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An experimental and numerical study of the evolution of frequency spectra of
dispersive focusing wave groups in a two-dimensional wave tank is presented.
Investigations of both non-breaking and breaking wave groups are performed. It is
found that dispersive focusing is far more than linear superposition, and that it
undergoes strongly nonlinear processes. For non-breaking wave groups, as the wave
groups propagate spatial evolution of wave frequency spectra, spectral bandwidth,
surface elevation skewness, and kurtosis are examined. Nonlinear energy transfer
between the above-peak (f /fp = 1.2–1.5) and the higher-frequency (f /fp = 1.5–2.5)
regions, with fp being the spectral peak frequency, is demonstrated by tracking
the energy level of the components in the focusing and defocusing process. Also
shown is the nonlinear energy transfer to the lower-frequency components that
cannot be detected easily by direct comparisons of the far upstream and downstream
measurements. Energy dissipation in the spectral peak region (f /fp = 0.9–1.1) and the
energy gain in the higher-frequency region (f /fp = 1.5–2.5) are quantified, and exhibit
a dependence on the Benjamin–Feir Index (BFI). In the presence of wave breaking,
the spectral bandwidth reduces as much as 40 % immediately following breaking and
eventually becomes much smaller than its initial level. Energy levels in different
frequency regions are examined. It is found that, before wave breaking onset, a large
amount of energy is transferred from the above-peak region (f /fp = 1.2–1.5) to the
higher frequencies (f /fp = 1.5–2.5), where energy is dissipated during the breaking
events. It is demonstrated that the energy gain in the lower-frequency region is
at least partially due to nonlinear energy transfer prior to wave breaking and that
wave breaking may not necessarily increase the energy in this region. Complementary
numerical studies for breaking waves are conducted using an eddy viscosity model
previously developed by the current authors. It is demonstrated that the predicted
spectral change after breaking agrees well with the experimental measurements.
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1. Introduction
Breaking waves play an important role in upper ocean dynamics. Wave breaking

limits wave height and dissipates wave energy. It also enhances gas and heat
exchange between air and sea by entraining air into the water, injecting spray into
the atmosphere, and generating near surface turbulence.

Our understanding of breaking waves has been advanced by numerous studies (e.g.
Rapp & Melville 1990; Perlin, He & Bernal 1996; Melville, Veron & White 2002;
Banner & Peirson 2007; Drazen, Melville & Lenain 2008; Tian, Perlin & Choi
2008, 2010). Lab experiments serve as the most reliable method in the study of
breaking waves, as numerical simulations fail or cannot fully represent the physics
subsequent to wave breaking, and field observations lack the control required for
detailed studies. In lab experiments, breaking waves are generated often by focusing
wave energy at a desired time and spatial location (e.g. Rapp & Melville 1990) and by
Benjamin–Feir instability (e.g. Benjamin & Feir 1967; Tulin & Waseda 1999). In this
study, we focus mainly on dispersive focusing wave groups in laboratory experiments.

The evolution of two-dimensional wave groups due to Benjamin–Feir instability
has been studied in numerous experiments (e.g. Lake et al. 1977; Melville 1982;
Tulin & Waseda 1999), which typically focused on the energy transfer among
different frequency components. Lake et al. (1977) observed periodic modulation and
demodulation in the evolution of the wave groups (wave steepness, ka ∼ 0.1) and the
spectral peak downshift in the absence of wave breaking. Melville (1982) investigated
wave groups (ka ∼ 0.2) that evolved to breaking. They found that the wave groups
evolve only in a partial recurrence fashion, ‘tending to lower frequency’. In addition,
the evolution of the wave spectra does not limit itself to a few frequency components
but tends to generate a growing, continuous one. Tulin & Waseda (1999) further
studied breaking effects on the evolution of the wave groups due to Benjamin–Feir
instability. It was observed that frequency downshift may not necessarily occur for
wave groups that experience incomplete recurrence in the absence of wave breaking.
The energy transfer from the higher to lower sidebands increased due to the presence
of strong breaking, which typically downshifts the spectral energy.

Compared to the study of modulationally unstable wave group evolution,
experimental studies of the spectral evolution of dispersive focusing wave groups,
especially those that lead to wave breaking, have been rare. A related, significant study
was performed by Baldock, Swan & Taylor (1996), who examined the nonlinearity of
the wave kinematics, as well as the energy transfer to the higher and lower harmonics
in the wave focusing process. Their study showed strong nonlinear wave–wave
interactions occurred and thus the process is highly nonlinear close to the focusing
point. The nonlinearity of the wave group is demonstrated to increase with wave
amplitude and decrease with increased spectral bandwidth. This finding is consistent
with the evolution of wave groups due to the Benjamin–Feir instability, which is
often characterized by the so-called Benjamin–Feir Index (BFI, Janssen 2003). The
BFI is defined as the ratio of wave steepness to spectral bandwidth, which measures
the relative importance of nonlinearity compared to linear dispersion. Based on the
wave spectra measured at stations along their wave tank, nonlinear energy transfer and
reversibility were demonstrated. The study reported few details of the evolution of the
wave spectra and the spatial variation of the energy level in different frequency ranges.
More importantly, wave breaking effects on the spectral evolution of the dispersive
focusing wave groups were not considered.

Energy dissipation due to wave breaking is also an important subject.
Previous studies typically include quantification of the total energy dissipated and
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parametrization of the energy dissipation rate (e.g. Duncan 1981, 1983; Rapp &
Melville 1990; Melville 1994; Banner & Peirson 2007; Drazen et al. 2008; Tian
et al. 2010). One may also be interested in how energy is dissipated across a wave
spectrum, which is often obtained with surface elevation measurements and subsequent
fast Fourier transform (FFT).

Rapp & Melville (1990) examined the spatial evolution of wave frequency spectra
of breaking wave groups and observed that most of the energy dissipated is from
the high-frequency end of the first harmonic band (i.e. f /fp = 1.0–2.0). Kway, Loh
& Chan (1998) made similar observations for breaking wave groups of three types
of wave spectra (i.e. constant-amplitude, constant-steepness, and Pierson–Moskowitz).
Neither study attempted to quantify the spectral change due to wave breaking or the
viscous related dissipation, which was shown to be significant in the determination of
energy loss in breaking waves (Banner & Peirson 2007; Tian et al. 2010).

Meza, Zhang & Seymour (2000) estimated the free-wave energy dissipation in
breaking waves, generated with dispersive focusing wave groups in a two-dimensional
wave flume. Spectral distribution of free-wave energy dissipation was quantified. They
found that almost all energy dissipation is from wave components higher than the peak
frequency and a small portion (∼10 %) of the energy lost from the higher-frequency
wave components is gained by lower-frequency components. No significant change in
the vicinity of the spectral peak after breaking was observed. Energy dissipation due to
viscous effects was neglected in their study.

