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Abstract

Configurators have been generally accepted as important tools to elicit customers’ needs and find the matches between cus-
tomers’ requirements and company’s offerings. With product configurators, product design is reduced to a series of selec-
tions of attribute values. However, it has been acknowledged that customers are not patient enough to configure a long list of
attributes. Therefore, making every round of configuring process productive and hence reducing the number of inputs from
customers are of substantial interest to academic and industry alike. In this paper, we present an efficient product config-
uration approach by incorporating Shapley value, which is a concept used in game theory, to estimate the usefulness of each
attribute in the configurator design. This new method iteratively selects the most relevant attribute that can contribute most
in terms of information content from the remaining pool of unspecified attributes. As a result from product providers’ per-
spective, each round of configuration can best narrow down the choices with given amount of time. The selection of the next
round query is based on the customer’s decision on the previous rounds. The interactive process thus runs in an adaptive
manner that different customers will have different query sequences. The probability ranking principle is also exploited to give
product recommendation to truncate the configuration process so that customers will not be burdened with trivial selection of
attributes. Analytical results and numerical examples are also used to exemplify and demonstrate the viability of the method.
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1. INTRODUCTION

Today, global marketplace is becoming increasingly com-
petitive and diversified. Offering tailored products and in
the mean time delivering products quickly to customers be-
come major challenges for current manufacturing industry
(McCutcheon et al., 1994). In this new situation, product con-
figurator systems have been explored to handle the so-called
“customization–responsiveness squeeze” phenomena, that is,
providing tailored products with short delivery time (Schier-
holt, 2001; Salvador & Forza, 2004). Basically, a product
configurator consists of a set of predefined attributes for cus-
tomers to choose from. Some constraints on these attributes
are also included to ensure that the selected attributes work
compatibly. It takes a customer’s specifications as input and
the output is the customer’s target product(s). With product
configurators, product design is reduced to a series of selec-
tions of attribute values (Darr & Birmingham, 2000). In the
studies of customers’ decision-making processes, it has been

shown that customers have higher satisfaction with the out-
comes of configuring process than traditional selection process
(Kurniawan et al., 2003). Today, product configurators have
not only been studied in academia but also been widely adopted
in industries. It is reported that configurators have greatly im-
proved manufacturers’ responsiveness in product customization
and reduced the cost of customer integration (Piller, 2004).
Product configuration systems have been accepted as a viable
strategy to bridge the gap between customers’ needs and compa-
nies’ offerings.

The history of product configurators can be traced back to
1970s. Digital Equipment Corporation (DEC) developed a
program called R1 (later called XCON) in 1978 to configure
VAX computer systems to customer specifications (McDer-
mott et al., 1980). It was first put to use in 1980, and by
1986, it had processed 80,000 orders, achieving 95–98% ac-
curacy. It was estimated to be saving DEC $25 million a year
by reducing the need to give customers free components
when technicians made errors, by speeding up the assembly
process, and by increasing customer satisfaction. Ever since
then, a large number of configuration expert systems had
been developed and put into use, such as Cossack (Frayman
et al., 1987), BLADES (Elturky et al., 1986), and MICON
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(Birmingham et al., 1988). Because of the development of
information technology in the past decade, it is possible for
companies to acquire immediate information about customers’
requirements and meet them by delivering customized products
or related information efficiently. One of the most cited suc-
cessful modern configurators cases is Dell Computer, which
is able to deliver customized personal computers and note-
books within 1 week, with prices lower than its mass producing
competitors. By using online configurator-based product cus-
tomization system, Dell Computer has gained the so-called
first-mover advantage and maintained high profitability and
growth in a hypercompetitive industry for a long period.

Using configurators can streamline and automate the config-
uring process, reduce configuration errors, and enhance flex-
ibility and responsiveness (Sabin & Weigel, 1998). However,
there are still some limitations and shortcomings that have
not been paid enough attention in previous research (Tseng &
Piller, 2003). First, most product configurators still rely on fixed
query sequences that entail sets of rigid interactive procedures.
Although some configurators can capture customers’ specifica-
tions in the order determined by customers, there is still no sys-
tematic study on adaptively eliciting customer needs according
to customers’ specifications in previous configuration steps.
Therefore, the configuration process can be characterized as a
one-way information flow from customers to designers, instead
of an interactive and adaptive customer needs elicitation pro-
cess. Second, product configuring process can be tedious and
time consuming, especially when the product is complex. The
configuring procedure may require seemingly redundant or
trivial dialogues between customers and product development
team. However, it has been widelyacknowledged that customers
are impatient to specify a long list of attributes (Enos, 2001).
Therefore, it is necessary to elicit customers’needs inan efficient
manner. Third, customers may have little knowledge about what
a manufacturer is offering, including products features, design,
limitations, cost, and delivery. Furthermore, they may even be
unable to articulate their needs. Sometimes they are unclear
about what they really want when facing a large number of op-
tions provided by companies. Customers may fail to understand
or appreciate manufacturers’ offerings (Simonson, 2005). They
may find the configuration process unpleasant or even stressful
(Schwartz, 2004). In summary, it is crucial for configurators to
capture customers’ specifications efficiently with less demand
for customers’ attention and time.

