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We examine how known unstable equilibria of the Navier–Stokes equations in
plane Couette flow adapt to the presence of an imposed stable density difference
between the two boundaries for varying values of the Prandtl number Pr, the ratio
of viscosity to density diffusivity and fixed moderate Reynolds number, Re = 400.
In the two asymptotic limits Pr→ 0 and Pr→∞, it is found that such solutions
exist at arbitrarily high bulk stratification but for different physical reasons. In the
Pr→ 0 limit, density variations away from a constant stable density gradient become
vanishingly small as diffusion of density dominates over advection, allowing equilibria
to exist for bulk Richardson number Rib .O(Re−2Pr−1). Alternatively, at high Prandtl
numbers, density becomes homogenised in the interior by the dominant advection
which creates strongly stable stratified boundary layers that recede into the wall as
Pr→∞. In this scenario, the density stratification and the flow essentially decouple,
thereby mitigating the effect of increasing Rib. An asymptotic analysis is presented
in the passive scalar regime Rib . O(Re−2), which reveals O(Pr−1/3)-thick stratified
boundary layers with O(Pr−2/9)-wide eruptions, giving rise to density fingers of
O(Pr−1/9) length and O(Pr−4/9) width that invade an otherwise homogeneous interior.
Finally, increasing Re to 105 in this regime reveals that interior stably stratified
density layers can form away from the boundaries, separating well-mixed regions.

Key words: stratified turbulence

1. Introduction
The identification of numerous unstable invariant solutions in canonical shear flows

has played a key role in the modern understanding of transitionally turbulent fluids.
These states, most commonly known as exact coherent structures (ECS), underpin
a deterministic picture of turbulence in which the flow is viewed as a complicated
trajectory through a state space of velocity fields that satisfy the Navier–Stokes
equations (Kerswell 2005; Eckhardt et al. 2007; Kawahara, Uhlmann & Van Veen
2012). The ECS are simple invariant solutions, equilibria, travelling waves and
(relative) periodic orbits, that organise this state space through their stable and unstable
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manifolds. Though their unstable eigendirections prohibit them from being physically
realised, turbulent flows may pass nearby to them. Consequently, the dynamical
influence of ECS on the flow via their invariant manifolds is experimentally observable
(Suri et al. 2017, 2018) and may be investigated in detail by high-resolution direct
numerical simulations (DNS) (Kerswell & Tutty 2007; Gibson, Halcrow & Cvitanović
2008; Cvitanović & Gibson 2010; Budanur et al. 2017). As such, they have proven
useful in investigating both the route to turbulence (Itano & Toh 2001; Skufca,
Yorke & Eckhardt 2006; Kerswell & Tutty 2007; Schneider, Eckhardt & Yorke
2007; Mellibovsky et al. 2009; Viswanath & Cvitanović 2009; Duguet, Brandt &
Larsson 2010; Schneider, Marinc & Eckhardt 2010; Pringle, Willis & Kerswell 2012)
and its subsequent features (Gibson et al. 2008; Chandler & Kerswell 2013; Willis,
Cvitanović & Avila 2013; Lucas & Kerswell 2015; Budanur et al. 2017).

Past work has focussed largely on understanding ECS in simple shear flows
in channels and pipes whose physics can be parametrised by a single dimensionless
variable: the Reynolds number Re. However, it is common in industrial, environmental
and astrophysical flows, for the fluid to be subject to additional (buoyancy) forces
due to gradients in density or temperature. In order to understand the role of ECS in
such flows, one must therefore catalogue the effect of introducing this extra physics
onto these states in homogeneous shear flows. Stratified flows require that at least
two additional parameters be accounted for; the bulk Richardson number Rib controls
the global level of stratification and the Prandtl number Pr sets the ratio of viscosity
to density diffusion. While identifying ECS within this augmented parameter space
presents a sizeable challenge, it is also an opportunity, since many physically relevant
regimes remain unexplored.

A number of prior studies have investigated ECS in the stably stratified setting,
where the bulk density gradient acts to suppress energetically unfavourable vertical
motions. Eaves & Caulfield (2015) considered the effect of weak stratification on a
particular state lying on the laminar–turbulent boundary in stratified plane Couette
flow, providing a scaling argument which predicted that the usual physical structure
of ECS (the SSP/VWI mechanism, see § 2.2 and Hall & Smith 1991; Waleffe 1997;
Hall & Sherwin 2010) is disrupted when Rib = O(Re−2). This was subsequently
confirmed asymptotically by both Deguchi (2017) and Olvera & Kerswell (2017).
The latter study conducted a substantial survey of the Re–Rib space for plane Couette
flows and Pr = 1, continuing solution branches for states at Rib > 0 that connect
known unstratified ECS pairs, which can then be tracked into Rib < 0 (unstable
stratification), to bifurcations of sheared Rayleigh–Bénard solutions. They noted
that a key effect of increasing stratification is to encourage ECS to localise in
one or more directions, conjecturing the existence of fully localised states when
Rib = O(Re0). Finally, Lucas et al. discovered ECS in stratified shear flow with a
sinusoidal body forcing (Kolmogorov flow). They observed that both equilibria and
turbulent DNS form shear and density layers originating from a sequence of linear
‘zig–zag’ instabilities in the (sinusoidal) base flow (Lucas, Caulfield & Kerswell 2017),
and converged periodic orbits to study how stratification affects mixing efficiency
(Lucas & Caulfield 2017).

Despite this recent progress in the understanding of stratified ECS, a connection
with realistic fully turbulent stratified shear flow remains unresolved (although Lucas,
Caulfield & Kerswell (2019) arguably see traces of underlying ECS in recent stratified
plane Couette DNS results). In part this is due to the Prandtl number; prior stratified
ECS studies have only dealt with unit Prandtl numbers (Eaves & Caulfield 2015;
Deguchi 2017; Lucas & Caulfield 2017; Lucas et al. 2017; Olvera & Kerswell 2017)
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and full DNS of stratified shear flow turbulence is restricted in the Prandtl numbers it
can access by issues of numerical resolution. However, Prandtl numbers observed in
nature span a substantial range of scales, from as low as 10−7 (inside stars) to up to
at least 1023 (Earth’s mantle). On a more terrestrial level, temperature in air exhibits
a Prandtl number around 0.7 (which is certainly attainable via DNS), whereas salt in
water has Pr≈ 700 (currently unattainable via DNS, save in the Rib→ 0 limit).

This latter case of salt water shear flow turbulence is of particular interest since
the structure of turbulence in the oceans governs the mass transport across its
depth (Munk 1966). As such, significant effort has been put into explaining the
mass transport via modelling of the mixing of the density field that the turbulence
causes (Linden 1979; Caulfield & Peltier 2003; Sutherland et al. 2019). Additionally,
it has been observed that stratified shear flow turbulence typically organises into
well-mixed constant density layers of large vertical extent separated by relatively thin
interfacial regions between each layer (Turner 1973; Gregg 1980). Layers may appear
spontaneously at turbulent Reynolds numbers and have been reproduced in a number
of singly diffusive experimental flows (Ruddick, McDougall & Turner 1989; Park,
Whitehead & Gnanadeskian 1994; Holford & Linden 1999; Oglethorpe, Caulfield &
Woods 2013; Thorpe 2016). (The doubly diffusive case is also important, but beyond
our scope.) The vertical extent of the well-mixed regions is linked to the flow speed
and the buoyancy frequency (Thorpe 2016), but the detailed structure of the layers
and the interfaces between them remains an open question, although the ‘sharpness’
of the interfaces appears to increase as the Prandtl number increases (Zhou et al.
2017b).

Low Prandtl number turbulence is less extensively studied, since fluids with high
thermal diffusivities, such as molten metals, are typically difficult to deal with
experimentally. However, turbulence arising from shear instabilities in low-Pr flows is
hypothesised to significantly contribute to the chemical mixing processes within stellar
radiation zones (Zahn 1992). Consequently, the value of examining (via analysis and
DNS) simple shear flows in this limit has been recognised (Prat & Lignières 2013;
Prat et al. 2016; Garaud, Gagnier & Verhoeven 2017).

Drawing motivation from the above examples and the recent interest in stratified
ECS, our plan here is to complement the stratified plane Couette flow study of Olvera
& Kerswell (2017), by probing the Rib–Pr space at fixed Reynolds number. We are
particularly interested here in the as-yet unexplored limits Pr� 1 and Pr� 1, which
are relevant for understanding astrophysical and geophysical flows respectively. The
key questions are: (a) how strong can the bulk stratification be for ECS still to exist;
and (b) what is the effect of Pr on the structure of solutions?

The outline of the paper is as follows. In § 2, we detail the physical system,
the numerical methods used and the necessary underlying theory (SSP/VWI) for
exact coherent states in shear flows. We then take the principal solution of Olvera
& Kerswell (2017) and perform parameter continuation in Rib for a wide range of
fixed Prandtl numbers (§ 3), allowing us to identify the range of global stratification
that states exist for, before splitting our analysis into the low-Pr (§ 3.1) and high-Pr
(§ 3.2) limits. In the low-Pr case, we identify and study an asymptotic solution branch
onto which all states collapse. For high-Pr states, we intriguingly observe the density
field splitting into a homogenised region with highly stratified boundary layers at
the walls, punctuated by jets of advected density. We conduct an analysis in § 3.2.1
of its structure in the limit of weak stratification, before proceeding in § 3.2.2 to
consider increasing Rib. As states leave the weakly stratified regime, their velocity
perturbations retreat from the walls, apparently inhibited by the presence of high
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stratification. Section 4 concludes with a final discussion of these results and presents
some preliminary observations of interfaces developing in the channel interior as Pr
increases at high Reynolds number.