Recently, Yao & Wu (2004) reported an experimental study on energy dissipation
of unsteady wave breaking in the presence of currents. Measurements of incipient
breaking wave groups were made to estimate energy dissipation due to friction on the
tank bottom and sidewalls. Findings on energy loss and gain across the wave spectra
due to wave breaking were generally consistent with previous studies. For breakers on
strong opposing currents, lower-frequency wave components were reported to gain up
to 40 % of the energy lost by the higher-frequency wave components. Little energy
change at the spectral peak was observed.

In this study, using the experimental data collected in Tian et al. (2010) to develop
an eddy viscosity model for energy dissipation due to wave breaking, observations
of the spatial evolution of wave frequency spectra of both non-breaking and breaking
dispersive focusing wave groups are presented. In addition, detailed nonlinear energy
transfer between different frequency ranges is monitored. The remainder of this paper
is organized as follows. Section 2 describes our experimental set-up for both surface
elevation measurement by wave probes and surface profile measurement with high-
speed imaging. Section 3 presents our experimental results and observations on wave
spectral evolution. Numerical simulations are provided in § 4. The last section presents
our conclusions.

2. Experiments
Details of the experiments are presented in Tian et al. (2008, 2010). However, for

the completeness of this study, a brief introduction of the breaking wave generation
and the surface elevation measurement is provided as follows.

The experiments are conducted in a two-dimensional wave flume at the University
of Michigan. The wave flume is 35 m long, 0.70 m wide, and filled with tap water
to a depth of 0.62 m. A servo-controlled wedge-type wavemaker with auxiliary
electronics is located at one end of the flume to generate wave trains; two stacks
of ‘horsehair’ mats are placed at the opposite end to help damp incident waves.
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Dispersive focusing wave groups are generated with a technique similar to that in
Perlin et al. (1996). The resulting wave groups have approximately constant steepness
wave spectra. By adjusting the gain (i.e. relative voltage) of the input signal to the
wavemaker, both non-breaking and breaking waves can be generated. Most of our
wave groups that lead to breaking have a single plunger, though very limited spilling
occurs either upstream, or of less importance downstream in some cases. Table 1
presents some key parameters of the generated wave groups. As listed in the table,
wave groups are categorized into five wave packets (i.e. W1, W2, W3, W4 and W5)
based on wave group structure and centre wave frequencies specified in the input
signal to the wavemaker; gain values (e.g. G1 and G2) are used to distinguish a wave
group from others in each of the five wave packets. In this way, each wave group is
designated uniquely (e.g. W1G3 and W2G4). Note that gain (e.g. G1) in one wave
packet is not necessarily the same as that in another wave packet.

Temporal variation of surface elevations at desired locations along the wave flume
is recorded by capacitance wave probes, along with other assisting hardware. The
sampling rate for the wave probes in these measurements is 100 Hz. Note that
analogue filters (Krohn-Hite) set at a low-pass frequency of 25 Hz are used in the
measurement. Relying on the high repeatability of the experiment (Tian et al. 2010),
we achieved surface elevation measurements at 33 wave stations along the wave tank.

The measurements have been used to study wave breaking criteria and kinematics
and dynamics of breaking waves by Tian et al. (2008, 2010). In this study, we
use temporal surface elevation measurements to examine the wave frequency spectral
evolution of the two-dimensional dispersive focusing wave groups.

3. Experimental results
3.1. Definitions

Surface elevations measured at wave stations along the wave tank and fast Fourier
transform (FFT) analysis are used to obtain the wave energy density spectrum, S(f ).
Sampling time is truncated to 40.95 s (i.e. T = 40.95 s), corresponding to 4096 points,
and the mean of the measurements is subtracted before applying the FFT. The forward
transformation used is

N(f )=
∫ t+T

t
η(t)e−2πi f t dt. (3.1)

Here, N(f ) is the Fourier transform of the surface elevation η(t). Then the wave
frequency spectrum is computed as S(f ) = 2 |N(f )|2 /T . Note that S(f ) is a single-
sided wave spectrum. At each station, three repeated surface elevation measurements
are obtained to find three wave frequency spectra, from which the amplitudes of
the Fourier components of the same frequency are averaged to determine a mean
frequency spectrum. Then, following Rapp & Melville (1990), the mean wave
frequency spectrum is smoothed by averaging over five adjacent spectral components.

Once the wave frequency spectrum is obtained, the wave spectral bandwidth is
determined as υ =√(m0m2)/m2

1 − 1 (Longuet-Higgins 1983), where mi is the ith
spectral moment, given by

mi =
∫ fmax

fmin

(2πf )i S(f ) df . (3.2)

In this study, the lower and upper cutoff frequencies, fmin and fmax, are set to 0.5fp and
2.5fp, respectively, where fp is the frequency associated with the spectral maximum.
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Wave Wave fc fp 1f /fp SG BFIS Cgs xb tb νeddy × 103

packet group ID (Hz) (Hz) (m s−1) (m) (s) (m2 s−1)

W1
W1G1

1.11 0.95 0.31
0.32 1.03 0.85 13.7 25.1 —

W1G2 0.38 1.25 0.84 12.4 23.0 1.01
W1G3 0.46 1.52 0.84 11.3 21.2 1.20

W2

W2G1

1.23 0.90 0.35

0.27 0.76 0.86 13.4 31.2 —
W2G2 0.35 0.99 0.86 13.6 30.9 0.86
W2G3 0.41 1.18 0.86 12.6 29.4 1.17
W2G4 0.47 1.33 0.86 12.5 29.3 1.65

W3

W3G1

1.24 1.03 0.21

0.29 1.42 0.79 15.0 30.7 —
W3G2 0.36 1.72 0.79 14.0 29.7 0.71
W3G3 0.44 2.14 0.78 13.2 28.3 1.12
W3G4 0.50 2.41 0.78 13.1 28.3 1.50

W4

W4G1

1.50 1.03 0.38

0.28 0.73 0.71 17.4 50.0 —
W4G2 0.39 1.03 0.71 16.9 48.4 0.62
W4G3 0.54 1.43 0.71 15.4 45.3 1.03
W4G4 0.67 1.76 0.70 14.2 43.8 1.23

W5 W5G1 1.55 1.25 0.20 0.26 1.32 0.66 12.8 34.6 —
W5G2 0.48 2.42 0.64 11.7 32.7 0.55

TABLE 1. Summary of primary wave parameters: fc, centre wave frequency specified in
the input signal to the wavemaker; fp, peak wave frequency; 1f , frequency bandwidth
based on half of the maximum energy associated frequencies; SG, global wave steepness;
BFIS, Benjamin–Feir Index, defined as SG/(1f /fp); Cgs, characteristic group velocity; xb,
horizontal location of the focusing/breaking points relative to the mean position of the
wavemaker; tb, wave group focusing/breaking time relative to the initial motion of the
wavemaker; νeddy, estimated eddy viscosity used in the numerical simulations. See Tian
et al. (2010) for details on the determination of SG, Cgs and νeddy.

