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abstract

Structural instability in economic time series is widely reported in the literature. It is most
prevalent in such series as price indices and inflation related data. Many methods have been
developed for analysing and modelling structural changes in a univariate time series model.
However, most of them assume that the data are generated by one fixed type (linear or non-
linear) of the time series processes. This paper proposes a strategy for modelling different
segments of an economic time series by different linear or non-linear models. A graphical
procedure is suggested for detecting the model change points. The proposed procedure is
illustrated by modelling annual United Kingdom price inflation series over the period 1265 to
2005. Stochastic modelling of inflation rates is an important topic to actuaries for dealing with
long-term index linked insurance business. The proposed method suggests dividing the U.K.
inflation series into four segments for modelling. Inflation projections based on the latest
segment of the data are obtained through simulations. To get a better understanding of the
impact of structural changes on inflation projections we also perform a forecasting study.
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". Introduction

1.1 As mentioned by Rosenberg & Young (1999) discrete time series
models are useful in analysing actuarial assumptions (such as non-issue rates,
lapse rates, investment rates, incidence rates, and severity rates) for pricing
and reserving insurance products.
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1.2 Time series modelling is also important to actuaries for generating
economic scenarios in a dynamic financial analysis (DFA) model or in a cash
flow testing (CFT) model (Dempster et al., 2003).

1.3 In addition to analysing time-dependent variables which are specific
to the pricing, reserving or dynamical analysing of insurance products,
advanced time series models have been used for insurance and financial risk
management (see, e.g., Embrechts et al., 1999; Longin, 2000; Lucas, 2000;
and Hardy, 2003).

1.4 Non-linear stochastic asset modelling has attracted considerable
interest from actuaries around the world in recent years. Substantial
empirical evidence for non-linearities in economic time series fluctuations has
been reported in the actuarial literature. (See, e.g., Clarkson, 1991; Whitten
& Thomas, 1999; Hardy, 2001; and De Gooijer & Vidiella-i-Anguera, 2003;
among many others.)

1.5 Non-linear time series models have the advantage of being able to
capture asymmetries, jumps and time irreversibility, which are ‘stylised’ facts
observed in many financial and economic time series (Franses & Van Dijk,
2000).

1.6 On the other hand, linear time series models (particularly the class
of ARMA models) have been reasonably successful as a practical tool for
actuarial modelling and economic forecasting. The computation time
required for obtaining a parsimonious ARMA model for most economic data
is well within the reach of practitioners. Ready-made computer packages
are widely available. Over the years, much experience has been accumulated
in the actuarial application of linear ARMA models (see, e.g., Foster, 1994;
Wilkie, 1995; and Lai & Frees, 1995).

1.7 Furthermore, multivariate generalisation of linear ARMA models is
fairly straightforward (Sims, 1980; Tiao & Box, 1981; and Chan, 2002), while
research in multivariate non-linear time series modelling is still at its
infancy.

1.8 Non-linear time series models provide a much wider range of
possible dynamics for the economic data, at the cost of additional complexity
as compared to linear models. There are certainly tradeoffs between linear
and non-linear models in analysing economic time series.

1.9 In modelling economic fluctuations, we often assume that all of the
time series data are generated by a single type (linear or non-linear) of the
models. However, in practice, different segments of the observed series may
behave quite differently. For example, McCulloch & Tsay (1994) and Chen et
al. (1997) discuss a general Bayesian approach, allowing each observation to
‘choose’ one of two pre-specified models such as the well-known ARMA
model, the GARCH model of Bollerslev (1986), the bilinear model of
Granger & Andersen (1978), and the threshold autoregressive model of Tong
(1978).

1.10 In this paper we propose a procedure for modelling different
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segments of an economic time series by linear or non-linear models. Unlike
the Bayesian method of Chen et al. (1997), the orders of the competing
models need not be pre-specified. The proposed procedure also allows more
than two competing models for each segment of the data.

1.11 The stochastic model of retail price inflation is a core part of the
Wilkie composite model (Wilkie, 1986 and 1995). It provides, directly or
indirectly, inputs to other component variables. Kitts (1990) gives an
empirical review on the Wilkie price inflation model. The long-term
validity of the model was questioned, because it does not accommodate
possible structural changes. Similar concerns have been expressed by some
other actuaries (see, e.g., Daykin & Hey, 1990; Geoghegan et al., 1992;
and Huber, 1997). In this paper, we apply the proposed procedure to
modelling annual United Kingdom price inflation series over the period 1265
to 2005. Three structural change points are identified. Our method suggests
dividing the inflation series into four segments for modelling. Inflation
projections based on the latest segment of the data are obtained through
simulations.