2. Setting
2.1. Stratified plane Couette flow

The setting for this study is plane Couette flow, which is the flow of an incompressible
viscous fluid between two infinite parallel plates at y = ±h, moving with velocities
±Uex. The flow velocity is represented as u := uex + vey + wez (where ex, ey and ez

indicate the streamwise, wall-normal and spanwise directions respectively) and obeys
no-slip boundary conditions at the plates. Gravity is taken to act in the wall-normal
direction, g=−gey. Fixed, but differing densities ρ0 ∓∆ρ are imposed at the plates
y=±h, where ∆ρ� ρ0 so the Boussinesq approximation can be used. The governing
equations for the fluid velocity u, pressure p and density ρ are

∂u
∂t
+ u · ∇u = −∇p+

1
Re
∇

2u− Ribρey, (2.1a)

∇ · u = 0, (2.1b)
∂ρ

∂t
+ u · ∇ρ =

1
RePr
∇

2ρ, (2.1c)

where U, h and ∆ρ have been used to non-dimensionalise the system (so that the total
dimensional density is ρ0 +∆ρρ, for example). The dimensionless parameters Re, Pr
and Rib are the Reynolds, Prandtl and bulk Richardson numbers respectively, defined
as

Re :=
Uh
ν
, Pr :=

ν

κ
, Rib :=

∆ρ

ρ0

gh
U2
, (2.2a−c)

where ν is the kinematic viscosity of the fluid and κ is the diffusivity of some
density-affecting agent, such as temperature or salt content. The accompanying
boundary conditions are u = ±1, v = 0, w = 0, ρ = ∓1 at the walls y = ±1 which,
along with (2.1a)–(2.1c), admit a steady base flow with linear velocity and density
profiles:

u= yex, p= Riby2/2, ρ =−y. (2.3a−c)

2.2. Self-sustaining process/vortex–wave interaction mechanism
In this study, we analyse unstable equilibrium solutions to (2.1a)–(2.1c) that differ
from the basic laminar flow. Almost all such states in homogeneous shear flows where
the laminar base state is linearly stable arise physically due to the self-sustaining
process (SSP) mechanism proposed by Waleffe (1997), which was subsequently
recognised to be the finite-Re manifestation of the vortex–wave interaction (VWI)
theory (Hall & Smith 1991; Hall & Sherwin 2010). (The state proposed by Smith &
Bodonyi (1982) and recently found numerically by Deguchi & Walton (2013) is one
exception.)

The SSP/VWI process relies on three flow structures, rolls, streaks and waves,
sustaining each other against dissipation in a closed loop. Streamwise rolls advect the
underlying shear causing the streamwise velocity to vary in the spanwise direction,
thereby creating streaks, sustained patches of negative or positive streamwise velocity
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adjustments to the basic shear. If these streaks have large enough amplitude, they
are unstable to streamwise-varying waves, which, via the quadratic nonlinearity in
(2.1a), can then energise the original streamwise rolls to close the loop. This process
is covered in great detail elsewhere (Hall & Smith 1991; Hamilton, Kim & Waleffe
1995; Waleffe 1997; Hall & Sherwin 2010). At asymptotically high Reynolds number,
these states have the following structure:

u= ū(y, z)+ · · · + δ′(Re)[U(y, z)eikx
+ c.c.] + · · · , (2.4a)

v = Re−1v̄(y, z)+ · · · + δ′(Re)[V(y, z)eikx
+ c.c.] + · · · , (2.4b)

w= Re−1w̄(y, z)+ · · · + δ′(Re)[W(y, z)eikx
+ c.c.] + · · · , (2.4c)

p= Re−2p̄(y, z)+ · · · + δ′(Re)[P(y, z)eikx
+ c.c.] + · · · , (2.4d)

where δ′(Re)= Re−7/6, except in the O(Re−1/3)-thick critical layer (located where the
laminar base flow vanishes for equilibria), where it is Re−5/6 (Hall & Sherwin 2010).
Here,

q̄ :=
1
Lx

∫ Lx

0
q dx (2.5)

denotes the streamwise average of a given flow field q. In these expressions, (ū, 0, 0)
represents the streak-modified base shear, (0, v̄, w̄) the streamwise rolls and (U,V,W)
the amplitudes of the streamwise-varying wave field.

Although strictly valid only in the high-Re limit, VWI captures the physics of SSP
remarkably well, all the way down to transitionally turbulent Re (Hall & Sherwin
2010), which is the regime considered in the bulk of this study. The theory has been
extended in the stratified setting by Hall (2012), to incorporate plane Couette flows
with a buoyancy force aligned with the streamwise direction. Later, Deguchi (2017)
and Olvera & Kerswell (2017) considered the vortex–wave interaction for the situation
herein with buoyancy in the wall-normal direction, presenting numerical calculations
at varying Re and fixed Pr=1. In this study, we use the VWI scalings in (2.4a)–(2.4d)
to look at the effect of varying Pr on states at fixed Re.

2.3. Numerical methods
The numerical solutions presented below were obtained primarily using a bespoke
pseudo-spectral code that computes steady solutions of (2.1a)–(2.1c), in the box
(x, y, z)∈ [0, Lx] × [−1, 1] × [0, Lz], with periodic streamwise and spanwise directions
of lengths Lx and Lz respectively. The standard Newton–Raphson method was used to
converge equilibria, with lower-upper (LU) decomposition to invert the full discretised
system Jacobian.

The additional solutions in § 3.2.3 were obtained using a modified version of
the Channelflow 2.0 DNS software (Gibson et al. 2019) that employs a matrix-
free iterative solver to find invariant solutions via two standard methods: Stokes
preconditioning (Tuckerman 1989) and time integration (Viswanath 2007; Gibson
et al. 2008). The former method was used to the compute Pr. 10 solutions in § 3.2.3
and the latter was used at higher Pr, where the Stokes-preconditioned system suffers
the effects of poorer numerical conditioning more acutely (Tuckerman, Langham &
Willis 2019).

Provided enough computer memory is available, we find that our bespoke solver is
typically preferable to the standard iterative schemes. The reason is twofold: firstly,
there is no need to perform multiple expensive time integrations to compute states.
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(Though we note that the recent parallelisation of the Channelflow code, see Gibson
et al. (2019), has made time integration much more attractive, paving the way for fast
ECS computations with very high spatial resolutions.) Secondly, we restrict solutions
to a highly symmetric subspace, thereby reducing the size of the basis set needed
to represent the states at a given spatial resolution and substantially decreasing the
cost of an exact matrix inversion. See appendix A for technical details. Following the
previous work (Deguchi 2017; Olvera & Kerswell 2017), the symmetries imposed (in
addition to Lx- and Lz-periodicity) are: ‘shift-and-reflect’ S , rotation about the z-axis
Ω and spanwise reflection Z , defined by

S : [u, v,w, p, ρ](x, y, z) 7→ [u, v,−w, p, ρ](x+ Lx/2, y, Lz/2− z), (2.6a)
Ω : [u, v,w, p, ρ](x, y, z) 7→ [−u,−v,w, p,−ρ](−x,−y, z), (2.6b)

Z : [u, v,w, p, ρ](x, y, z) 7→ [u, v,−w, p, ρ](x, y,−z). (2.6c)

Below, streamwise-averaged quantities will often be plotted which, because of S ,
possess an additional spanwise reflection symmetry in the line z= π/4. This implies
that the cells [−1, 1] × [0, Lz/2] and [−1, 1] × [Lz/2, Lz] are identical and obey
reflection symmetries along the lines z=π/4 and z= 3π/4 respectively.

The majority of the results presented involve a single S-, Ω- and Z-symmetric
solution family described at the beginning of § 3 and were computed with the direct
solver in a domain with Lx = 2π and Lz = π, at Re = 400. Channelflow was later
employed to obtain the additional § 3.2.3 equilibria in a box with Lx = 2π/1.14,
Lz = 2π/2.5, Re = 400 and to cross-check a sample of solutions from the direct
solver. It is worth mentioning here, that in both cases, these results demanded very
high numerical resolutions. Indeed, the §§ 3.2 and 3.2.3 solutions at high Prandtl
number may represent some of the most highly resolved ECS converged to date.
Further details, including typical resolutions achieved are given in appendix A.

Both codes are coupled to a pseudo-arclength continuation algorithm that enables
straightforward computation of solution families parametrised by Re, Rib or Pr. This
allows us to track solution curves which, for the ECS studied herein, arise via saddle-
node bifurcations (Gibson, Halcrow & Cvitanović 2009) with distinct upper and lower
branches. (The lower branch lies closest to the laminar base state in any reasonable
metric, e.g. energy, dissipation, amplitude.) Since multiple equilibria may exist at the
same point in parameter space, we use the ‘surplus’ mean wall stress

τy :=
1

LxLz

∫ Lx

0

∫ Lz

0

∂u
∂y

∣∣∣∣
y=1

dx dz− 1, (2.7)

to distinguish between them (where τy = 0 for the base flow).