The energy outside this frequency range is very small and can be neglected. The
wave spectral bandwidth can also be defined by the frequencies associated with half
of the maximum energy, 1f /fp. For a wave group with surface elevation obeying a
Gaussian distribution, 1f /fp = υ

√
2 ln(2). However, this relationship is not expected

to be appropriate for our wave groups since they are non-Gaussian. Hereafter, to
distinguish the two different bandwidths defined above, υ and 1f /fp are termed the
spectral bandwidth and the frequency bandwidth, respectively.

The skewness λ3 and the kurtosis λ4 of the surface elevation can be evaluated,
respectively, by the following definitions:

λ3 = 〈η
3〉
σ 3

, λ4 = 〈η
4〉
σ 4

. (3.3)

Here, σ is the standard deviation of the surface elevation, σ 2 = 〈η2〉, and the 〈〉
brackets indicate an ensemble average, i.e.

σ 2 = 〈η2〉 = [η2]/N =
(

N∑
i=1

η2
i

)/
N. (3.4)

(In our time series, the means have been set to zero via subtraction of the DC
component.) Here, N is the number of samples used in the computation and the []
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brackets represent a summation. The skewness λ3 and the kurtosis λ4 can be rewritten
as

λ3 = N1/2 [η3]
[η2]3/2 , λ4 = N

[η4]
[η2]2 . (3.5)

In our experiments, only one wave group is generated in each test and the recorded
signal includes regions without waves (before and after the wave group arrives), which
are necessarily excluded in the determination of σ , λ3, and λ4. Therefore, the duration
of the time series has to be chosen carefully. To this end, we find the amplitude
envelope of a surface elevation measurement using the Hilbert transform and use
only the part of the measurement whose envelope is greater than one-twentieth of
the maximum envelope. Using a different threshold will affect the magnitude of the
computed skewness and the kurtosis. For example, a threshold of one-fortieth instead
of one-twentieth gives approximately a 20 % and a 35 % increase in the maximum
skewness and kurtosis achieved in the non-breaking focusing process, respectively;
on the other hand, a threshold of one-tenth will decrease the maximum skewness
and kurtosis by approximately 18 % and 25 %, respectively, for the non-breaking
groups. However, the evolution behaviour of the two parameters, i.e. the general
increase–decrease trend, remains the same. We remark that this may not be a concern
for field measurements of continuous wave groups.

3.2. Evolution of the non-breaking wave groups

In this study, our wave groups are generated with a dispersive focusing technique.
However, it is found that the focusing process is far from simple linear superposition,
as we have observed a number of nonlinear features typically examined in wave
groups subject to modulational instability. The following sections present our main
findings.

Figure 1 exhibits a typical set of wave spectra evolution for a non-breaking
wave group (W1G1). Figure 1(a) shows clearly the spectral change near the peak
region while figure 1(b) demonstrates the variation of the higher- and lower-frequency
components. As the wave group focuses, nonlinearity is featured and the energy gain
in the higher-frequency components (f /fp > 1.5) is evident. This energy ‘leakage’ to
the higher-frequency components has been observed in previous studies (e.g. Baldock
et al. 1996). This spectral change is attributed mainly to nonlinear energy transfer.

In the downstream defocusing process, the energy gain in the higher-frequency
components disappears, possibly due to viscous dissipation and, partly, nonlinear
energy transfer back to the spectral peak (see subsequent quantification results
and figure 7). Overall, the energy in the frequency range f /fp = 0.9–1.5 decreases
significantly. This energy dissipation is attributed mainly to the nonlinear energy
transfer to other frequency ranges along with viscous damping and the movement
and dissipation caused by the contact lines on the sidewalls (Jiang, Perlin & Schultz
2004).

We also observed some energy variation in the lowest-frequency wave components
(f /fp < 0.5); however, no definite conclusions on energy change in this frequency
range can be made based on our measurements. We note that Rapp & Melville (1990)
observed considerable energy gain in the low-frequency components as an incipient
breaking wave group approaches the focal point, and described it as ‘growth of the
forced wave at the low frequencies’.
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FIGURE 1. Evolution of the wave frequency spectra of a typical non-breaking wave
group (W1G1): (a) linear scale and (b) logarithmic scale. Locations of measurements,
x − xb (m), are shown in (a). The dashed lines indicate the reference spectrum measured
at the first wave station (x − xb = −6.9 m for this case). For clarity, an increment
of 0.2 in (a) and 2.0 in (b) is applied along the ordinates to separate the wave
spectra at different locations. The vertical dotted lines identify the initial peak frequency
(i.e. f /fp = 1.0).

3.2.1. The spectral bandwidth, skewness and kurtosis
By quantifying the spectral bandwidth (i.e. υ), the skewness and the kurtosis at

wave stations along the tank, we can examine the wave spectral shape change as
wave groups propagate. Figure 2 presents our results. The spectral bandwidth of the
non-breaking wave groups is greater than 0.15, and therefore the wave groups are
not that narrow-banded. As wave groups approach focusing, the spectral bandwidth
increases 30–40 %, due mainly to the growth of the higher-frequency components.
Therefore, the focusing process corresponds to wave spectral widening (i.e. energy
transfer from the peak region to other frequency components due to both non-
resonant and resonant nonlinear interaction). This energy redistribution suggests that
the focusing process is far from linear superposition. In the defocusing process, the
spectral bandwidth decreases, corresponding to a disappearance of the increased energy
in the higher-frequency components. Interestingly, the spectral bandwidth recovers
virtually to its initial level despite the evident spectral peak reduction, possibly due

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.371


176 Z. Tian, M. Perlin and W. Choi

–10 0 10

0.20

0.25

0.20

0.25

0.20

0.25

0.20

0.25

0.20

0.25

W1G1

W2G1

W3G1

W4G1

W5G1

0

0.5

0

0.5

0

0.5

0

0.5

0

0.5

0

3

6

0

3

6

0

3

6

0

3

6

0

3

6

x – xb (m) x – xb (m) x – xb (m)
–10 0 10 –10 0 10

(a) (b) (c)

FIGURE 2. Spatial variation of (a) the spectral bandwidth, (b) surface-elevation skewness
and (c) kurtosis for the non-breaking wave groups. Open circles represent W1G1; squares for
W2G1; asterisks for W3G1; pluses for W4G1; triangles for W5G1. The abscissa represents
the distance relative to the location of the wave focusing point, xb: (a) υ; (b) λ3; (c) λ4.

to viscous related dissipation. The upstream and downstream spectral bandwidths are
also approximately symmetric about the maxima for non-breaking conditions. On the
other hand, the spectral bandwidth recovery is not observed in a recent laboratory
study of unidirectional narrow-banded random waves (non-breaking) in deep water
(Shemer & Sergeeva 2009). This discrepancy may be due to the fact that Shemer
& Sergeeva (2009) investigated multiple wave groups that evolve in initially narrow-
banded wavefields (υ < 0.12), in which deterministic Gaussian-shaped unidirectional
wave groups may interact continuously. On the other hand, we study the evolution
of single dispersive focusing wave groups that have relatively broad-banded spectra
(υ > 0.15).