Æ. Linear and Non-Linear Time Series Modelling

2.1 Linear ARMA Modelling
2.1.1 The orthodox linear ARMA model (Box & Jenkins, 1976) has the

form:

fðL ÞYt ¼ mþ yðL Þat

where fðL Þ ¼ 1ÿ f1L ÿ . . .ÿ fpL
p and yðL Þ ¼ 1ÿ y1L ÿ . . .ÿ yqL

q are
polynomials in L of degrees p and q, respectively, m is a constant, L is the lag
operator such that L sYt ¼ Ytÿs and fatg is a sequence of independent random
variables drawn from a distribution with mean zero and constant variance
s2

a <1. All the zeros of fðL Þ and yðL Þ are required to lie outside the unit
circle to meet the stationarity and invertibility requirements. However, time
series arising from economic and business areas are often non-stationary.
The class of homogeneous non-stationary ARIMA models can be used to
analyse the data. It assumes that the differenced series follows a stationary
ARMA process.

2.1.2 Although there are numerous successful examples in economic
applications of ARIMA models, this class of linear models has a number of
serious shortcomings for studying economic fluctuations (Potter, 1995). One
of the defects is that they are not capable of accommodating large shocks
(outliers), shifting trends and structural changes. (See, e.g., Balke & Fomby,
1991 and 1994; Clements & Hendry, 1996; Atkinson et al., 1997; De Jong &
Penzer, 1998).
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2.1.3 Tsay (1988) and Chen & Liu (1993) extend the class of ARMA
models by adding an intervention (outlier) component, i.e.:

Y �t ¼ Yt þ ZtðT ;oÞ

where Yt follows an ordinary ARMA process in (1), and ZtðT ;oÞ is used to
describe the type, location (T ) and magnitude (o) of the outlier (shock). Tsay
(1988) considers four commonly encountered types of outlier. They are
additive outlier (AO), innovational outlier (IO), level shift (LS) and
temporary change (TC). The form of ZtðT ;oÞ for each type of outlier is given
as:

AO: ZtðT ;oÞ ¼ oD
ðT Þ
t

IO: ZtðT ;oÞ ¼ o
yðL Þ
fðL Þ

D
ðT Þ
t

LS: ZtðT ;oÞ ¼
o

1ÿ L
D
ðT Þ
t

TC: ZtðT ;oÞ ¼
o

1ÿ dL
D
ðT Þ
t

where:

D
ðT Þ
t ¼

1 if t ¼ T

0 if t 6¼ T

�
is the indicator variable representing the presence or absence of an outlier at
time T .

2.1.4 Recall that an additive outlier affects only the level of the given
observation; an innovational outlier affects all observations beyond the given
time through the memory of the underlying ARMA dynamics; a level shift
is an event which affects a time series at a particular time point whose effect
becomes permanent; a temporary change is an event having an initial impact
and whose effect decreases exponentially according to a fixed dampening
parameter, say d. In practice, the value of d is often set at d ¼ 0:7 (Chen &
Liu, 1993). More generally, a time series may contain m outliers of different
types, and we have the following general time series outlier model:

Y �t ¼ Yt þ
Xm

j¼1

ZtðTj;ojÞ:

2.1.5 Chen & Liu (1993) propose a three-stage (detection, estimation
and adjustment) iterative procedure for modelling ARMA processes with
outlier components. It substantially widens the use of linear ARMA models.
Balke & Fomby (1994), Bizovi et al. (1998), and Junttila (2001) report many
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successful applications of Chen & Liu’s methodology to various disciplines,
ranging from economics to medicine.

2.2 Non-Linear SETAR Modelling
2.2.1 The class of self-exciting threshold autoregressive (SETAR) models

(Tong, 1978 and 1983) has been widely employed in the literature to explain
various empirical phenomena observed in economic time series. See, e.g.,
Kragº er & Kugler (1993), Peel & Speight (1994) and Chappell et al. (1996) for
foreign exchange rate variables; Yadav et al. (1994) for futures market; Tiao
& Tsay (1994) and Potter (1995) for United States GNP; Montgomery et al.
(1998) for U.S. unemployment; and De Gooijer & Vidiella-i-Anguera (2003)
for monthly inflation rates. Statistical properties and forecasting performance
of SETAR models have been extensively examined. See, e.g., Tong (1990);
Clements & Smith (1997 and 1999); Kepetanios (2000); and De Gooijer
(2001).

2.2.2 A k-regime SETAR(d; p1; p2; . . . ; pk) model has the form:

Yt ¼
Xpj

l¼0

fðjÞl Ytÿl þ at if Ytÿd 2 ðrjÿ1; rj�

where j ¼ 1; 2; . . . ; k, ÿ1 ¼ r0 < r1 < � � � < rk ¼ 1 are the threshold values,
d, k, and (p1; p2; . . . ; pk) are positive integers, and at is a sequence of i.i.d.
random variables with zero mean and constant variance s2

a <1.
2.2.3 Tsay (1989) has proposed a test for threshold nonlinearity, which

we shall generalise in the next section. Now, for an observed time series
fYt; t ¼ 1; 2; . . . ; ng, we define p ¼ maxðp1; p2; . . . ; pkÞ as the maximum AR
order in the SETAR model. Given a fixed delay parameter d, let
h ¼ maxð1; pþ 1ÿ dÞ. The observations fYh; Yhþ1; . . . ; Ynÿdg can be arranged in
ascending order as fYp1 ; Yp2 ; . . . ; Ypnÿdÿhþ1

g, where pi denotes the index of the
ith smallest values of the unsorted series. An arranged autoregression can be
written as:

Y ¼ XUþ a

where Y ¼ ðYp1þd; . . . ; Ypnÿdÿhþ1þdÞ
0, X is an ðnÿ dÿ hþ 1Þ � ðpþ 1Þ matrix

with the first column being an unit vector and the remaining columns
containing the corresponding lagged Ypiþd values, U ¼ ðf0;f1; . . . ;fpÞ

0 and a
is a vector of noise.