3. Results
This study focusses mainly on a lower-branch equilibrium solution originally

discovered by Itano & Generalis (2009), who computed it via homotopy from a
solution in an unstably stratified channel with stationary walls and Gibson et al.
(2009), who independently converged it from snapshots of a transitionally turbulent
flow simulation. We follow the nomenclature used by Gibson et al. (2009), whose
search identified 13 different equilibria and named them EQ1–EQ13. Our chosen
solution is EQ7 and its upper-branch counterpart EQ8. In the vertically stratified case
with Pr = 1, EQ7 was recently studied by Olvera & Kerswell (2017), who observed
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FIGURE 1. Spanwise cross-sections of the EQ7 state at Re = 400 without stratification.
The plots show the streamwise velocity perturbation û := u− y, plotted using 11 equally
spaced contour intervals between −0.22 (brown) and 0.22 (blue). The middle interval is
centred at zero (white). Overlaid are streamlines of the (v,w)-field, coloured with a linear
gradient from blue to red according to the magnitude of in-plane velocity, which lies in
the interval [0, 0.077). Three (y, z)-slices are given, at x = 0, x = π/2 and x = π (a–c),
covering half the computational domain.

that it lies on the so-called edge manifold separating laminar and turbulent dynamics
and is therefore likely to play a role in organising the transition process. In § 3.2.3
we briefly address other equilibrium solutions.

Figure 1 shows yz-contours of the perturbation to the laminar base flow û := u− y,
for EQ7 with no imposed stratification. Also shown are (v, w)-streamlines, coloured
from blue to red according to the speed of the flow in the plane. The leftmost panel
is a slice through x= 0. It contains two rows of four streaks, separated by the centre
line y= 0. The in-plane streamlines provide insight into the formation of the streaks.
For example, the negative (brown) streak centred at approximately (z, y)= (π/4,−0.5)
arises due to uplift of negative streamwise velocity from the laminar base flow near
the lower wall. Likewise, the other streaks emerge at regions of inflow and outflow
from the boundaries, with the strongest in-plane advection accounting for the largest
streaks, centred along the line z = 0 ≡ π. In the middle panel at x = π/2, there
is transport between the upper and lower half-channels due to vortices centred at
(π/4, 0) and (3π/4, 0) and some of the streaks have merged into larger structures.
The final panel at x=π= Lx/2 is dictated by the imposed symmetries (specifically S
and Z), which constrain it to be equal to an Lz/2-spanwise shift of the x = 0 slice.
Likewise, the remainder of the computational domain, π< x 6 2π, is determined this
way. Slices at intermediate streamwise coordinates gradually interpolate between the
panels shown and all the states considered herein possess either a similar, or lower
level of streamwise variation. Therefore, in the following we only use slices at x= 0
and π/2 to visualise states or, more commonly take a streamwise average.

To examine how EQ7 (and where possible, EQ8) is affected by varying the Prandtl
number, a pseudo-arclength continuation algorithm was used to converge states at fixed
Re = 400 and varying Pr and Rib. Starting with initial parameters Pr = 1, Rib = 0,
continuation was first performed on Pr in both directions to obtain solutions with a
wide spread of Prandtl numbers ranging from Pr = 10−4 to Pr = 500. The character
of these states depends strongly on whether the Prandtl number is significantly less
or greater than unity and we divide our study along these lines.

Figure 2 shows solution branches of the EQ7 and EQ8 states, obtained by starting
with the states at Pr = 10−4 to 200 and continuing them in Rib. Part (a) plots the
continuation curves for Pr 6 1. All five curves are similar, possessing the familiar
shape of a saddle-node bifurcation. Starting from Rib = 0, both lower and upper
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FIGURE 2. Parameter continuation curves for the EQ7 (lower)/EQ8 (upper) states in terms
of the bulk Richardson number and mean wall stress τy for different Prandtl numbers.
(a) Low-Pr states: Pr = 100 (purple solid), Pr = 10−1 (blue dashed), Pr = 10−2 (green
dotted), Pr = 10−3 (red dash-dot) and Pr = 10−4 (orange solid). The bifurcation point of
the Pr= 10−4 curve is at Rib ≈ 97. (b) Higher-Pr states: Pr= 1 (purple solid), 2 (yellow
dashed), 7 (navy dotted), 20 (cyan dash-dot), 40 (magenta solid), 70 (teal dashed), 120
(brown dotted), 200 (olive dash-dot).

branches enter an initial regime (present, but not shown for Pr= 1) where their mean
wall stress is unaffected by the presence of global stratification. This is followed by
a transition between solution branches where the stress changes comparatively rapidly.
The range of admissible bulk Richardson numbers increases dramatically as Pr
decreases, suggesting that in the limit of low Pr, ECS are insensitive to stratification
and may persist up to arbitrarily high Rib as Pr is reduced.

Figure 2(b) shows the Pr > 1 continuation curves. The Pr= 1, 2 and 7 curves have
essentially the same shape as the low-Pr curves. At higher Pr, the solution branches
follow the opposite trend to the low-Pr case, reaching progressively higher Rib as
the Prandtl number increases. Another trend to note is that the upper branches reach
increasingly higher mean wall stresses than EQ8 itself. The Pr > 40 curves required
high numerical resolution to be continued reliably, for reasons which shall become
clear in § 3.2. The three highest Pr curves, which terminate before reaching EQ8,
were continued as far as available computational resources permitted, the final two
not reaching their saddle-node bifurcations. Nevertheless, the Pr = 70, 120 and 200
curves persist up to at least Rib = 0.21, 0.26 and 0.27 respectively. This trend along
the lower branch suggests that EQ7 might admit arbitrarily large global stratification in
the high-Pr limit. We now analyse the solutions of figure 2 in the two defined limits.

3.1. Low Prandtl number (Pr� 1)
At low Pr, density transport in the fluid is diffusion dominated and as a result ρ
should not develop small scales or deviate far from the basic state. To reflect at least
the latter, we consider the expansion ρ(x, y, z)=−y+ ερ1(x, y, z)+ · · · , where ε is
a small parameter to be determined, with ρ1=O(Pr0). This is certainly true at either
end of the continuation curves in figure 2(a) where Rib→ 0, but will be found to be
true over the whole curve. Working with the perturbations to the laminar base state
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û := u − y, v̂ := v, ŵ := w, p̂ := p − Riby2/2 and ρ̂ := ρ + y = ερ1 + · · · , the steady
form of (2.1c) becomes

ε(y+ û)
∂ρ1

∂x
+ v̂

(
−1+ ε

∂ρ1

∂y

)
+ εŵ

∂ρ1

∂z
=

ε

RePr
∇

2ρ1, (3.1)

after neglecting O(ε2) terms. We now determine the leading-order velocity fields in
(3.1) from the asymptotic VWI structure in (2.4a)–(2.4d). The cross-stream velocity v̂
is largest for the wave field in the critical layer, but because of the enhanced gradients
of O(Re1/3) across this region, this flow actually drives a smaller density field of
O(εRe−1/2) than the streamwise rolls outside the critical layer, which drive an O(ε)
density field. Therefore, the leading-order physics is away from the critical layer, so
that v̂ = v̄(y, z)/Re and ŵ= w̄(y, z)/Re and (3.1) can be rewritten as

v̄

(
−1+ ε

∂ρ1

∂y

)
+ εw̄

∂ρ1

∂z
=
ε

Pr
∇

2ρ1, (3.2)

where, because the driving term is streamwise independent, ρ1 = ρ1(y, z) and the
streamwise advection term drops. This then leads to ε = Pr � 1 and the leading
equation

−v̄ =∇2ρ1. (3.3)

Inverting this relationship, the leading density perturbation ρ̂ = −RePr∆−1v̂ (where
∆ :=∇2) can then be eliminated from the Navier–Stokes equations to leave the low-Pr
equations (or low-Péclet number equations, see Lignières 1999),

(y+ û)ûx + v̂(1+ ûy)+ ŵûz + p̂x = Re−1
∇

2û, (3.4a)
(y+ û)v̂x + v̂v̂y + ŵv̂z + p̂y = Re−1

[∇
2
+ RibPrRe2∆−1

]v̂, (3.4b)
(y+ û)ŵx + v̂ŵy + ŵŵz + p̂z = Re−1

∇
2ŵ, (3.4c)

ûx + v̂y + ŵz = 0. (3.4d)

This makes it clear that solutions can only depend on the Richardson number Rib
and the Prandtl number Pr in the combination RibPr. Furthermore, the cross-stream
momentum equation, equation (3.4b), also implies that there exists a region of weakly
stratified (small Rib) flow where the Navier–Stokes and the density equations remain
effectively uncoupled until Rib =O(Pr−1Re−2). These are the flat regions of both the
upper and lower solution branches in figure 2(a), where increasing Rib has no effect
on τy. As Pr→ 0, these regions extend to Rib ∼O(1/Pr).