As for the skewness of the surface elevation in figure 2(b), the focusing–defocusing
process corresponds in general to the growth reduction of the parameter. The general
evolution behaviour of the skewness is expected as the parameter indicates the
vertical (crest–trough) asymmetry of the surface elevation. Interestingly, in contrast
to the general increasing trend as the wave groups focus, negative values of the
skewness are observed close to the focusing points. This is due to the presence
of deep troughs before and after the formation of sharp, high wave crests due to
focusing. Similarly, the kurtosis of the surface elevation measures the peakedness
of its probability distribution and its increase indicates typically the formation of
extreme waves (Onorato et al. 2009). Therefore, as shown in figure 2(c), we observed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.371


Frequency spectra evolution of 2D focusing wave groups in finite depth water 177

0 1 2

0.1

0.2

0.3

0.4(a) (b) (c)

0 1 2
BFIS BFISBFIS

0 1 2
–0.5

0

0.5

1.0

1.5

2

4

6

8

10

FIGURE 3. The maximum spectral bandwidth (a), skewness (b) and kurtosis (c) versus the
BFIS for the non-breaking wave groups. Solid symbols, maximum value (averaged over the
three greatest values) achieved in the wave focusing process; open symbols, initial value
(averaged over the measurements at the first three probes): (a) υ; (b) λ3; (c) λ4.

an increase in the kurtosis in the generation of very steep waves due to dispersive
focusing. Further downstream, both the skewness and the kurtosis nearly recover
their initial levels. Notice that the magnitudes of the skewness and the kurtosis near
the focusing points are much greater than those reported in previous studies (e.g.
Shemer & Sergeeva 2009; Onorato et al. 2009), in which relatively long duration
measurements of random wave fields are investigated. The discrepancy may be related
to the surface elevation in our experiments in which only one dispersive focusing wave
group is generated in each test.

It is our interest to examine the dependence of the spectral bandwidth, the skewness
and the kurtosis on the so-called Benjamin–Feir Index (BFI; Janssen 2003), which
is often employed to characterize wave evolution due to Benjamin–Feir instability.
The BFI was defined originally as

√
2ε/σ ′, where ε is a wave steepness based on

wave spectral character and σ ′ is a relative frequency bandwidth. In this study, we
use a similar parameter, BFIS = SG/(1f /fp). Here, SG is a global wave steepness,
SG = ks

∑
an (the same as the global wave steepness, S, in Tian et al. 2010); ks is a

characteristic wavenumber of the wave group as defined in Tian et al. (2010); an is the
amplitude of the nth wave component. Both SG and 1f /fp are determined and shown
in table 1. The dependence of the maximum spectral bandwidth (i.e. υ), the skewness
and the kurtosis presented as a function of the BFIS are shown in figure 3. Compared
to their initial levels, the maximum spectral bandwidth shows no apparent dependence
on the BFIS (i.e. the ratio of the maximum to the initial level remains approximately a
constant). On the other hand, the maximum skewness and the kurtosis increase as the
BFIS increases. This correlation suggests that the formation of very steep waves due
to dispersive focusing (indicated by the kurtosis) in our non-breaking wave groups is
more than just linear superposition; it involves nonlinear wave interactions in which
the nonlinearity is represented by the BFI.

3.2.2. Spectral distribution of the overall energy dissipation due to viscous related effects
It is of interest to estimate the spectral distribution of the overall non-breaking

energy dissipation. In the estimate, surface elevations measured at the first three
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FIGURE 4. Spectral distribution of the non-breaking dissipation. S0max indicates the peak of
the mean wave spectrum determined with the first three wave station measurements.

upstream and the last three downstream wave stations, far from the focusing points,
are used. The mean spectral difference is found using

1S(f )= SN(f )− S0(f )

= SN(f )+ SN−1(f )+ SN−2(f )− S1(f )− S2(f )− S3(f )

3
. (3.6)

Here, SN(f ) indicates the mean wave spectrum determined with the last three wave
station measurements and S0(f ) the mean wave spectrum over the first three station
measurements. Si(f ) is the wave spectrum determined at the ith wave station. The
estimated mean spectral difference is non-dimensionalized by the peak of S0(f ). As
shown in figure 4, the energy of wave components just above the peak decreases
significantly (to ∼25 %), indicating that non-breaking energy dissipation is not
negligible. In addition, most non-breaking energy dissipation appears in the vicinity of
the spectral peak (f /fp = 0.9–1.1) for wave groups with narrower frequency bandwidth
(e.g. W3G1 and W5G1); on the other hand, for wave groups W2G1 and W4G1,
non-breaking energy dissipation distribution is more uniform across the frequency
spectrum, ranging from 0.75fp to 2.0fp. This may be related to a frequency bandwidth
effect.

Also obvious in figure 4, wave components in the lower-frequency region,
f /fp = 0.5–0.9, lose energy due to viscous related dissipation. Note that this result
is based on direct comparison of the far upstream and downstream measurements only.

3.2.3. Spatial evolution of the energy level in different frequency regions
We now quantify the energy variation as a function of space by integrating the

wave frequency spectrum obtained at each wave station. In the integration, only wave
components with frequencies lower than 4fp are included, as the higher-frequency
components carry negligible energy (see figure 1). This energy as a function of space,
E0(x), is shown in figure 5. In addition, we choose to examine the spatial variation of
the energy in the spectral peak region (f /fp = 0.9–1.1), E1(x). In the figure, we can see
that the total non-breaking dissipation, 1E0 (energy difference between the mean of
the first three and that of the last three measurements for each wave group shown in
figure 5), is approximately 20 % of the initial energy after a distance of roughly 13 m
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FIGURE 5. Energy levels as a function of space for the non-breaking wave groups. Circles,
E0(x)/E0M; triangles, E1(x)/E0M . Here, E0(x) and E1(x) are the total energy (f /fp < 4) and
the energy near the spectral peak (f /fp = 0.9–1.1), respectively; E0M is the mean of the total
energy measured at the first three wave stations. The abscissa indicates the distance relative
to the wave focusing point, i.e. x − xb (m). Here, xb is the horizontal location of the wave
focusing point.

or approximately 10 wave lengths (i.e. 20π/kp). One comment is appropriate on the
magnitude of the total non-breaking energy dissipation: viscous dissipation (including
viscous dissipation on the water surface and frictional loss on the sidewalls and tank
bottom) based on linear theory, i.e. exponential decay prediction (e.g. Mei 1983),
accounts for only half of the total non-breaking dissipation observed (Rapp & Melville
1990; Tian et al. 2010). This suggests that the highly dissipative contact lines and
capillary waves generated by water–sidewall interaction (Perlin & Schultz 2000; Jiang
et al. 2004) also account for approximately half of the total non-breaking dissipation.