2.2.4 Let the number of startup observations be m > pþ 1. Stepwise
regressions can be performed by regressing the first r rows of Y on the first r
rows of X. Then the corresponding one-step-ahead predictive residuals
êdþprþ1

can be computed successively for r ¼ m;mþ 1; . . . ; nÿ dÿ h.
2.2.5 Tsay’s test (op. cit.) utilises the orthogonality property between these
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predictive residuals and the regressors fYpiþdÿvjv ¼ 1; . . . ; p, i ¼ 1; . . .,
nÿ dÿ hÿ mþ 1g under the null hypothesis of linearity. If the true model is a
non-linear SETAR process, the orthogonality will be destroyed. Hence, the
usual F-statistic for the regression between these predictive residuals and the
regressors:

êpiþd ¼ ao þ
Xp

v¼1

avYpiþdÿv þ epiþd

for i ¼ mþ 1; . . . ; nÿ dÿ hþ 1, can be used to test the orthogonality, and
thus test for threshold-type non-linearity. In most situations, p and d are not
known. As a quick-and-dirty method, Tsay (1989) selects p by the sample
partial autocorrelation function (PACF) of Yt. Once p is selected, d is chosen
such that it gives the most significant F-statistic. For the number of regime
k and the threshold parameter(s), he proposes using various scatterplots (e.g.
standardised predictive residuals versus Ytÿd) to locate them. Finally, the
AIC (Akaike, 1974) is used to specify the AR order of each regime.

â. A New Modelling Strategy

3.1 Structural instability in economic time series relations is not
uncommon. (See, e.g., Stock & Watson, 1996.) The underlying data
generating process (DGP) of an economic time series may be changing with
time. Hence, we may wish to adopt a modelling procedure which allows
different models for different segments of the observed series.

3.2 In this paper, we assume that segments of an economic time series
are generated from either the classical linear ARMA models or non-linear
SETAR models (Tong, 1978 and 1983). We argue that it will substantially
enrich the possible dynamics for an economic time series if we allow
piecewise switching between these two classes of models.

3.3 Given a time series, it remains for us to search the ‘change point(s)’
in order to divide it into segments. Instead of developing a rigorous statistical
test for testing for change points, we propose a simple graphical procedure
for locating the possible switches.

3.4 Inspired by Tsay (1991) and Chan & Cheung (1994), we suggest a
rolling local non-linearity testing procedure. The F-statistic discussed in
{2.2.5 is first computed using a rectangular window with a fixed number of
data points inside the window. Let F̂t be the corresponding F-statistic for the
window of observations fYtÿw; . . . ; Yt; . . . ; Ytþwg (i.e., the window width is
2wþ 1). The graph F̂t versus t, for t ¼ wþ 1; . . . ; nÿ w, generally contains
useful information on the change points.

3.5 We illustrate the proposed graphical procedure by a simulated
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example. Figure 3.1 (upper panel) shows a time plot of 600 observations
generated from the process:

Model A: Yt ¼

0:5Ytÿ1 þ at if t ¼ 1; . . . ; 200

0:8Ytÿ1 þ at if Ytÿ1 � 0
ÿ0:8Ytÿ1 þ at if Ytÿ1 < 0

�
if t ¼ 201; . . . ; 400

at þ 0:3atÿ1 þ 0:4atÿ2 if t ¼ 401; . . . ; 600

8>>>><>>>>:

Figure 3.1. Time plot and rolling F-statistic plot of the simulated series
(Model A)
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where Y0 ¼ 0 and at are i.i.d. Gaussian random variates with zero mean and
sa ¼ 0:5. The sample PACF of the simulated series has a ‘cut-off’ pattern
after lag 2. Therefore, we employ p ¼ 2 for the F-test. The delay parameter
(d � p) is chosen such that it gives the largest F-statistic for the full-length
simulated series. We obtain d ¼ 1. For computing the rolling F-statistics, we
set the window size ¼ 101 (i.e., w ¼ 50) in this example. The graph F̂t versus t
for t ¼ 51; . . . ; 550 is given in Figure 3.1 (lower panel). The graph clearly
indicates that ‘something happened’ around t ¼ 190 and again around
t ¼ 375. These two points are fairly close to the structural change points in
Model A, t ¼ 201 and t ¼ 401, respectively. Once the time series is divided
into three pieces, ARMA and SETAR modelling procedures, described in
Section 2, can be applied to the corresponding segments.