This scaling result, Rib = O(Pr−1Re−2), equivalent to the Rayleigh number
Ra := −RibPrRe2 being O(1), was first observed numerically in the Pr = 1 case
by Eaves & Caulfield (2015) and then in the analysis of Deguchi (2017) and
Olvera & Kerswell (2017). There, at least for Pr = O(1), once the stratification
strength increases beyond this scaling, new dynamic balances emerge (e.g. ‘regime 2’
in Olvera & Kerswell (2017), ultimately followed by the ‘unit Reynolds number
Navier–Stokes’ (UNS) regime of Deguchi (2017) or ‘regime 3’ of Olvera & Kerswell
(2017)). Here however, in the Pr→ 0 limit this is not the case. In figure 3(a), we
demonstrate that the O(Pr) scaling of the density perturbation persists along the
whole length of the solution curves. The leftmost figure verifies the situation for EQ7
at Rib = 0 (where the stratification is still present but the buoyancy force is switched
off), plotting Pr−1ρ̂ as a function of y for x, z= 0. These slices, taken from solutions
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FIGURE 3. Verification of the O(Pr) scalings predicted for low Prandtl number ECS. In
all plots the Prandtl numbers are Pr= 10−1 (blue dashed), Pr= 10−2 (green circles) Pr=
10−3 (red stars) and Pr=10−4 (orange solid). Across each column PrRib is fixed at a given
point along the solution curves plotted in figure 4(a). From left to right: PrRib= 0, 0.005
(lower branch), 0.097 (saddle-node) and 0.005 (upper branch). (a) Cross-channel profiles
of ρ̂, for x, z= 0, rescaled by Pr−1. (b) Absolute maximum values along streamwise and
spanwise directions of R := v̂ +∇2ρ̂/(RePr), rescaled by Pr−1.

at Pr = 10−1, 10−2, 10−3 and 10−4, collapse neatly onto an asymptotic profile for
Pr & 10−2. The subsequent plots confirm that the same holds for Rib > 0 solutions
using the same Prandtl numbers, at various points along the solution branches, now
keeping the size of the buoyancy forcing constant. This property is not specific to
our choice of x, z = 0. We have checked that the scalings are observed for profiles
with x= 0, π/4, π/2, 3π/4 and z= 0, π/2.

In figure 3(b), we plot maxx,z |v̂+∇
2ρ̂/(RePr)| at the same points along the solution

curves as in figure 3(a). These curves collapse upon rescaling by Pr−1, confirming
that (3.3) is obeyed up to an O(ε) error term across the whole domain, as implied
by (3.2). The conclusion is then that solutions should be self-similar in the limit of
low Pr along the whole solution curve. Figure 4(a) replots the parameter continuation
curves in figure 2(a) against RibPr, confirming the collapse onto a single asymptotic
branch. In particular, this implies that the maximum bulk Richardson number for these
solutions is Rim

b ≈ 0.01/Pr at Re= 400 as Pr→ 0.
In figure 4(b) we plot contour slices through the yz-plane along the Pr= 10−4 curve.

The contour plots are organised in numbered side-by-side pairs, showing streamwise
averages of û on the left and ρ̂ on the right. Along the lower branch (plots 1–3)
we see that the streaks centred at z= π/4 and 3π/4 shrink as Rib increases. At the
saddle node (plot 4) they have disappeared completely and the mean û field becomes
separated into negative (upper) and positive (lower) halves. This can be traced to the
v̂ field, which feeds these streaks by advecting the base shear; its streamwise average
is plotted in figure 5. (For reference, the corresponding roll streamlines are included
in figure 6.) As the state transitions from the less energetic EQ7 state toward the more
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FIGURE 4. Self-similar solution branches of EQ7 (lower)/EQ8 (upper) in the Pr→ 0 limit.
(a) Parameter continuation curves in bulk Richardson number as a function of mean wall
stress. The horizontal axis has been rescaled by Pr causing the curves to collapse. The
Prandtl numbers match those in figure 3. (b) Pairs of contour plots along the Pr = 10−4

branch (orange solid), numbered according to the labelled points in part (a). Left-hand
plots show the streamwise average of û, shaded between −0.8 (brown) and 0.8 (blue).
Right-hand plots show the streamwise average of the ρ̂ field, shaded between −2.3 ×
10−4 (red) and 2.3 × 10−4 (blue). In all plots, the middle contour interval is white and
centred at zero; black contour lines are overlaid to show the structure of solutions, using
11 equally spaced intervals, between ± maxy,z |ū − y| or ± maxy,z |ρ̄| for each field, as
appropriate. Dashed lines are negative contours and solid lines are positive. Anti-clockwise
from bottom left: PrRib = 0 (EQ7, point 1), 0.005 (point 2), 0.097 (saddle-node, point 3),
0.005 (point 4), 0 (EQ8, point 5).

energetic EQ8, the overall strength of the v̂ field increases (as do the magnitudes of û
and ρ̂, which are driven by v̂). However, the increased buoyancy force from point 1
to point 3 penalises upward motion wherever ρ̂ > 0 and downward motion where
ρ̂ < 0. Consequently, there is a redistribution of the v̂ field along the lower branch,
diminishing in regions where the signs of v̂ and ρ̂ match (outflow from the walls) and
concentrating where they differ (inflow to the walls). This leads to the (inflow) streaks
centred at z= 0≡π and π/2 becoming increasingly dominant. This division persists
along much of the upper branch, connecting through to the EQ8 solution where the
unevenly distributed wall-normal velocity field and corresponding streak structure exist
in the unstratified setting.

The qualitative effect of these trends along the solution branches on the streamwise
transport is shown in figure 6, which shows the ū field for EQ7 at Rib = 0 (a), at
the saddle node (b) and EQ8 at Rib = 0 (c). This shows that by the end of the lower
branch, û is large enough to cancel the base laminar shear flow solution in some
regions (i.e. u = y + û = 0). The overlaid streamlines highlight the underlying roll
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FIGURE 5. Contour plots of v̄(y, z) along the Pr= 10−4 solution branch, at the numbered
points indicated in figure 4(a): from (a) to (c), the plots correspond to the first (EQ7),
third (saddle-node) and fifth (EQ8) solution pairs in figure 4(b). The contours are shaded
between −0.19 (pink) and 0.19 (cyan); black contour lines are overlaid using 11 equally
spaced intervals, between ± maxy,z |v̄|, which equals 0.014, 0.076 and 0.19 respectively.
Dashed contours indicate v̄ < 0, solid contours v̄ > 0.
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z
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1 3 5

FIGURE 6. Contour plots of ū(y, z) for Pr = 10−4 solutions at the numbered points
indicated on the solid orange figure 4(a) curve. From (a) to (c), the plots correspond to the
first (EQ7), third (saddle-node) and fifth (EQ8) plotted solutions in figure 4(b). Overlaid
are (v̄, w̄)-streamlines, coloured with a linear gradient from blue to black to red, according
to |(v̄, w̄)|, which lies in the interval [0, 0.19).

advection, its increasing significance and the uneven distribution of inflow versus
outflow to the walls. However, it is important to note that while streamwise-averaged
quantities indicate overall trends, the streamwise dependence observed in figure 1 is
present and persists along the solution curves. Specifically, it is not the case that u
is homogenised throughout the channel interior along the upper branch, even though
this is true in a streamwise-averaged sense.

3.2. High Prandtl number (Pr� 1)
Just as in the case of low Prandtl number, solution curves calculated with large
Pr access higher and higher bulk Richardson numbers as Pr increases. However,
the mechanism which allows this is quite different, since ρ̂ is no longer a weak
perturbation of the uniform laminar density profile. In figure 7 we plot contour slices
through the yz-plane at x = 0 (a–c) and π/2 (d–f ) of the full density field ρ for
Pr = 1, 5 and 20. The bulk Richardson number is 0.01 and the velocity field is
near that of the (unstratified) lower-branch EQ7 solution. Starting at Pr= 1 (a,d), the
density field for x = 0 is a spanwise-wavy modulation of the laminar base profile.
Centred at z = 0, there is a well-mixed region, where ρ ≈ 0, sandwiched between
two regions of strong spanwise inflow along the centreline y = 0. In the π/2 slice,
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FIGURE 7. Contour plots of ρ(x, y, z), through x = 0 (a–c) and x = π/2 (d–f ) of the
EQ7 state at Pr= 1, 5 and 20 (left to right) and Rib = 0.01. Contours are equally spaced
from −1 (red) to 1 (blue) with a width of 2/11, ensuring that the middle band (white)
is centred at zero. Overlaid are (v, w)-streamlines, coloured with a linear gradient from
white to black according to the magnitude of (v,w) across all six plots, which lies in the
interval [0, 0.154). The coloured dashed lines through z= 0 and π/4 indicate the locations
of the contour slices plotted in figure 8.

in-plane advection is dominated by vortices centred at (z, y)= (π/4, 0) and (3π/4, 0),
inducing a global spanwise wave. At Pr = 5 (b,e) the spanwise waviness in both x
slices has become much more exaggerated, with peaks of extremal density advected
towards y= 0 and corresponding troughs sent out towards the walls. In between these
features, regions of approximately zero density are now well established. By Pr= 20
(c, f ), the spanwise-wavy structures have become spanwise localised ‘finger’-like
incursions into an otherwise uniformly dense and neutrally buoyant channel interior.
Moreover, the regions in the vicinity of the walls have become highly stratified.

Figure 8 shows contour slices in the xy-plane using the same solutions as figure 7.
In this case, the Prandtl number increases moving down each column. Panels (a,c,e)
show a slice through z = 0; we see that the interior in this region is already
homogenised by Pr = 5 across the full length of the channel. Panels (b,d, f ) show a
slice through z = π/4. Even in this region, by Pr = 20, the interior appears to be
homogenising, despite the aforementioned inflow of density from the walls.

At the channel walls, the homogenising density profile must connect to ρ(x,±1, z)=
∓1. Consequently, as the well-mixed interior region expands, we observe the profile at
the walls steepening, developing into separate boundary layers. This is demonstrated
in figure 9(a), in which we plot the streamwise-averaged density ρ̄ through the
line z = π/2. At Pr = 1, ρ̄ has an almost linear profile. By Pr = 20, the profile is
essentially flat in the interior before becoming highly stratified at the walls. These
profiles are reminiscent of turbulent mean temperature profiles of turbulent passively
transported scalars simulated by Papavassiliou & Hanratty (1997), of fully stratified
turbulence simulations (Zhou, Taylor & Caulfield 2017a) and of strongly stratified
layers observed in geophysical flows (Turner 1973). See § 4 for further discussion.

