a2b
8(1+A)

xh2 + · · · .

In this case, we have three possibilities either a = 0 or b = 0 with a� 0 or A = 1 with

ab� 0.
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The case a = 0 corresponds to statement (ii). The case b = 0 with a� 0 corresponds

to statement (iii). In the case A = 1 with ab � 0, we chose V9 in order to cancel the

maximum number of terms and we get

∇V · F − 1
1+A

div (F)V = − 7a3b
450
x2h2 + · · · .

Taking into account that a3b� 0, we have that the origin cannot be a centre in this case.

Sufficiency:

In the case a = c = 0 with k� 0, system (4.7) is time-reversible because it is invariant

by the symmetry (x, y, t) �→ (−x, y,−t) and as the origin is monodromic then it is a centre.

In the case a = c = k = 0, system (4.7) is also time-reversible because it has the same

symmetry. In the case k = b = c = 0, system (4.7) is time-reversible because it is invariant

by the symmetry (x, y, t) �→ (x,−y,−t) and as the origin is monodromic then it is a centre.
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la Junta de Andalućıa (projects P12-FQM-1658, FQM-276). The third author is partially

supported by a MINECO/FEDER grant number MTM2014-53703-P and by an AGAUR

(Generalitat de Catalunya) grant number 2014SGR 1204.

References

[1] Algaba, A., Checa, I., Garcı́a, C. & Gamero, E. (2015) On orbital-reversibility for a class of

planar dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 20(1), 229–239.

[2] Algaba, A., Fuentes, N., Garcı́a, C. & Reyes, M. (2014) A class of non-integrable systems

admitting an inverse integrating factor. J. Math. Anal. Appl. 420(2), 1439–1454.

[3] Algaba, A., Gamero, E. & Garcı́a, C. (2009) The integrability problem for a class of planar

systems. Nonlinearity 22(2), 395–420.

[4] Algaba, A., Garcı́a, C. & Reyes, M. (2008) The center problem for a family of systems of

differential equations having a nilpotent singular point. J. Math. Anal. Appl. 340(1), 32–43.

[5] Algaba, A., Garcı́a, C. & Reyes, M. (2009) Like-linearizations of vector fields. Bull. Sci. Math.

133(8), 806–816.

[6] Algaba, A., Garcı́a, C. & Reyes, M. (2012) A note on analytic integrability of planar vector

fields. Eur. J. Appl. Math. 23(5), 555–562.

[7] Algaba, A., Garcı́a, C. & Reyes, M. (2012) Existence of an inverse integrating factor, center

problem and integrability of a class of nilpotent systems. Chaos Solitons Fractals 45(6),

869–878.

[8] Algaba, A., Garcı́a, C. & Reyes, M. (2014) A new algorithm for determining the monodromy

of a planar differential system. Appl. Math. Comput. 237, 419–429.
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