3.6 In order to further explore the effectiveness of the proposed
graphical procedure, in addition to Model A described above, we consider
three more data generating processes:

Model B: Yt ¼

0:8Ytÿ1 þ at if Yt ÿ 1 � 0
ÿ0:8Ytÿ1 þ at if Yt ÿ 1 < 0

�
if t ¼ 1; . . . ; 200; 401; . . . ; 600

Ytÿ1 þ at if t ¼ 201; . . . ; 400

8><>:
Model C: Yt ¼ 0:6Ytÿ1 þ 0:3Ytÿ2 þ at t ¼ 1; . . . ; 600

Model D: Yt ¼
0:8Ytÿ1 þ at if Yt ÿ 1 � 0
ÿ0:8Ytÿ1 þ at if Yt ÿ 1 < 0

�
t ¼ 1; . . . ; 600:

3.7 There are two structural change points in Model B (t ¼ 201 and
t ¼ 401). Model C is a pure AR(2) process, while Model D is a pure non-
linear SETAR model without any structural breaks. Time series observations
are generated from each model. We apply the proposed graphical procedure
to each simulated series, and the results are plotted in Figure 3.2.
3.8 The rolling F-statistic plot of the Model B simulated series shows

big jumps at around t ¼ 180 and t ¼ 400, which are fairly close to the true
structural break points. For Model C, the rolling F-statistic values are all
insignificant (the critical value for the local rolling F-test is around 2.7 at the
5% level). On the other hand, almost all (except one) of the F̂t values for
Model D are above the critical value. No dipped period is found. Therefore,
the rolling F-statistic plots do not suggest any structural breaks for the
simulated series from Models C and D, as expected.

3.9 In summary, our experience suggests that the proposed graphical
procedure is reasonably effective in locating possible switches between a
linear ARMA model and a non-linear SETAR process. It has the particular
advantage of being simple and visual. We will further demonstrate its
usefulness through a real application in the next section.
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ª. Modelling U.K. Price Inflation, "Æåä to Æòòä

4.1 The Data
4.1.1 Inflation is an important topic for many disciplines. For example,

numerous articles and books have been written on the topic by economists.
(See, e.g., Dicks-Mireaux & Dow, 1959; Sargan, 1964; Friedman, 1977;

Figure 3.2. Time plots and rolling F-statistic plots of the simulated series
(Models B, C and D)
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Rowlatt, 1988; De Brouwer & Ericsson, 1998; and Hendry, 2001). Actuaries
have to examine inflation for indexing long-term insurance contracts (Wilkie,
1981). Financial analysts need to study inflation for pricing inflation-
indexed bonds (Roll, 1996).

4.1.2 In this section we consider the time series modelling of U.K.
inflation. Following Wilkie (1995), an annual Retail Prices Index (RPI) series
Pt can be constructed starting as early as 1264. A detailed description of the
data sources is given in the Appendix. The annual price inflation is defined
as:

Yt ¼ ln Pt ÿ ln Ptÿ1:

It is often called the ‘force of inflation’ in the actuarial literature. Figure 4.1
plots the inflation series from 1265 to 2005. For the past seven and a quarter
centuries or so, U.K. inflation has fluctuated greatly in response to many
political, economical and technological changes. We will illustrate the
proposed modelling strategy, discussed in Section 3, using this long and
important economic time series.

4.2 Detecting the Model Change Points
4.2.1 The sample PACF for the inflation series is first computed:

Figure 4.1. Time plot of U.K. price inflation, 1265 to 2005
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Lag 1 2 3 4 5 6 7 8
Sample PACF 0.06 ÿ0.23 ÿ0.11 ÿ0.02 ÿ0.02 0.01 0.04 0.07
S.E. 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

It suggests that p ¼ 3 for the F-tests for non-linearity. Next, we carry out
the F-tests with p ¼ 3 and d � p. The results are obtained:

Delay (d) 1 2 3
F-statistic 2.25 2.06 0.35

The delay parameter d ¼ 1 is chosen, since it gives the largest F-statistic
among all d � p.

4.2.2 The rolling F̂t values are computed using ðp; dÞ ¼ ð3; 1Þ with
window size ¼ 101. The results are plotted in Figure 4.2. It should be noted
that the critical value for the local F-test is 2.5 at the 5% level. There are
three obvious sustained ‘cross-over’ upward jumps at around 1480, 1605 and
1914. Interestingly, the period between the first two detected breaks
matches closely to the famous House of Tudor in the history of England. The
Tudors were a Welsh-English family which ruled England from 1485 to
1603. It was a great time of change in England, and Tudor inflation is an
important research topic for many economic historians (see, e.g., Phelps
Brown & Hopkins, 1956; Brenner, 1961 and 1962; and Fisher, 1965). The
third detected break is at around 1914, the beginning of the First World War.