Simultaneously, the finger-like incursions, or ‘density fingers’, seen in figure 7
start to diminish as the channel becomes increasingly well mixed. Figure 9(b) shows
horizontal slices of ρ̄ at y=−0.5. We see that these structures progressively narrow
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FIGURE 8. Contour slices through xy-planes, of ρ(x, y, z), at z = 0 (a,c,e) and z = π/4
(b,d, f ) of the EQ7 state at Pr= 1 (a,b), 5 (c,d) and 20 (e, f ) and Rib= 0.01. The solutions
match those depicted in figure 7, as do the contour intervals. The coloured dashed lines
at x= 0 and π/2 mark the locations of the contour slices depicted in figure 7.
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FIGURE 9. Localisation of stratification as Pr increases. The data are from the Rib= 0.01
solutions depicted in the contour plots of figures 7 and 8. The Prandtl numbers are: Pr= 1
(purple dotted), Pr= 5 (navy dashed), Pr= 20 (cyan solid). (a) Vertical profiles of ρ̄(y, z)
for fixed z=π/2, showing the development of boundary layers at the walls. (b) Horizontal
slices of ρ̄(y, z) for fixed y = −0.5, showing the shrinking width and magnitude of the
regions of extremal density uplifted from the boundaries.

as Pr increases. Moreover, from Pr = 5 to Pr = 20 their ‘height’ (maxz ρ̄) and
‘prominence’ (maxz ρ̄ −minz ρ̄) diminishes. These observations are consistent with the
emerging homogenisation of the channel interior region through the plane z = π/4,
seen in figure 8.
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FIGURE 10. Contour plots of ρ̄PS(y, z) for increasing Pr in the channel cross-section.
From (a) to (c) Pr = 1, Pr = 5 and Pr = 20 are shown. The contour intervals match
those in figure 7. Overlaid on the leftmost plot are streamlines of the (v̄, w̄)-field (which
is the same for all three solutions), coloured with a linear gradient from white to black
according to the magnitude of (v̄, w̄), which lies in the interval [0, 0.02).

It is the diminishing length scales described above that make obtaining solutions at
high Prandtl number numerically expensive, ultimately forcing us to cut short some of
the continuation curves in figure 2, since states demand increasingly high wall-normal
and (to a lesser extent) spanwise resolution as Pr increases. Accurately converging
states in situations where structures become spatially localised is an important future
challenge (see also Olvera & Kerswell 2017). In the following section we obtain
higher Prandtl numbers by moving to a regime where we need only solve for the
density field (see appendix A).

3.2.1. Passive scalar limit (Rib→ 0)
The passive scalar limit, Rib → 0, offers key insight into these high-Pr solutions,

since in this regime the momentum equation (2.1a) decouples from the density
field. We hereafter adopt the notation ρPS for the density fields in this limit. The
uncoupling of momentum from density allows the stratification equation (2.1c) to be
studied independently from the velocity field, which is just that of the unstratified
equilibrium state. Numerically, this limit can be accessed simply by setting Rib = 0
in the non-dimensionalised system, equations (2.1a)–(2.1c). Figure 10 shows the
streamwise-averaged passive scalar density field, ρ̄PS, for EQ7 at three successively
increasing Pr. This reveals an underlying structure of stacked rolls and their advective
influence on the density field. Much of the character of the density fields described
above persists in the Rib= 0 case. In particular, the spanwise-localised fingers remain,
as does the stratified boundary layer, which rapidly diminishes with increasing Pr,
leaving a largely homogeneous interior.

The increasing concentration of ρPS at the boundaries indicates that high-Pr
solutions must involve a separation of length scales. Considering a boundary layer of
thickness ε at the bottom boundary y = −1, we define a scaled vertical coordinate
Y := (y + 1)/ε and Taylor expand the leading order (VWI) velocity field across the
layer

u(x, y, z)=−1+ εu1(x, z)Y + · · · , (3.5a)
v(x, y, z)= ε2Re−1v2(x, z)Y2

+ · · · , (3.5b)
w(x, y, z)= εRe−1w1(x, z)Y + · · · , (3.5c)

using the boundary conditions (u + 1 = v = w = 0 at Y = 0) and incompressibility
(∂v/∂y = 0 at Y = 0). Since the boundaries are well away from the critical layer at
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FIGURE 11. Verification of the boundary layer thickness ε=Pr−1/3. Streamwise-averaged
density profiles through z = π/2 are shown, plotted near the wall using boundary layer
coordinates Y :=Pr1/3(y+ 1). The data are from EQ7 in the passive scalar limit, at Pr= 5
(navy dashed), Pr = 20 (turquoise dash–dot), Pr = 100 (brown crosses), Pr = 300 (olive
circles) and Pr = 500 (pink solid). The three highest Prandtl number profiles collapse
almost exactly in the rescaled wall-normal coordinates.

y= 0, the flow fields (as Re→∞) have the form

u1(x, z)= ū1(z)+ Re−7/6U1(x, z)+ · · · , (3.6a)
v2(x, z)= v̄2(z)+ Re−1/6V2(x, z)+ · · · , (3.6b)
w1(x, z)= w̄1(z)+ Re−1/6W1(x, z)+ · · · . (3.6c)

It is straightforward to argue that ρPS must be streamwise invariant at leading order
(see appendix B) so that an appropriate expansion for the density field inside the
boundary layer is

ρPS(x, Y, z)= ρ0(Y, z)+ ερ1(x, Y, z)+ · · · , (3.7)

where the functions ρ0 and ρ1 are O(ε0). On substituting (3.5a)–(3.5c) into (2.1c),
along with the asymptotic expansion for the density field and dropping all O(ε2) terms,
we obtain the following leading-order stratification equation:

− εRe
∂ρ1

∂x
+ εv2(x, z)Y2 ∂ρ0

∂Y
+ εw1(x, z)Y

∂ρ0

∂z
=

1
ε2Pr

∂2ρ0

∂Y2
. (3.8)

Balancing advection with diffusion then requires

ε = Pr−1/3, (3.9)

which is confirmed in figure 11 by plotting ρ̄PS(Y, z) through the line z=π/2 (other
values show similar collapse as long as they are not within the finger-like structures).
In these coordinates, the density profiles collapse onto each other almost exactly at
high Pr (&100).
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FIGURE 12. (a) Plot of ρ̄PS(Y, z) in the half-channel 06Y 6 1/ε, for Pr= 300, contoured
with intervals matching those in figure 7. The streamlines show the streamwise-averaged
fluid motion in the (Y, z)-plane and are coloured from blue (inflow toward the wall), to
white (v̄ = 0), to red (outflow from the wall) according to the value of v̄. Regions of
outflow are shaded grey. (b) Asymptotic density profile ρ0(Y, z∗) (3.12), (black dotted,
computed with v̄2 = −36.2 to 3 s.f.), plotted alongside the streamwise-averaged density
ρ̄PS(Y, z∗) at Pr= 300, for the inflow stagnation point at z∗ =π/2.

Equation (3.8) splits into a streamwise-independent part which defines ρ0 and a
streamwise-dependent part which defines ρ1 given ρ0 as follows:

v̄2(z)Y2 ∂ρ0

∂Y
+ w̄1(z)Y

∂ρ0

∂z
=
∂2ρ0

∂Y2
, (3.10a)

Re−7/6V2(x, z)Y2 ∂ρ0

∂Y
+ Re−7/6W1(x, z)Y

∂ρ0

∂z
=
∂ρ1

∂x
. (3.10b)

Using incompressibility, w̄′1(z) = −2v̄2(z), the leading balance, equation (3.10a),
becomes

∂2ρ0

∂Y2
+

1
2

w̄′1(z)Y
2 ∂ρ0

∂Y
= w̄1(z)Y

∂ρ0

∂z
, (3.11)

with the boundary conditions ρ0(0, z)= 1 and ρ0(Y, z)→ 0 as Y→∞ to match onto
a homogenised interior.

At stagnation points z∗ where the spanwise velocity is zero, the right-hand side of
(3.11) vanishes and it reduces to an ordinary differential equation for ρ0. A solution
of this, which decays as it leaves the boundary layer (Y→∞), is

ρ0(Y, z∗)= 1−
(9|v̄2|)

1/3

Γ (1/3)

∫ Y

0
exp

(
1
3
v̄2s3

)
ds, (3.12)

and only exists if v̄2 < 0, i.e. if there is inflow towards the y=−1 wall. Figure 12(a)
shows a contour plot of ρ̄PS(Y, z) at high Prandtl number, Pr = 300. The density
boundary layer is approximately uniform in the spanwise direction where there
is inflow into the boundary layer and the asymptotic solution (3.12) matches the
numerical solution at the inflow stagnation points: see figure 12(b).