The total spectral peak dissipation, 1E1 (defined similarly to 1E0 but for energy in
the spectral peak region), may be due to nonlinear energy transfer to other frequency
ranges and viscous related effects. We observed that the dissipation contributes about
25–80 % of the total non-breaking energy dissipation. This contribution appears to
depend on the BFIS, i.e. the frequency bandwidth, 1f /fp, and the wave steepness,
SG, of the wave groups. Figure 6 demonstrates the correlation between BFIS and
the spectral peak dissipation. An approximate linear correlation is apparent. This
relationship indicates that the relative spectral peak dissipation, 1E1/1E0, may be a
nonlinear process. This observation may be the result of nonlinear energy transfer to
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FIGURE 6. Correlation between the normalized spectral peak dissipation and our modified
Benjamin–Feir Index. 1E1 and 1E0 are the total spectral peak dissipation and the total
non-breaking dissipation, respectively.

higher-frequency components and/or nonlinear dissipation at the sidewalls. To the best
of our knowledge, similar observations on the frequency bandwidth and the nonlinear
effect on the spectral peak dissipation have not been reported previously.

We also choose to examine the spatial variation of the energy in two frequency
regions, E2(x) for the above-peak range (f /fp = 1.2–1.5) and E3(x) for the higher-
frequency range (f /fp = 1.5–2.5), and present the results in figure 7 for the non-
breaking wave groups. (Note that the examination of the energy change in a lower-
frequency region, f /fp = 0.5–0.9, is also considered, and is presented subsequently in
figure 14.) As the non-breaking wave groups focus, energy increase in the higher-
frequency components is accompanied by energy decrease of the above-peak frequency
components. In the defocusing process, the reverse occurs. The results suggest the
presence and the reversibility of the nonlinear energy transfer between the above-peak
and the higher-frequency components in the evolution of dispersive focusing wave
groups. The energy transfer trend appears to be qualitatively similar to the spectral
evolution due to Benjamin–Feir instability (e.g. Tulin & Waseda 1999). This nonlinear
energy transfer should be related not only to the nonlinearity of the wave groups,
but also to the frequency bandwidth, i.e. this transfer may be related to the BFI.
In fact, the energy transfer is more evident for wave groups W1G1, W3G1 and
W5G1, whose Benjamin–Feir Indices are among the largest of the five non-breaking
wave groups. Similar to the spectral peak dissipation, the energy gain in the higher-
frequency components demonstrates an approximately linear correlation with the BFIS,
as shown in figure 8 (although the data are limited).

3.3. Evolution of the breaking wave groups
Figure 9 presents typical wave frequency spectral evolution for two breaking wave
groups, W1G2 and W1G3. As the wave groups focus, the tails of the wave spectra
rise rapidly just prior to breaking, as can be seen from those results, for example, at
x − xb = −0.5 and −0.7 for W1G2 and W1G3, respectively. However, the spectra
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FIGURE 7. Nonlinear energy transfer between the above-peak and the higher-frequency
components for the non-breaking wave groups. Triangles, E2(x)/E0M; circles, E3(x)/E0M .
Here, E2(x) and E3(x) are energy in the above-peak (f /fp = 1.2–1.5) and the higher-frequency
regions (f /fp = 1.5–2.5), respectively; E0M is the mean of the total energy measured at the first
three wave stations.

return almost to their initial energy levels following wave breaking. In general,
the wave components of frequencies higher than the spectral peak appear to lose
energy, as a result of both non-breaking loss (i.e. viscous related effects) and wave
breaking. As wave breaking intensifies (e.g. W1G3 versus W1G2), more energy loss is
observed. While the energy loss near the spectral peak may be mainly due to nonlinear
energy transfer and viscous related effects, the energy loss in the frequency range of
f /fp = 1.2–2.0 may be attributed primarily to wave breaking. Rapp & Melville (1990),
for example, observed that most of the total energy loss was in the higher-frequency
end of the first harmonic band (i.e. f /fp = 1.0–2.0) and the second harmonic band
(i.e. f /fp = 2.0–3.0). Also apparent in figure 9 is the slight downshift of the spectral
peak frequency, which is possibly due to the presence of strong nonlinearity and wave
breaking. This is evident from the peak deviation from the initial frequency peak
shown by the vertical dotted lines in the figure.

3.3.1. Evolution of the spectral bandwidth, skewness and kurtosis
We examined the evolution of the spectral bandwidth of the breaking wave groups

and present the results in figure 10. As shown, the spectral bandwidth achieved its
maximum immediately before wave breaking and, compared to the non-breaking wave
groups, the maximum spectral bandwidth is much larger. The increase of the spectral
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FIGURE 8. Correlation between the energy gain in the higher-frequency range and the BFIS.
R = E3max/E30. Here, E30 is the initial energy in the higher-frequency region (f /fp = 1.5–2.5),
an average of the measurements at the first three wave stations; E3max is the maximum energy
in the frequency range due to energy transfer (averaged over the three largest values).

bandwidth suggests the redistribution of the energy across the wave spectrum via
nonlinear energy transfers. After breaking, the spectral bandwidth reduced as much as
40 % within one wave length (2π/kp), mainly due to the energy loss in the above-peak
and higher-frequency ranges during the breaking events. Compared to the virtually
full recovery of the spectral bandwidth in the non-breaking wave groups, this spectral
bandwidth does not recover to its initial level due to wave breaking.

As for the skewness and the kurtosis of the surface elevation in the breaking
wave groups, their growth–decay evolution trends are qualitatively similar to, but not
as clear as those of the non-breaking wave groups. The breaking wave groups in
general have larger, positive skewnesses, indicating a greater crest–trough asymmetry.
In addition, for some of the breaking wave groups, the kurtosis of the surface elevation
remains at an approximately constant level even well after breaking, i.e. over a certain
distance, although it returns to the original level for some wave groups (e.g. W2G4).
This behaviour is different from the non-breaking wave groups and the reason for the
difference is not yet understood.