Figure 4.2. Rolling F-statistic plot (U.K. price inflation series)
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4.2.3 We roughly subdivide the whole time series into four periods.
They are: Period I (1265-1484), Period II (1485-1603), Period III (1604-1913)
and Period IV (1914-2005). Figure 4.3 shows the annual U.K. Retail Prices
Index series (in vertical logarithmic scale) separated by the corresponding
sub-periods.

4.2.4 Table 4.1 displays the ordinary (i.e., non-rolling) F-test results for
these four periods. It is quite easy to conclude that Period I and Period II are
linear. For Period III, non-linearity is detected at d ¼ 2 and d ¼ 5. For the
final period, non-linearity is found at d ¼ 1 and d ¼ 3. By looking at
Figure 4.3, it can be seen that there are some spurious observations around
1919 to 1922, which suggest that outliers may exist in Period IV. As discussed
in Chan & Ng (2004), existence of outliers may affect the accuracy of
threshold-type non-linearity tests. Therefore, a linear model with outliers and
a non-linear SETAR model are both possible choices for this period. Both
classes of models will be fitted and compared later.

4.3 Empirical Results
(a) Period I: 1265-1484

4.3.1 To fit a linear ARMA model, the first step is to specify the AR
and MA orders. Using the SCA-EXPERT system (Liu, 1996), an MA(3)
model is tentatively suggested for this period. The fitted model is:

Yt ¼ at ÿ 0:0485atÿ1 ÿ 0:4468atÿ2 ÿ 0:1889atÿ3

ð0:0663Þ ð0:0599Þ ð0:0671Þ

where Yt denotes inflation series and ŝa ¼ 0:1177.
4.3.2 Diagnostic checking of the residuals was performed. The Ljung &

Box (1978) portmanteau statistic (with ten lags) for testing independence of
the residuals is 4.9, which is highly insignificant (the critical value of the test

Table 4.1. Results of Tsay’s F-test on U.K. inflation data

Period I Period II Period III Period IV
1265-1484 1485-1603 1604-1913 1914-2005

Length of period 220 119 310 92
Chosen AR order (p) 4 3 6 6

Delay (d � p) p-value of the F-test

d ¼ 1 0.7802 0.6390 0.2677 0.0004*
d ¼ 2 0.6889 0.2244 0.0003* 0.2210
d ¼ 3 0.6023 0.5926 0.1763 0.0392*
d ¼ 4 0.7705 0.2257 0.7030
d ¼ 5 0.0015* 0.3767
d ¼ 6 0.5155 0.0820

*Note: Asterisk indicates rejection of linearity at the 5% level
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is w2
7;0:95 ¼ 14:067). The Jarque & Bera’s (1980) statistic is 32.42, which

shows that non-normality is significant at the 5% level (the critical value of
the test is w22;0:95 ¼ 5:99).
4.3.3 Figure 4.4 (upper panel) shows the standardised residual plot of

the model. There is an obvious outlying residual at around t ¼ 50. The
corresponding histogram has a heavy tail on the right. It is therefore
suspected that non-normality is caused by the outlying residual. Outlier
detection procedure, proposed by Chen & Liu (1993), is performed, and
an IO at t = 52 (corresponding to the year 1316) is detected with a
t-ratio of 4.75. Checking the history of England in the medieval ages,
the harvest failed due to appalling weather during 1315 and 1316. Besides,
there were widespread cattle and sheep murrains. These natural disasters
caused prices to increase. These findings lend support to an outlier adjusted
model:

Yt ¼ at ÿ 0:0795atÿ1 ÿ 0:4597atÿ2 ÿ 0:1720atÿ3

þ 0:537ð1ÿ 0:0795L ÿ 0:4597L 2 ÿ 0:1720L 3ÞD
ð1316Þ
t

with ŝa ¼ 0:1130.
4.3.4 The standardised residuals are computed for diagnostic checking.

The Ljung & Box statistic is reduced to 3.4 and the Jarque & Bera statistic is
0.92. Both values are statistically insignificant. The standardised residuals

Figure 4.3. United Kingdom Retail Prices Index, 1264 to 2005
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may also be assumed to be randomly and normally scattered (see Figure 4.4,
lower panel). Therefore, the model in {4.3.3 gives a good fit for Period I.

(b) Period II: 1485-1603
4.3.5 Our proposed graphical procedure detects the first two structural

breaks for the U.K. price inflation series in approximately 1480 and 1605 (see
Figure 4.2). The period within these two breaks matches closely to the era
of Tudor England (1485 to 1603). The inflation of prices in Tudor England
was part of a European-wide phenomenon, long considered to have been

Figure 4.4. Scatterplot and histogram of standardised residuals of models
in {4.3.1 and {4.3.3
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caused by monetary factors; specifically, gold and silver from America
began to flow into Europe at almost the same time as the House of Tudor
began (Outhwaite, 1969). Therefore, we choose the period of Tudor England
as Period II.

4.3.6 Results of Tsay’s F-test in Table 4.1 indicate that Period II is
linear. Using the SCA-EXPERT system, an MA(2) model is tentatively
fitted. We perform the outlier detection procedure suggested by Chen & Liu
(1993). Table 4.2 gives the locations, sizes, types and plausible explanations
of the detected outliers in this period.