Significantly, there is no equivalent solution of the form in (3.12), for an ‘outflow’
stagnation point. This is because these points, z = π/4 and 3π/4, are the focus of
boundary layer eruptions (see figure 12a), where the layer scaling breaks down. These
eruptions are the Rib→ 0 manifestation of the fingers seen in figure 9 for Rib = 0.01.
The situation is clearest at high Re where the flow and density field are dominantly
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streamwise independent. Defining a length scale δ for the spanwise width of the
fingers, the velocity fields may be Taylor expanded about the outflow stagnation
points (y, z) = (−1, z∗) as follows: v̄(Y, Z) = ε2Re−1AY2

+ O(ε2δ, ε3), and (using
incompressibility) w̄(Y, Z)=−2εδRe−1AYZ + O(ε2δ, εδ2), where Z := (z− z∗)/δ and
A is an O(Pr0) constant. Then, instead of (3.8), we have

εAY2 ∂ρ0

∂Y
− 2εAYZ

∂ρ0

∂Z
=

1
Pr

(
1
ε2

∂2ρ0

∂Y2
+

1
δ2

∂2ρ0

∂Z2

)
. (3.13)

As the flow in the boundary layer approaches an outflow stagnation point, it enters
a corner region where the cross-stream diffusion becomes subdominant. (See Childress
(1979) and Childress & Gilbert (1995), pp. 135–136, for a discussion of this for
an equivalent magnetic field problem, although note that there the velocity boundary
conditions used there are stress-free rather than no-slip conditions here.) Therefore, the
density field is simply advected by the flow and the leading balance is

εAY2 ∂ρ0

∂Y
− 2εAYZ

∂ρ0

∂Z
= 0. (3.14)

This has a solution of the form ρ0= ρ0(ψ) where ψ :=A(εY)2δZ is a streamfunction.
Consider a streamline starting in the boundary layer where (ε, δ)= (Pr−1/3, 1). Then

ψ =O(Pr−2/3), requiring ε and δ to satisfy the condition

ε2δ = Pr−2/3 (3.15)

as the streamline negotiates the corner. In the corner itself, ε= δ (this is the scaling of
the closest point of approach of the streamline to the stagnation point), so the corner
is defined by the scalings

ε = δ = Pr−2/9. (3.16)

As the streamline leaves the corner region (with δ decreasing) to enter the outer
finger region, spanwise diffusion grows to balance advection, so that

εAY2 ∂ρ0

∂Y
− 2εAYZ

∂ρ0

∂Z
=

1
Prδ2

∂2ρ0

∂Z2
, (3.17)

which requires
εδ2
= Pr−1. (3.18)

Combining the conditions (3.15) and (3.18) leads to outer finger scalings of

ε = Pr−1/9, δ = Pr−4/9. (3.19a,b)

Significantly, this predicts that the extent of the fingers’ intrusion into the interior will
ultimately vanish (albeit slowly) as Pr→∞ in this Rib → 0 limit, consistent with
the contour plots in figure 13. Unfortunately, the Prandtl numbers reached here are
not large enough to confirm this small exponent. What is possible is to examine the
lower finger profile or corner region. Figure 14(a) shows that streamwise-averaged
density profiles through the centreline of the fingers can be collapsed by a rescaled
wall-normal coordinate Yf := (y+ 1)Pr2/9, i.e. the lower parts (corner regions) of the
fingers scale like Pr−2/9 in y. Figure 14(b) plots spanwise density profiles of ρ̄PS,
across the finger at z = π/4, at three fixed Yf = 0.25, 0.5 and 1. On rescaling the
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FIGURE 13. Density fingers diminishing with increasing Pr in the passive scalar limit.
Plotted are contours of ρ̄PS(y, z) at (from a to c) Pr = 20, 100 and 400. The contour
intervals match those in figure 7. We only plot the bottom left quadrant of the full channel
– the other parts are dictated by the solution symmetries. The dashed grey lines indicate
the approximate height of the finger structures, at y=−0.07, −0.27 and −0.4 respectively.

0 1 2 -1 0
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FIGURE 14. Scaling of density fingers at high Pr. Both parts plot slices through the same
set of solutions in the passive scalar limit, with Prandtl numbers Pr= 100 (brown dashed),
Pr= 200 (olive dash–dot), Pr= 300 (dark green dotted) and Pr= 400 (magenta solid). (a)
Streamwise-averaged density ρ̄PS through the finger-like structure at z=π/4, as a function
of the rescaled wall-normal coordinate Yf := (y+ 1)Pr2/9. (b) Streamwise-averaged density
profiles in the spanwise coordinate, rescaled in the vicinity of the finger structure at z=
π/4 by Pr2/9. For each Prandtl number, three slices are plotted at fixed Yf = 0.25, 0.5 and
1 as indicated.

spanwise coordinate by Pr2/9, the subsequent profiles, ranging from Pr= 100 to 400,
collapse well.

The important findings from this passive scalar limit are: (a) a rationale for an
O(Pr−1/3) density boundary layer being formed; (b) the existence of boundary layer
eruptions, producing fingers, centred at outflow stagnation points in the boundary
layer; and (c) the fact that these eruptions are actually secondary (they diminish with
increasing Pr) to the primary result that the density gets more and more confined
to boundary layers, leaving an homogenised interior as Pr→∞. We now examine
whether this picture holds more generally for Rib > 0 equilibria.

3.2.2. The case Rib > 0
We now look at how the lower-branch solutions behave as Rib is increased from

zero. In figure 15(a), we replot the lower-branch data from figure 2(b) on semi-log
axes, for low Rib and Pr> 40 (where the boundary layer and finger structures are well
developed). As in both the low Pr and Pr=O(1) (Deguchi 2017; Olvera & Kerswell
2017) cases, there is necessarily a passive scalar regime where the momentum and
stratification equations ((2.1a) and (2.1c)) remain effectively uncoupled. This is the
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FIGURE 15. Sections of the high-Pr solution curves from figure 2(b) along the lower
branch. Shown are Pr = 40 (magenta solid), 70 (teal dashed), 120 (brown dotted), 200
(olive dash–dot). (a) Low Rib portion with logarithmic horizontal axis. (b) The lower
branch plotted with the horizontal axis rescaled by Pr−5/9. In both parts, the numerals
I–IV indicate the locations of solutions plotted below in figures 16–18.

approximately horizontal part of the solution branch, from Rib = 0 to Rib ≈ 10−3.
The fact that the upper limit of this regime does not display any dependence on Pr
contrasts with the scaling of Rib=O(Pr−1Re−2) for Pr .O(1) (Deguchi 2017; Olvera
& Kerswell 2017, and § 3.1) in which Rib scales inversely with Pr. The difference
here when Pr� 1 is that the density perturbation ρ̂ has to be O(1) to homogenise
the interior. The buoyancy force is then O(Rib) and the streamwise rolls first feel its
influence when Rib=O(Re−2). It is worth noting that this argument relies on the fact
that the interior is only partly homogenised, otherwise ρ̂ = y would precisely cancel
out the linear base profile and then the buoyancy force can be exactly balanced by
the pressure.

Just beyond Rib = 10−3 in figure 15(a), the lower-branch solutions all experience a
small drop in stress at the walls. The reason for this is encapsulated in figure 16(a),
where streamwise-averaged density slices through the yz-plane are plotted for the
Pr= 200 density field at Rib= 1.2× 10−3 (point I, figure 15) and 1.2× 10−2 (point II,
figure 15), with streamwise velocity contours overlaid. Between these two bulk
Richardson numbers, the four streaks centred at z=π/4 and 3π/4 noticeably weaken
and recede from the walls. Increasing Rib penalises the upward motion of dense fluid
and likewise the downward motion of less-dense fluid. Consequently, we observe in
figure 16(b), that the magnitude of the v̄ field drops significantly for 0.3. |y|6 1, in
the vicinity of the density fingers, leading to the weakening of the streaks there. This
is highlighted further in figure 16(c), where we plot streamwise-averaged slices of û
through z = π/4 and see that it drops along the approximate length of the fingers.
The density fingers also retreat as Rib increases, since they are no longer vertically
advected as strongly. The streaks centred at z= 0≡π and π/2 are largely unaffected,
since they only experience significant buoyancy forces in the thin boundary layer.
Therefore, there is a small reduction in mean wall stress in this regime, caused by
the streamwise flow receding from the wall in the finger regions.

Following the mean stress drop, there is a marked and sustained rise in τy as Rib

increases further and states enter a new regime, which covers most of the lower
branch. Working on the basis that it is the stratification invading the interior which
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FIGURE 16. Plots demonstrating the stress drop in the high-Pr lower branch states.
(a) Comparison of EQ7 at Pr = 200 and Rib = 1.2 × 10−3 (left) and 1.2 × 10−2 (right),
located at points I and II on figure 15(a) respectively. The plots show ρ̄ contours in
the yz-planes, plotted from red (ρ̄ < 0) to blue (ρ̄ > 0), using intervals matching those
in figure 7. Overlaid in black lines are 10 isolines of the streamwise-averaged û field,
separated by equally spaced intervals between ±0.2. Dashed lines represent ū− y<0, solid
lines ū− y> 0. (b) Profiles of v̄ for the solutions depicted in part (a), through z= π/4.
(c) Corresponding profiles of ū− y, through z= π/4. In (b,c), solid orange lines are the
Rib = 1.2× 10−3 state (I) and dashed blue lines are the Rib = 1.2× 10−2 state (II).

exerts the leading influence on the ECS, a simple estimate for how Rib varies with
Pr can be deduced as follows. Assuming the passive scalar finger scalings, the
fingers represent an O(1) stratification perturbation to the interior in a volume of size
O(1)×O(Pr−1/9)×O(Pr−4/9). This is equivalent to an O(Pr−5/9) stratification over the
entire O(1) volume which could be expected to influence the wall-normal momentum
equation when Re−2

∼RibPr−5/9 (balancing viscous diffusion with the buoyancy term)
or Rib = O(Pr5/9). While the finger scales are by no means guaranteed to persist
beyond the weakly stratified regime, figure 15(b) demonstrates a remarkably good
collapse of the data.