The maximum spectral bandwidth, skewness and kurtosis presented in the breaking
wave groups are shown in figure 11. Similar to the non-breaking wave groups,
the ratio of the maximum to the initial spectral bandwidth in the breaking wave
groups remains at an approximately constant level. As for the maximum skewness
and kurtosis presented for the breaking groups, no apparent dependence on the BFIS

is observed, which is inconsistent with that of the non-breaking wave groups. This
discrepancy may be due to the presence of wave breaking.

In this study, surface elevation measured at the first wave station is used to
determine the initial Benjamin–Feir Index; however, alternatively, measurements at
downstream wave stations could be used to compute local BFIs that may change
rapidly in the evolution of the wave groups (Janssen 2003). When local BFIs are
determined at the wave stations where the maximum skewness and kurtosis are
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FIGURE 9. Evolution of the wave frequency spectra for two typical breaking wave groups:
(a,b) W1G2 and (c,d) W1G3. Locations of measurements, x − xb (m), are shown in the
linear scale graphs (a,c). The dashed lines indicate the reference spectrum measured at the
first wave station. For clarity, an increment of 0.2 in the linear scale graphs (a,c) and 2.0
in the logarithmic scale graphs (b,d) are applied along the ordinates to separate the wave
spectra at different locations. The vertical dotted lines identify the initial peak frequency (i.e.
f /fp = 1.0).
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FIGURE 10. Spatial variation of (a) the spectral bandwidth, (b) surface elevation skewness
and (c) kurtosis for the five violent breaking wave groups. Open circles represent W1G3;
squares for W2G4; asterisks for W3G4; pluses for W4G4; triangles for W5G2: (a) υ; (b) λ3;
(c) λ4.

achieved, we found that they are in general greater than the initial ones, but no
definite correlations between the local BFIs and the maximum skewness and kurtosis
can be identified for both the non-breaking and the breaking groups.

3.3.2. Spectral distribution of the overall energy variation due to wave breaking and
nonlinear energy transfer

The overall spectral variation of breaking wave groups is due to three factors,
i.e. wave breaking, nonlinear energy transfer among different frequency components
and viscous related dissipation. In this section, we intend to determine the spectral
variation mainly due to the first two factors, i.e. eliminating or minimizing that due
to viscous related dissipation. For this purpose, two typical methods using surface
elevations measured at stations before and after wave breaking are available. In
one method, one may obtain this spectral variation by comparing wave frequency
spectra immediately upstream and downstream of breaking. Non-breaking dissipation
has a minimal effect over this short distance; this minimal change was ignored by
Meza et al. (2000). According to Meza et al. (2000), wave spectra at locations near
breaking vary considerably in lower and higher frequencies due to the generation
of bound waves. Therefore, special treatment, i.e. bound wave removal, is necessary.
Alternatively, Yao & Wu (2004) proposed using wave frequency spectra measured far
from breaking, where they assumed few bound waves were present. In this method,
the spectral variation due to non-breaking dissipation of a non-breaking wave group is
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FIGURE 11. The maximum spectral bandwidth (a), skewness (b) and kurtosis (c) versus the
BFIS for the breaking wave groups. Solid symbols, maximum value (averaged over the three
greatest values) achieved in the wave focusing process; open symbols, initial value (averaged
over the measurements at the first three probes): (a) υ; (b) λ3; (c) λ4.

estimated first. Then the spectral change of a breaking wave group, representing non-
breaking dissipation, variation due to nonlinear energy transfer and breaking loss, is
estimated accordingly. Finally, the spectral distribution of the overall energy variation
due to wave breaking and nonlinear energy transfer can be determined by comparing
the two estimates.

In this study, we employ the second technique to determine the spectral variation for
the breaking waves. Equation (3.6) is used to estimate the spectral changes, 1Stb(f )
and 1Snb(f ), for the breaking waves and the corresponding non-breaking wave groups,
respectively. Then the non-breaking dissipation is subtracted from the total spectral
change for the breaking waves, i.e. 1Sb(f ) = 1Stb(f ) − 1Snb(f ). We note that both
1Stb(f ) and 1Snb(f ) are non-dimensionalized with the peak of the corresponding
upstream reference spectrum before the subtraction. In addition, for a fair estimation
of the spectral change due to viscous related dissipation in the breaking wave groups,
measurements at comparable distance relative to wave focusing/breaking points, i.e.
x − xb = −5 m for upstream and 5 m for downstream, are used. For the three cases
in which the maximum relative distance upstream to xb is less than 5 m (e.g. W4G4),
the first probe measurements are used. With the advent of this method, we produced
figure 12, which exhibits the spectral changes for the breaking wave groups. As we
have removed, as far as possible, the spectral change due to viscous related dissipation,
the spectral variation is caused primarily by wave breaking and nonlinear energy
transfer. As discussed later (see § 3.3.3), the spectral change in the higher-frequency
components, roughly from f /fp = 1.2–2.0, is due primarily to wave breaking, and in
general the total energy loss in the range increases as wave breaking intensifies.

Also in figure 12, the energy gain of the lower-frequency region, f /fp = 0.5–0.9,
may be related to energy redistribution (e.g. frequency downshift) due to nonlinear
energy transfer. This energy gain appears to increase as the nonlinearity increases for
wave groups with similar structure, as expected. Note that nonlinear energy transfer to
the lower-frequency region in the focusing process is evident (as discussed in § 3.3.3
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FIGURE 12. Wave frequency spectral variation, 1Sb(f ), for the breaking wave groups. This
spectral variation is due mainly to wave breaking and nonlinearity. The spectral change due
to non-breaking dissipation is subtracted from the total spectral change of the breaking wave
groups, i.e. 1Sb(f ) = 1Stb(f ) − 1Snb(f ). Here, 1Stb(f ) is the total spectral change for the
breaking waves and 1Snb(f ) are for the non-breaking ones. Both 1Stb(f ) and 1Snb(f ) are
non-dimensionalized respectively with the peak of the reference spectrum at the first wave
probe before the subtraction.

and shown in figure 14), and this energy transfer could be reversible in the absence of
wave breaking, as discussed earlier.

3.3.3. Spatial evolution of energy level in different frequency ranges for the breaking wave
groups

We present the total energy, as well as the energy in the spectral peak, the above-
peak and the higher-frequency ranges, as a function of space for the breaking wave
groups in figure 13. As shown in the figure, the total energy decreases gradually before
wave breaking due to the viscous related effects (as much as 10 % after approximately
three wave lengths); following breaking, the total energy continues to decay but at
a much smaller rate (less than 5 % after 3 wave lengths), which may be attributed
to the reduction in nonlinearity. Note that the total non-breaking dissipation for the
non-breaking wave groups is approximately 20 % of the initial energy after a distance
of roughly 10 wave lengths (i.e. 20π/kp). Depending on breaking strength, 10–25 % of
the total energy is dissipated in a relatively short distance as a result of wave breaking.