4.3.7 The final fitted model for the outlier-adjusted series, Yt ¼ Y �t ÿPm

j¼1 ZtðTj ;ojÞ in {2.1.4, is:

Yt ¼ at ÿ 0:2276atÿ1 ÿ 0:2712atÿ2

with ŝa ¼ 0:0919. The standardised residuals are computed for diagnostic
checking. The Ljung & Box (1978) portmanteau statistic (with ten lags) for
testing the independence of the residuals is 7.4, which is insignificant (the
critical value of the test is w27;0:95 ¼ 14:067). The Jarque & Bera’s (1980)
statistic is 1.41, which does not indicate any non-normality problem in the
residuals (the critical value of the test is w22;0:95 ¼ 5:99). Therefore, the above
model gives a good fit for Period II.

(c) Period III: 1604-1913
4.3.8 In this section, SETAR model fitting for Period III is performed.

As shown in Table 4.1, the most significant non-linearity test result is

Table 4.2. Outlier detection results for Period II

Year Sizes t-ratio Type Event and plausible explanations

1546 0.300 3.27 IO Henry VIII’s debasement of the currency
in England started (Hill & Long, 2001,
p494)

1556 0.343 3.91 AO Catastrophic harvests in the years 1555-
6 (Outhwaite, 1969, p14)

1558 ÿ0.556 ÿ5.78 IO Severe influenza epidemic led to a pause
in inflation (Fisher, 1965, p125)

1564 0.312 3.40 IO Missing data in 1563-4 (Phelps Brown &
Hopkins, 1956, p312)

1587 0.344 3.75 IO Poor harvests, increasing speculation
and the accursed activities of
middlemen (Outhwaite, 1969, p19)

1595 0.298 3.24 IO The mid-1590s witnessed four terrible
harvests in a row (Outhwaite, 1969,
p43)

1597 0.398 4.33 IO Poor harvests, years of war and heavy
taxation pushed prices (Outhwaite,
1969, p43)
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obtained for the case ðp; dÞ ¼ ð6; 2Þ. Therefore, p ¼ 6 and d ¼ 2 are selected
for the preliminary analysis.

4.3.9 Scatterplots are useful tools for suggesting possible threshold
values (Tsay, 1989). The scatterplot of recursive t-ratios of the lag-1 AR
coefficient against ordered Ytÿ2 is shown in Figure 4.5. Plots for other lags
carry similar information, and hence are not shown here. The figure shows
two obvious breaks: one near Ytÿ2 ¼ ÿ0:0184; and another near Ytÿ2 ¼ 0:1011,
which give two possible threshold values.

4.3.10 Finally, the AIC (Akaike, 1974) is used to refine the AR order in
each regime. The AR orders are 0, 6, 0; the number of observations are 112,
169 and 23; and the residual variances are 0.0035, 0.0042 and 0.0058 for the
three regimes, respectively. The fitted SETAR model using the STAR
programme (Tong, 1990) is:

Yt ¼

0:0097 þ að1Þt

ð0:0056Þ if Ytÿ2 � ÿ0:0184

0:1882Ytÿ2 ÿ 0:1365Ytÿ3 ÿ 0:2610Ytÿ6 þ að2Þt

ð0:0719Þ ð0:0723Þ ð0:0713Þ if ÿ0:0184 < Ytÿ2 � 0:1011

ÿ0:0407 þ að3Þt

ð0:0159Þ if Ytÿ2 > 0:1011:

8>>>>>>>>>><>>>>>>>>>>:

Figure 4.5. Scatterplot of recursive t-ratios of the lag-1 AR coefficient
versus ordered Ytÿ2 for U.K. inflation of Period III
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4.3.11 Diagnostic checking of the fitted model does not show any model
inadequacy. The above model has quite a simple economic interpretation.
The data are divided into three regimes at thresholds ÿ0.0184 and 0.1011.
Regime 1 corresponds to a period of deflation. Regimes 2 and 3 correspond
to periods of normal and high inflation respectively. Most of the observations
lie in the normal period, while only 23 observations lie in the high inflation
period. It is well-known that both high inflation and severe deflation would
cause serious damages to the economy. Therefore, in times of these extreme
situations, the government might carry out interventions to re-direct the
inflation rate back to the ‘normal regime’. This is confirmed by the fitted
model: for times of high inflation, that is Ytÿ2 > 0:1011, the inflation rate
follows a negative-intercept process; on the other hand, for times of severe
deflation, it follows a positive-intercept process.

(d) Period IV: 1914-2005
4.3.12 As discussed in {4.2.4, the type (linear or non-linear) of models

for this period is not clearly identified. There might be some confounding
effects of the aberrant observations affecting the rolling F tests. We first
proceed to fit a linear ARMA model with outlier components using Chen &
Liu’s (1993) methodology. An AR(1) model is tentatively specified and four
outliers are detected. Table 4.3 shows the details of the detected outliers and
the corresponding events. Chan & Wang (1998) and Hendry (2001) identify
similar turbulent points for the U.K. inflation series.