Figure 17 shows yz-contours of the streamwise-averaged streak field ū− y, overlain
on ρ̄, for states at three stages along the lower branch, namely the (rescaled) locations
labelled on figure 15(b): RibPr−5/9

=6.4×10−4 (point II, at the stress drop), 6.4×10−3

(point III) and 1.28×10−2 (point IV). The similarity between the Pr=70 and the Pr=
200 fields is immediately striking, with the principal difference only being that the
Pr= 200 density field is slightly more homogenised in the interior. In both cases, we
see the streak field developing in a similar way to the low Pr states (see figure 4); the
wall outflow streaks at z=π/4 and 3π/4 recede into the interior, become dominated
by the inflow streaks at z = 0 ≡ π and π/2 (point III), and the streamwise velocity
perturbation separates into negative and positive halves (point IV).

The v̄ fields corresponding to the figure 17 lower-branch states are plotted in
figure 18, again with ρ̄ underlaid. At the stress drop (II), the v̄ field covers the
full interior, though it is somewhat inhibited in the finger regions. By point III
(one third along the lower branch) it has pulled away completely from the highly
stratified regions at the walls and remains that way as Rib increases to point IV (two
thirds along the lower branch). Meanwhile, the density fingers have smeared out
and the stratified layer has thickened, due to readjustment of the advective–diffusive
balances there. It is worth noting that the magnitude of v̄ in the interior has increased
substantially. This leads to the growth of the streak fields and the corresponding mean
stress increases along the lower branch (see figures 15b and 17). However, the main
message is that faced with increasing stratification at the walls, the v̄ field isolates
itself, pulling in towards the homogenised interior, where ρ̄ ≈ 0. This appears to be a
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FIGURE 17. Streamwise-averaged contour plots of EQ7 at high Pr along the (Pr−5/9-
rescaled) lower branch, at the points II–IV, as indicated in figure 15(b); RibPr−5/9

=

6.4 × 10−4 (II), 6.4 × 10−3 (III) and 1.28 × 10−2 (IV), with Pr = 70 (a–c) and 200
(d–f ). Contours of ρ̄(y, z) are shown, plotted from red (ρ̄ > 0) to blue (ρ̄ < 0); intervals
match those in figure 7. Overlaid in black are 10 evenly spaced isolines of the streamwise
average of û, between ±0.2 (II), ±0.29 (III) and ±0.37 (IV). Dashed lines are negative
contours and solid lines are positive. For reference, the bulk Richardson numbers for the
Pr = 70 data are 6.8× 10−3 (II), 6.8× 10−2 (III) and 0.14 (IV). For the Pr = 200 data,
Rib = 1.2× 10−2 (II), 0.12 (III) and 0.24 (IV).
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FIGURE 18. Evolution of the v̄ field for increasing Rib along the high-Pr lower branches,
Pr = 70 (a–c) and 200 (d–f ). Each panel features 10 equally spaced isolines of v̄
corresponding to the states shown in figure 17, located at points II–IV along the solution
branches in figure 15(b). The isolines lie between ±0.015 (II), ±0.031 (III) and ±0.05
(IV), with solid lines indicating v̄ > 0 and dashed lines v̄ < 0. Underneath, the ρ̄(y, z)
contours (shown in figure 17) are replotted for reference. The bulk Richardson numbers
for the Pr= 70 data are 6.8× 10−3 (II), 6.8× 10−2 (III), 0.14 (IV) and for the Pr= 200
data: Rib = 1.2× 10−2 (II), 0.12 (III) and 0.24 (IV).
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key mechanism via which the ECS extends the range of Rib at which it can persist
before being disrupted. As Pr increases for any fixed Rib, the stratified layer recedes
further into the walls and the effect of Rib on the structure is less severe. Indeed,
our data and associated scaling argument hints that the maximum bulk Richardson
number attained by states is Rim

b = O(Pr5/9), though it is currently challenging to
verify this concretely, given the numerical difficulties inherent in resolving high-Pr
states and their shrinking length scales.

3.2.3. Other solutions
While Olvera & Kerswell (2017) isolated EQ7 and EQ8 by tracking the edge

manifold, many other equilibria exist in plane Couette flow that are dynamically
important in the unstratified setting. Since these states, which typically enjoy fewer
symmetries than the EQ7/EQ8 branch, are nevertheless based upon the same SSP/VWI
tripartite structure of rolls, streaks and waves, the expectation is that our findings of
density homogenisation in the interior with stably stratified boundary layers forming
as a consequence at high Prandtl number are generic. To confirm this, we continued
solutions EQ1–EQ11 from Gibson et al. (2009) to increasing Pr in the passive
scalar limit (Rib → 0) and observed how they change as density transport becomes
increasingly convectively dominated.

Figure 19 shows contours of ρ̄(y, z) for a subset of our converged solutions at
Pr = 1 (a), 10 (b) and 70 (c), with overlaid streamlines on column (a) depicting
the different roll structures. Just as for EQ7 in § 3.2.1, each of these new solutions
develops a homogenised interior with a corresponding highly stratified boundary layer
at the walls. Importantly, each solution features characteristic density fingers, advected
into the interior by the rolls, which shrink as Pr increases to leave an increasingly
homogenised interior. The solutions EQ4, EQ6, EQ9 and EQ11 (not shown) behave
similarly.

4. Discussion
In this study, we have computed exact coherent structures in stratified plane Couette

flow across a wide range of Prandtl numbers at a fixed Reynolds number Re = 400.
In the two asymptotic limits Pr� 1 and Pr� 1, states persist to arbitrarily high bulk
Richardson numbers, in spite of the stabilising influence of stratification. However, the
underlying mechanisms which allow this in each case are quite different.

In the Pr → 0 limit, density transport is diffusion dominated with perturbations
from the constant base density gradient being only O(Pr). To leading order, the
bulk Richardson number Rib only affects the ECS in the combination RibPr with
stratification having no noticeable effect on the flow until Rib=O(Pr−1Re−2). Beyond
this regime, states continue to follow an O(Pr) asymptotic solution curve, reaching
a maximum value of Rim

b ≈ 0.01/Pr at Re= 400, for the ECS studied in detail here
(EQ7).

In the Pr →∞ limit, density transport is advection dominated for any Rib > 0,
with the interior becoming homogenised as the stratification is confined to boundary
layers at the walls (their thickness being O(Pr−1/3) in the Rib→ 0 limit). The flow
and the density stratification are then separated into different parts of the domain
with the stratification only starting to influence the velocity field when Rib=O(Re−2)

independently of Pr, which differs from the Pr . O(1) scaling of O(Pr−1Re−2)

(Deguchi 2017; Olvera & Kerswell 2017). The maximum stratification which can
be tolerated by the ECS looks to be Rim

b ∼ O(Pr5/9) at fixed Re. Numerically, the
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FIGURE 19. Streamwise-averaged density fields ρ̄(y, z) for various equilibria in the passive
scalar limit. The columns increase in Prandtl number from (a) to (c): Pr= 1, 10 and 70.
The contour intervals match those in figure 7. Streamlines of (v̄, w̄) are shown on (a),
coloured with a linear gradient from white to black, according to |(v̄, w̄)|, which has a
maximum value of (to 2 significant figures): 0.018 (EQ1), 0.098 (EQ2), 0.033 (EQ3), 0.053
(EQ5) and 0.061 (EQ10).

situation at large but finite Pr and small Rib is complicated by eruptions in the
density boundary layers at regions of outflow. These eruptions give rise to fingers,
which ultimately vanish to leave a homogenised interior in the limit Pr→∞. This

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

81
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.811


Effect of Prandtl number on stably stratified exact coherent structures 882 A10-25

behaviour is qualitatively captured in the passive scalar limit (Rib→ 0) where these
fingers have spanwise width O(Pr−2/9) near the wall, contracting to O(Pr−4/9) further
away and wall-normal length O(Pr−1/9).

As discussed in the introduction, a dynamical systems perspective of stratified
turbulence imagines a ‘turbulent’ trajectory guided through a complicated phase
space by a hierarchy of simple invariant solutions (ECS) and their entangled stable
and unstable manifolds. Therefore, it is reasonable to expect that understanding
the structure of ECS as a function of the parameters Re, Pr and Rib may help
explain what is seen (maybe fleetingly) in stratified turbulence. Here, we have found
simple (laminar) realisations of boundary layers and homogenised regions seen in
turbulence with clear scalings emerging, at least for small Rib. For example, the
O(Pr−1/3) boundary layers found here resonate with empirical observations (Kader
1981; Schlichting & Gersten 2016) and recent numerical work (Zhou et al. 2017a)
concerning the thickness of the conductive sublayer. Further work is obviously needed
to push these to higher Rib and Re, but at least this is a start.

Perhaps most noteworthy is the homogenisation seen at high Pr, where the
shear-driven flow simply clears the stratification out of its way. This limit is costly to
simulate at high Re since the Péclet number (Pe := RePr) is even larger and hence is
little explored. However, hopefully our findings here will help encourage more effort
to reach this environmentally relevant limit, since these results clearly highlight the
difference between Pr ∼ 1 and Pr being large, where a value of 70 (let alone 700
for salt in water) is significant enough to see the difference.