As for the energy in the spectral peak region, both the energy and the spectral
peak dissipation, i.e. E1(x)/E0M and 1E1(x)/E0M, are comparable to the corresponding
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FIGURE 13. Energy levels as a function of space for the breaking wave groups (shown
only for the most violent breaker among wave groups with similar structures). Triangles,
E0(x)/E0M; squares, E1(x)/E0M; circles, E2(x)/E0M; asterisks, E3(x)/E0M. Here, E0(x) are the
total energy (f /fp < 4);E1(x) the energy near the spectral peak region; E2(x) the energy in the
above-peak region; and E3(x) the energy in the higher-frequency region; E0M is the mean of
the total energy measured at the first three wave stations.

non-breaking wave groups (see figure 5 for a comparison with figure 13). In addition,
the spectral peak energy dissipates gradually in general, even near wave breaking,
which introduces rapid dissipation of E0(x). These observations suggest that the
dissipation in the spectral peak region for the breaking waves is caused mainly by
viscous related effects and nonlinear energy transfer to higher and lower frequency
components. Therefore, it can be argued that wave breaking has no immediate impact
on the spectral peak region. We note that the viscous related damping also dissipates
energy in other frequency regions.

Also visible in figure 13, similar to the non-breaking wave groups, is the nonlinear
energy transfer between the above-peak and the higher-frequency range before wave
breaking occurs. As much as 10 % of the total initial energy, E0M, is transferred from
the above-peak frequency region (E2) to the energy in the higher-frequency region (E3).
However, most of the energy gained in the higher-frequency range may not transfer
back to the above-peak region after breaking as it is dissipated. The results show that
energy transfers first to smaller-scale wave components (i.e. the higher frequencies)
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FIGURE 14. Energy in the lower-frequency region (f /fp = 0.5–0.9) as a function of space,
E4(x)/E0M. Here, E0M is the mean of the total energy measured at the first three wave stations.
Results for the non-breaking wave groups are represented by the open circles. For clarity,
an increase of 0.1 is applied to the ordinate to distinguish wave groups with similar group
structure but different gains.

and then dissipates in the breaking process. This may be similar to the so-called
cascade decay of wave energy. However, we note that the energy transfer is due to
nonlinearity rather than the outcome of wave breaking.

In addition, we examined the energy in even higher frequencies (f /fp = 2.5–4) and
found that the energy may increase or decrease, depending on specific wave groups,
due to wave breaking. Therefore, wave breaking obviously dissipates energy, but
whether the energy loss follows the so-called cascade decay is not clear. We note
that a recent study (Gemmrich, Banner & Garrett 2008) showed that the wave energy
loss is dominated by the intermediate scales, but not by the small-scale breakers in
the field. Based on their field measurements, Gemmrich et al. (2008) argued that the
cascade of wave energy decay may be unlikely.

Recent studies (e.g. Meza et al. 2000; Yao & Wu 2004) showed that wave breaking
introduces energy gain in the lower-frequency wave components. To examine the
spectral change in the lower-frequency region (f /fp = 0.5–0.9), we determined energy
in that region as a function of space, E4(x), and the results are provided in figure 14.
For the non-breaking cases, it appears that the energy in this frequency region remains
virtually at a constant level, despite some small variations, to the wave focusing point;
on the other hand, the energy dissipates due to mainly viscous related effects in the
defocusing process as wave groups evolve. This fact indicates that energy transfer to
the lower-frequency region, possibly from the spectral peak and the above-peak ranges,
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may have occurred in the focusing process so that it approximately compensates the
dissipation due to viscous related effects.

For most of the breaking wave groups, we observed energy gain in the lower-
frequency region prior to wave breaking, implying again the presence of nonlinear
energy transfer (which is stronger compared with that in the non-breaking wave
groups). In addition, in more than half of the 12 breakers, there is no obvious
energy gain in the lower-frequency region immediately after breaking. These results
indicate that the energy gain in the lower-frequency components (see figure 12) are
possibly due to nonlinear energy transfer from other frequency ranges prior to wave
breaking and that wave breaking may not necessarily increase the energy in this
part of the spectrum, although it prevents the gained energy in the lower-frequency
region from returning to other frequency regions. Previous studies have shown that
the lower-frequency wave components gain energy due to wave breaking. We note
that their conclusions are based on simple comparisons of measurements upstream and
downstream of wave breaking rather than detailed examination of the spatial evolution
of the energy in the lower-frequency components.

4. Numerical simulations
Tian et al. (2010) proposed an eddy viscosity model to simulate energy dissipation

due to unsteady plunging breakers. In this study, complementary numerical simulations
using this eddy viscosity model are conducted to examine its capability in predicting
the spectral evolution of the wave groups. Details of the eddy viscosity model, the
generation of the initial conditions, and the set-up for the numerical simulations are
referred to Tian et al. (2010). The eddy viscosity used in the numerical simulations is
of the order of 10−3 (m2 s−1), as listed in table 1. Comparisons of the experimental
and the numerical results follow.

Figure 15 provides comparisons between the experimental and numerical results of
the surface elevation and the corresponding wave frequency spectra for three of the
wave groups (i.e. W1G1, W1G2 and W1G3). As demonstrated in Tian et al. (2010)
and shown in this figure, the eddy viscosity model predicts well the surface elevation
for the wave groups, even in the presence of wave breaking. The agreement in the
wave frequency spectrum is satisfactory, but is not as good as for the surface elevation.
Since the energy spectrum is essentially wave amplitude squared as a function of
frequency, the error in the surface elevation prediction is expected to be amplified
in the wave spectrum prediction, consistent qualitatively with our observations. In a
recent study by Shemer, Goulitski & Kit (2007, their figure 2), the surface elevation
prediction for their non-breaking wave groups appears to be reasonable; on the other
hand, their predicted frequency spectra also demonstrate larger discrepancies from their
measurements.