4.3.13 The fitted linear model is:

ðYt ÿ 0:0413Þ ¼ 0:5278ðYtÿ1 ÿ 0:0413Þ

þ
0:166

1ÿ 0:5278L
D
ð1920Þ
t ÿ

0:268
1ÿ 0:7L

D
ð1921Þ
t

þ
0:156

1ÿ 0:5278L
D
ð1940Þ
t þ

0:135
1ÿ 0:7L

D
ð1975Þ
t þ at

with ŝa ¼ 0:0421. Diagnostic checking of the model shows that it is
adequate for the data.

Table 4.3. Outlier detection results for Period IV

Year t-ratio Type Event

1920 3.94 IO Post WWI
1921 ÿ6.54 TC Post WWI
1940 3.70 IO World War II
1975 3.31 TC Oil crisis shock
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4.3.14 A non-linear SETAR model is also fitted for p ¼ 6 and d ¼ 1,
based on the test results in Table 4.1. Figure 4.6 shows the scatterplot of
recursive t-ratios for the AR parameters (k ¼ 0; 1; 2; 3). The threshold
parameter r̂ ¼ 0:1905 is selected, as there is a sudden drop of the t-ratios for
the lag-1 AR parameter. However, there are only two observations in the
second regime, which is inadequate to produce efficient estimates for the AR
parameters. On the other hand, these two observations can be regarded as
outliers with respect to a linear model. Furthermore, we apply the F-test for
non-linearity to the outlier adjusted (see Table 4.3) series, and all the test
results are insignificant. Therefore, we conclude that a linear AR(1) model
with outlier components, as fitted in {4.3.13, is more appropriate for the data
in this period.

4.3.15 One of the main objectives of actuarial modelling is to provide a
realistic simulation of the variables (Wilkie, 1995, p804). In Figure 4.7 we
show a set of ten projected paths of the U.K. inflation rate variable (Yt) from
2006 to 2015, along with the record since 1914, using the fitted model in
{4.3.13 for the latest segment of the series.

Figure 4.6. Scatterplot of recursive t-ratios of the lag-k AR coefficient
versus ordered Ytÿ1 for U.K. inflation of Period IV
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4.3.16 Whether or not it is appropriate to adjust the data for the
outliers depends on the purpose to which the model so derived will be used. If
the model is to be used in an application for which extreme stochastic
fluctuations are less important (e.g. to ensure that premiums are adequate in
most, but not extreme, scenarios), then it may be preferable to use a model
based on outlier-adjusted data. If, however, the model is to be used in an
application for which extreme stochastic fluctuations are important (such as
pricing catastrophe risks or ensuring that investment guarantee reserves are
sufficient to keep an insurance company solvent in all but the most extreme
scenarios), then a model which is sympathetic to outliers in the data ought to
be used.

4.3.17 Various alternative approaches have been proposed for dealing
with outliers (Chan, 2002). For example, one would use a model allowing for
outliers to estimate the parameters, and then to re-calculate the residual
standard error applying these estimated parameters to the data including
outlier years, but with no outlier effects in the model. One gets a larger value
of residual variance, of course, but this fitted model is more sympathetic to
outliers in the data.

4.4 Forecasting Study
4.4.1 To study the potential impact of the proposed procedure on the

Figure 4.7. U.K. price inflation, 1914 to 2005, and projections, 2006 to
2015 (with mean projected path drawn with a thicker line)
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U.K. price inflation projection, we compare empirically both one-step and
multi-step forecasts generated from various models. We examine the post-
sample predication for the period 1981 to 2005 (i.e., holdout sample size is
25). Six forecasting methods are considered.

4.4.2 The Naive (NAIVE) method is based on the historical mean of the
U.K. inflation series. The simple exponential smoothing (SES) technique is a
very popular method in the business community for forecasting economic
time series with no trend. An SES model with smoothing constant a ¼ 0:1
(Newbold, 1995, p217) is included. The third model in our study is the
first-order autoregressive (AR(1)) process which we recommended for the
latest segment of the U.K. inflation series. To explore the value of
identifying structural breaks, the ‘old’ models (i.e.: MA(3) in Period I;
MA(2) in Period II; and SETAR(2; 0,6,0) in Period III) are also considered.
To achieve comparability, we re-fit the ‘old’ models over the extended
periods.

4.4.3 The forecast methods are compared by reference to the mean
squared forecast error (MSFE). We also consider the relative performance of
the methods to the Naive model. The results are given in Table 4.4. It is
clear that the linear AR model based on the last-known stable fundamental
structure of the series outperforms all other methods considered in this
forecasting exercise.

4.4.4 Clement & Hendry (1995) observe that predictive failure is not
uncommon in macroeconomic forecasting. They argue that economic
forecasting performance might be improved by allowing for interventions or
mean shifts. The underlying data generating process is, however, still
assumed to have a fixed fundamental structure (say linear or non-linear). The
forecasting comparisons in this study suggest that it is also important to
identify portions of an observed economic time series which might not be
useful for the purpose of forecasting or actuarial simulation, due to possible
fundamental changes of economies.