While our results concentrated principally on the highly symmetric EQ7/EQ8 branch,
the high-Pr homogenisation of the stratified analogues for the remaining Gibson et al.
(2009) equilibria demonstrated in § 3.2.3 is an indication that this phenomenon is
generic. To establish more fully the relevance of these solutions to observations of
real stratified flows, it would be desirable to check whether solutions outside the
constraints of our small periodic computational domains behave similarly, especially
to see if states with no discrete symmetries can be identified. Moreover, there is the
question of whether travelling waves and periodic orbits adapt to increasing Pr and
Rib in the same way. However, the extremely high resolutions needed to obtain these
solutions pushes these computations beyond our reach for now.

Looking ahead, the existence of highly stratified boundary layers found here in the
large Pr limit begs the question whether stably stratified interior density interfaces
could exist for these unstable steady flows. One exploratory computation, taking the
EQ7 solution in the passive scalar limit and increasing Re from 400 to 105 indicates
‘yes’. Figure 20(a) plots contours of the resulting streamwise-averaged density fields
and, from Pr = 5 to 70, we see the usual finger structures and boundary layers
developing. In this case, however, the top and bottom halves of the channel interior
have separated into distinct patches of roughly constant density. In this high-Re
regime, the ECS converges to a VWI state, becoming streamwise invariant to leading
order (see § 2.2). The symmetries of EQ7 dictate that v(x, 0, z)→ 0 as Re→∞ (since
the flow becomes increasingly streamwise independent and v(x, 0, z)=−v(−x, 0, z)).
Therefore, while density in the top and bottom half-channels can become well mixed
as Pr increases, there is little exchange between the two. (Note that states such as
EQ1, whose rolls span the full height of the channel, do not enjoy this property.)

Figure 20(b) plots the spanwise average of ρ̄PS(y, z) against y for EQ7 and reveals
a highly stratified region at the midplane. In this passive scalar limit where the
velocity field is independent of Pr, an advective–diffusive balance sets the thickness
of this interface at O(Pr−1/2) which is borne out by the limited data here, plotted in
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FIGURE 20. Emergence of internal density interfaces as Pr increases at Re = 105.
(a) Streamwise-normal contour plots of ρ̄PS(y, z), for Pr=5 (left) and Pr=70 (right). Half
the channel (0 6 z 6 π/2) is shown (the rest being dictated by symmetry). (b) Spanwise-
and streamwise-averaged density profiles ¯̄ρPS := 1/Lz

∫ Lz

0 ρ̄PS(y, z) dz, for Pr = 5 (blue
dotted), 20 (turquoise dash-dot) and 70 (teal solid).

figure 21(a) up to Pr = 300. The scaling of the density change across the layer is
less clear, though O(Pr−3/4) seems to capture its dependence for Pr & 100 and taken
together, these two scales succeed in collapsing the density profiles at the interface in
figure 21(b). Whilst this ultimately implies that the interface vanishes in the Pr→∞
limit, it is nevertheless finite in the Pr = O(102) range most relevant to geophysical
phenomena. Clearly more computations need to be done to explore this phenomenon.
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Appendix A. Numerical code details
The flow fields in our direct steady Boussinesq solver are represented by the real

part of the truncated pseudo-spectral expansion

M∑
m=−M

N∑
n=1

L∑
l=−L

ξn,l,mFn(y)ei(mαx+lβz) (A 1)

for (x, y, z)∈ [0, Lx] × [−1, 1] × [0, Lz], where α= 2π/Lx and β =π/Lz. The ξn,l,m are
unknown complex coefficients and Fn := F(r)

n + iF(i)
n are basis functions in the wall-

normal coordinate chosen to satisfy the boundary conditions. For ξ ∈ {û, v̂, ŵ, ρ̂}, we
have ξ(±1)= 0 and use

F(r)
n = T2n+1 − T2n−1, F(i)

n = T2n − T2n−2, (A 2a,b)
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FIGURE 21. Empirical scalings of the high-Re (= 105), high-Pr internal layers plotted
in figure 20. (a) Log–log plot showing half the interface thickness δy (blue ×) and half
the density change δρ (orange +) between the two well-mixed regions, as a function of
Pr, ranging from 20 to 300. The two black dashed lines are 0.4Pr−1/2 and 3.4Pr−3/4.
Across all data points, the interface is contained within the region I := (−0.2, 0.2) and
ρPS reaches an approximately constant value near the edges of this region. Therefore, the
half-thickness δy/2 was estimated by arg maxy∈I ρ̄PS(y,3π/8) and δρ/2 was estimated using
ρ̄PS(−0.2, 3π/8). (b) Streamwise- and spanwise-averaged density profiles ¯̄ρPS(y), rescaled
as indicated, by the observed Pr-dependences in part (a). The Prandtl numbers are Pr=70
(teal dotted), 200 (olive dashed), 250 (red dash-dot) and 300 (dark grey solid).

where Tn denotes the nth Chebyshev polynomial; for the pressure field we use

F(r)
n = T2n−2, F(i)

n = T2n−1. (A 3a,b)

We save memory and computation time by omitting coefficients that are fixed by the
symmetries defined in (2.6a)–(2.6c). In particular, S implies that ξn,l,m = 0 if m+ l is
odd; Z implies that ξn,l,m = ξn,−l,m for ξ ∈ {u, v, p, ρ} and ξn,l,m =−ξn,−l,m for ξ = w;
Ω , together with our basis choices in (A 2) and (A 3) leads to ξn,l,m = ξ

∗

n,l,−m for
ξ ∈ {u, v, p, ρ} and ξn,l,m = −ξ

∗

n,l,−m for ξ = w, where the asterisk denotes complex
conjugation. These relations reduce the number of Fourier modes required from
(2M + 1)(2L+ 1)≈ 4ML to b 1

2((M + 1)(L+ 1)+ 1)c ≈ML/2.
Equilibria are converged by inverting the steady form of (2.1a)–(2.1c) for each

Fourier mode at the Chebyshev collocation points yj, defined by

− 1< yj := cos
[
π(2( j+N)− 1)

4N

]
< 0, j= 1, . . . ,N. (A 4)

Note that the remaining half-channel, 0 6 y 6 1, need not be discretised, since it is
given by Ω .

Solution branches were numerically refined until increasing M, N or L no longer
noticeably affected τy. Individual states plotted for analysis were typically refined
further to ensure that the density field was well resolved. Typical resolutions were
(M, N, L) = (12, 40, 12) in the low-Pr case (see § 3.1) and up to a maximum of
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(12, 90, 38) or (10, 120, 30) for high-Pr states analysed in § 3.2. In the passive
scalar limit Rib → 0, the velocity and pressure fields are independent of density.
Consequently, we need only solve (2.1c) subject to fixed u, v and w fields, achieving
higher resolution in ρ as a result. This method was to verify the structure scalings
derived in § 3.2.1 and to compute the high-Re states discussed in § 4, reaching
resolutions for the density field of up to (18, 140, 60) and (4, 650, 68) respectively.
In all cases the system possessed roughly 200 000 degrees of freedom at maximum
resolutions, requiring ≈400 GB of computer memory to directly invert the linear
operator. Each Newton step at the highest resolutions needed roughly 2 h of
wall-clock time on a single compute node with 28 Intel Xeon E5-2680 2.4 GHz
cores, making continuation at these resolutions expensive. Tracing out the Pr = 70
branch, for example, required about 1 month of wall-clock time.

Details of the Channelflow code used to compute states in § 3.2.3 may be found
elsewhere (Gibson et al. 2008, 2019). This base code was modified to include (2.1c)
in the time stepping routines. The maximum resolution employed was to converge EQ3
at Pr = 70 and used a discretised box with (Nx, Ny, Nz) = (120, 221, 189) physical
points in the x, y and z directions – approximately 6 million degrees of freedom
(though this could have been reduced substantially by decoupling velocity and density
as for the direct solver). After omitting dealiased modes this corresponds to maximum
Fourier wavenumbers of 39 in x, 61 in z and 110 collocation points in the half-
channel y ∈ (−1, 0). Obtaining a fully stratified state with the direct solver at these
resolutions would be infeasible due to memory constraints. A Newton step at this
resolution required approximately 6 h of wall-clock time.

Appendix B. Streamwise invariance of the high-Pr boundary layer
A steady passive scalar layer of thickness ε at the wall in (incompressible)

plane Couette flow must be streamwise invariant to leading order. To show that
this is true we assume the opposite and reach a contradiction. Substituting the
asymptotic expansions of (3.5a)–(3.5c) into the steady form of (2.1c) and presuming
∂xρPS =O(ε0) leads to the dominant balance

−
∂ρPS

∂x
=

1
ε2RePr

∂2ρPS

∂Y2
. (B 1)

Taking a Fourier transform of (B 1) in x yields −ikxε
2RePrρ̃PS = ∂YY ρ̃PS for a given

streamwise wavenumber kx, where ρ̃PS(kx, Y, z, t) is the transformed density field. At
any particular z, this has the general solution

ρ̃PS(kx; Y, z, t)=C1eY
√
−ikxη +C2e−Y

√
−ikxη, (B 2)

for constants C1 and C2 and η := ε2RePr. For the density field not to blow up in
the interior, C1 = 0, leaving just C2 to be determined. Since the density boundary
condition at the wall has no streamwise variation, ρ̃PS(kx; 0, z, t) = 0 for any kx 6= 0.
Consequently, C2 also has to vanish meaning that ρPS has no streamwise variation,
which is a contradiction.
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