In figure 15, the comparisons of the wave spectra at the upstream locations are
accurate as these locations are close (within 2.5 m) to where the surface elevations are
measured to initialize the numerical simulations. Close to the wave focusing/breaking
points, both the experimental and the numerical results demonstrate the peak frequency
downshift, which appears more obvious for increasingly nonlinear wave groups. The
measurements and the predictions are qualitatively similar, but deviate somewhat. As
wave groups propagate further downstream, the discrepancy becomes more apparent.
The difference of the spectral peak magnitude between the measurement and the
predictions is within 5–10 %. In addition, the magnitudes of the lower-frequency
wave components are overestimated while the higher ones are underestimated in the
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FIGURE 15. Comparisons between the experimental results of the surface elevation and
the corresponding wave frequency spectra for a typical non-breaking wave group (W1G1)
and two typical breaking wave groups (W1G2 and W1G3). Solid curves represent the
experimental results and dashed curves are the numerical results. Locations relative to the
wave focusing/breaking point, x − xb (m), are indicated to the right of each set of graphs. For
clarity, increments of 0.1 and 0.2 are applied to the ordinates for the surface elevation and the
wave spectra, respectively: (a) W1G1; (b) W1G2; (c) W1G3.

numerical predictions. One of the possible causes of the persistent difference for
both non-breaking and breaking wave groups may be in applying to the free surface
boundary conditions an effective viscosity that must account for the total non-breaking
energy dissipation due to friction on the side tanks’ walls and bottom as well as the
contact line interactions in the experiments. Obviously this simple model with constant
viscosity fails to describe accurately this frequency-dependent non-breaking energy
dissipation. We note that the total energy of the predicted wave spectra is in general
less than 5 % different from that of the experimental measurements. Nevertheless,
further studies, e.g. comparison with experiments conducted in a wider tank where
dissipation due to friction on the sidewalls is less important, are desirable.

Other than some disagreement in the comparisons of the measured and the predicted
wave spectra, the simple eddy viscosity model appears to function generally well. As
shown in figures 15(b) and 15(c), the relative change of the predicted wave spectra
just after breaking (compared to the one close, but prior to wave breaking) is a
good approximation to that of the measured spectra, suggesting that most of the
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FIGURE 16. Comparison of the spectral variation based on numerical simulations (solid
curves) and the measurements (open circles). The spectral variation is due primarily to wave
breaking and nonlinearity. The procedure to determine the spectral change is similar to that
used in constructing figure 12, but with measurements/numerical results close to the wave
breaking points, i.e. |x − xb|2.5 m. For clarity, an increment of 0.2 is applied to the ordinates
in these graphs.

spectral variation due to wave breaking may have been captured by the eddy viscosity
model. For further examination, we applied similar procedures used to determine the
wave frequency variation for the breaking wave groups (figure 12) to the numerical
predictions. Figure 16 provides a comparison of the spectral change, primarily due to
wave breaking and nonlinearity, between the numerical and experimental results. In
general, the spectral change immediately after wave breaking is simulated well by the
eddy viscosity model. Considering the complicated kinematics and dynamics involved
in breaking waves, the performance of this simple eddy viscosity model is much better
than expected.

5. Conclusions
An experimental and numerical study of the evolution of two-dimensional dispersive

focusing wave groups in finite depth water is presented. In the experiments, both
non-breaking and breaking wave groups are generated via a dispersive focusing
technique in a two-dimensional wave tank. Temporal variation of the surface elevation
is measured with wave probes at fixed locations along the wave tank. Surface elevation
measurements are used to examine the wave frequency spectral evolution, and to
determine the spectral distribution of energy dissipation in both non-breaking and
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breaking wave groups. It is found that the focusing process is far more complicated
than simple linear superposition and nonlinear energy transfer between different
frequency components is observed.

Spatial evolution of wave frequency spectra of the non-breaking wave groups is
examined first. Wave spectral bandwidth and surface elevation skewness and kurtosis
are inspected as the wave groups propagate. The spectral bandwidth increases due
to nonlinear energy transfer across the frequency spectra during the focusing process,
and reduces to its initial level far downstream. The vertical symmetry of the surface
elevation (indicated by the skewness) and the formation of the very steep waves
due to dispersive focusing (indicated by the kurtosis) show some correlation with
the Benjamin–Feir Index (i.e. BFIS). This suggests that the focusing process involves
strong (both resonant and non-resonant) wave–wave interactions, whose nonlinearity
may be characterized by BFIS.

The nonlinear energy transfer between the above-peak and the higher-frequency
regions and its reversibility in the non-breaking wave groups are demonstrated by the
focusing and defocusing processes. Due to viscous effects and contact-line damping,
about 20 % of the total energy is dissipated after a distance of 10 wave lengths in
the non-breaking wave groups. Depending on the BFIS, 25–80 % of this non-breaking
energy loss is from the spectral peak region (f /fp = 0.9–1.1). The non-dimensional
energy loss in the spectral peak region rises as the BFIS increases, suggesting this
dissipation may be a nonlinear process. In addition, the energy gain in the higher-
frequency region (f /fp = 1.5–2.5) appears to have a strong dependence on the BFIS.
To the best of our knowledge, similar observations have not been reported previously.
The spectral variation due to viscous related dissipation and nonlinear energy transfer
is determined.

Observations of the evolution of the frequency spectra for the breaking wave groups
are also reported. In the presence of wave breaking, the spectral bandwidth reduces
significantly immediately after breaking and remains much smaller than its initial
level. The dependence of the skewness and the kurtosis on the BFIS becomes weak,
compared to that of the non-breaking wave groups, due to the presence of wave
breaking. Examination of the energy levels in different frequency regions is performed.
It is found that the dissipation in the spectral peak region is due primarily to viscous
related dissipation and nonlinear energy transfer. In addition, a significant amount
of energy is transferred from the above-peak region (f /fp = 1.2–1.5) to the higher
frequencies (f /fp = 1.5–2.5) before breaking. The energy in the higher-frequency
region, as well as the energy transferred to the region, is dissipated during the breaking
process. Nonlinear energy transfer also occurs from the spectral peak region to the
lower-frequency region (f /fp = 0.5–0.9) before breaking. For more than half of the
breaking wave groups, after breaking, no obvious energy gain in the lower-frequency
region immediately following breaking is observed. This result suggests that the energy
gain in the lower-frequency region is possibly due to nonlinear energy transfer. Wave
breaking may not necessarily increase the energy in the region, though it prevents
the gained energy in this region from returning to other frequency regions. Spectral
distribution of the energy variation after breaking is presented. The spectral change
in the higher-frequency components, roughly f /fp = 1.2–2.0, is due primarily to wave
breaking and the dissipation in the range increases as wave breaking intensifies.

Complementary numerical tests are conducted, using a simple eddy viscosity
model to simulate energy dissipation in breaking waves. The eddy viscosity model
simulates well the surface elevations before and after wave breaking. It is also
demonstrated that the predicted relative spectral change after breaking agrees well
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with the experimental measurements, although the predicted wave frequency spectra at
downstream locations have some discrepancies with the measurements. The possible
cause of the disagreement may be applying to the free surface boundary conditions an
effective viscosity that accounts for the total non-breaking energy dissipation, which is
due to friction on the side tanks’ walls and bottom, as well as the contact lines at the
sidewalls in the experiments.
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Science and Engineering Foundation via the WCU program (grant no. R31-2008-000-
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