Table 4.4. Comparison of post-sample forecasts of U.K. price inflation,
1981 to 2005

Forecasting Fitting One-step Forecast 20-step Forecast
method period MSFE ratio* MSFE ratio*

NAIVE 1265-1980 0.00186 1.00 0.00191 1.00
SES 1265-1980 0.00106 0.57 0.01535 8.04
AR(1) 1914-1980 0.00044 0.24 0.00109 0.57
SETAR(2; 0,6,0) 1604-1980 0.00298 1.60 0.00204 1.07
MA(2) 1485-1980 0.00162 0.87 0.00868 4.55
MA(3) 1265-1980 0.00258 1.39 0.00994 5.21

*Ratio of the MSFE of the forecasting method to that of the Naive model
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ä. Concluding Remarks

5.1 In time series modelling, the conventional approach is to examine
how well each individual model fits all of the data. However, in reality it is
often difficult to find a single model which captures all the features all the
time (such as unconditional leptokurtosis, volatility clustering, jumps,
structural breaks and regime shifts) in an economic time series entirely to our
satisfaction. In this paper, we propose a procedure for modelling different
segments of an economic time series by different models, which may be either
linear ARMA models or non-linear SETAR models. A rolling version of
Tsay’s (1989) F-statistic is proposed to detect model change points
graphically. The time series is then segmented into sub-periods for modelling.
The proposed modelling strategy deals effectively with the situation in
which different portions of the data favour different types of models. This
flexibility is of particular value in time series analysis where the underlying
data generating process (i.e. the economic force) may be changing over
time.

5.2 We should emphasise that, in this paper, the class of SETAR models
is chosen for its convenience and popularity as a class of non-linear models.
As far as our proposed procedure is concerned, it can be easily be replaced by
other classes of non-linear models. Using similar arguments as above, we
may develop a rolling version of the Lagrange multiplier test (Tong, 1990,
p320) to cater for the possibility of switchings between linear ARMA models
and bilinear models. For switchings between linear ARMA models and
GARCH models, we may employ a rolling version of McLeod & Li’s (1983)
portmanteau test. A rolling Likelihood Ratio (LR)-statistic (Franses & van
Dijk, 2000, p104) can be used to locate model changes between linear AR
models and Markov-Switching models (Tong, 1983, p62; and Hamilton,
1989).

5.3 In our study of the annual U.K. price inflation series, we have found
that the data split roughly into four segments. In the first segment (1265 to
1500), a linear MA(3) model with an innovational outlier at the year 1316 is
preferred. The second segment (1485 to 1603) is the era of Tudor England. A
linear MA(2) model is fitted with seven outliers identified. Our analysis in
this period quantifies the aberrant inflation periods in Tudor England, which
might be useful to economic historians. In the third segment (1604 to 1913),
a three-regime SETAR model is fitted, which has an interesting economic
interpretation. For the final segment (1914 to 2005), a linear AR(1) process is
fitted with several outliers; we suggest that the outliers may be accounted
for by the turbulences due to the world wars and the oil crises. U.K. price
inflation forecasts obtained using only the final segment of the data are
found to be more accurate than those forecasts computed using the full
observed series. The folklore of ‘using all the data for forecasting’ has been
challenged. The proposed procedure in this paper might be useful in
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identifying the relevant portion of an observed time series for the purpose
of economic forecasting and actuarial projections.
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APPENDIX

Data

As suggested by Wilkie (1995) the annual U.K. inflation data have been
constructed by taking several indices and splicing them together. Since 1914,
June values of the monthly series have been used. The whole series is then
rebased to the year 1914. The detailed sources are summarised in the
following table.

Period Source

1264-1661 Appendix B of Phelps Brown & Hopkins (1956). The five missing values in the
series are replaced by the average of the two adjacent observations.

1661-1696 Schumpeter-Gilboy Price Indices, Part A, consumers’ goods. On page 468 of
Mitchell & Deane (1962).

1696-1790 Schumpeter-Gilboy Price Indices, Part B, consumers’ goods. On pages 468 to 469
of Mitchell & Deane (1962).

1790-1850 Indices of British Commodity Prices on page 470 of Mitchell & Deane (1962).

1850-1871 The Rousseaux Price Indices (overall index) on pages 471 to 472 of Mitchell &
Deane (1962).

1871-1914 Board of Trade Wholesale Price Indices (total index) on page 476 of Mitchell &
Deane (1962).

1914-1947 ‘All Items’ Cost of Living Index, Table 84 of Central Statistical Office (1991).

1947-1990 ‘All Items’ Retail Prices Index, Table 1 of Central Statistical Office (1991).

1990-1993 ‘All Items’ General Index of Retail Prices, Table 18.7 of Central Statistical Office
(1994).

1993-2005 ‘All Items’ Retail Prices Index, Table 18.7 of Office of National Statistics (1996
to 2005).
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