To overcome the limitations, we develop an approach for
attribute selection task inproduct configuration process.Product
configuring is considered as a sequential Q&A process. From
designers’ perspective, a customer’s specifications to a prod-
uct’s attributes are unknown before the configuration process.
Designers’ objective is to elicit the customer’s needs efficiently
and accurately. During configuring process, designers can dis-
cover the customer’s needs gradually based on the customer’s
partial specifications to some attributes. The more attributes the
customer configures, the more information about the customer’s
needs is obtained. Thus, in product configuration process, design-
ers’ uncertainty about the customer’s needs is decreasing. In

this sense, the configuration process is an uncertainty elimination
process from designers’ point of view. We want to eliminate the
most uncertaintyabout acustomer’s needs in each configuration
round so that designers can capture the customer’s needs effi-
ciently. In this paper, Shapley value is deployed to evaluate
the relevance or usefulness level of each attribute. The method
iteratively selects the most relevant attribute from the unspeci-
fied attributes pool and proposes it for the customer to configure.
The selection of the next round query is based on the customer’s
decision in previous rounds. Thus, it solicits customers’ specifi-
cations in an adaptive manner in the sense that different cus-
tomers may have different query sequences. The customized
one-to-one configuring procedure is presented and the final con-
figuration can converge to a customer’s target with fewer inter-
actions between the customer and designers. In this sense, the
configuration process is no longer a traditional process of pas-
sively accepting customers’ specifications, but a bidirectional
information flow procedure. This paper extends the methods
in Wang and Tseng (2007, 2009) by presenting an analytical
frameworkof attributes selection and product recommendation.
Numerical studies are also conducted to verify the proposed
approach.

The remainder of the paper is organized as follows. Related
literature will be briefly reviewed in Section 2. In Section 3
we introduce the methodology for attribute selection from
coalition game’s point of view. A product recommendation
approach is elaborated in Section 4. Section 5 presents the de-
tailed procedure for attribute selection. A numerical example
is presented in Section 6 to verify the proposed approach. Ses-
sion 7 concludes the whole paper and points out some further
research directions.

2. LITERATURE REVIEW

A configurator design can be considered as a reasoning task in
its nature. Existing configuration design methodologies can be
generally classified into rule-based, model-based, and case-
based methodologies, depending on the reasoning techniques
used (Sabin & Weigel, 1998).

In a rule-based system, design knowledge is codified as
configuration rules or constraints. Most of early configuration
systems fall in this category, like R1/XCON, Cossack,
BLADES, and MICON. They derive solutions in a forward
chaining manner. This kind of systems often suffers from
the maintenance issues because of the lack of separation be-
tween domain knowledge and control strategy, especially
when the configurator system is complex (Yu et al., 1998).

In a model-based system, design knowledge is contained in
a system model, which consists of decomposable entities and
interactions between their elements. The most extensively
studied approach is probably constraint-based approach. Mit-
tal and Frayman (1989) first treated configuration tasks as
constraint satisfaction problems (CSPs). In this framework,
a configuration task is to assign values to all the variables
without violating any constraints. Mittal and Falkenhainer
also modeled the configuration task as a sequence of dynamic
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CSPs to cope with the change of attributes set during product
configuration process. Both the ports and design alternatives
were considered as variables in a CSP domain (Mittal & Falk-
enhainer, 1990). Not only compatibility constraints but also ac-
tivity constraints were introduced into the extension to specify
conditions under which a configurator can dynamically include
or exclude component based on current selections. Sabin and
Freuder (1996, 1998) proposed an idea that represented the
configuration task as a new class of nonstandard CSP called
composite CSP. It provided a more comprehensive and effi-
cient basis for formulating and solving configuration problems
(Sabin & Freuder, 1996, 1998). Gelle and Faltings developed
a general framework to handle both continous and discrete
variables in configuration task that is called mixed and condi-
tional CSP problems (Gelle & Faltings, 2003). A generative
CSP framework was also defined that can support resource-
balancing constraints (Mailharro et al., 1998; Stumptner et al.,
1998). In this framework, component attributes were used to
represent the resource demands and supplies.

In a case-based system, the basic idea is to compute the simi-
larity between the input queries and existing product cases.
Then the existing configurations that are likely to satisfy the
input queries are refined according to customers’ particular
needs. As pointed by Wielinga and Schreiber (1997), the key
issue in case-based configuration is how to retrieve the best
configuration from the database and identify aspects that cause
violation of constraints or requirements. Different methods
have been used to tackle the issue. Rahmer and Voß (1996)
used resource-oriented scheme to deal with case adaptation
for telecooperation system. Löckenhoff and Messer (1994) pre-
sented detailed knowledge engineering based models for case-
based configuration. It is a structure-oriented approach where a
taxonomical structure of components is mapped onto a graph.
The approach is also resource-oriented based on balancing of
resource requesting and production model of components. Hül-
lermeier (1997) recast case-based reasoning task from combi-
nation optimization perspective. A combination optimization
based approach was applied to solve configuration problems.
Critiquing is also a method for case-based reasoning systems
by using customers’ feedback information (Burke, 2002; Burke
et al., 1996, 1997). Customers only need to indicate a direc-
tional preference for a feature instead of inputting detailed fea-
ture value. Traditional critiquing only copes with single feature.
Reilly et al. (2004) extended the technique to multiple features
case, which is called compound critiques. They argued that the
methods can offer explanatory benefits to help users better un-
derstand the structure of the recommendation mechanism and
improve the performance of case-based recommendations.
Tseng et al. (2005) also used case-based reasoning to construct
a new bill of materials to reduce the time and cost of product
design.

Table 1 gives an overview of different configuration
methods, including the advantages and limitations of each ap-
proach. It is worth noting that the proposed method in this pa-
per does not belong to any of the three categories. This paper
does not present a holistic configuration design method. It is

mainly concerned with the task of how to present attributes
for customers to configure which is a major step for config-
uration tasks. In this sense, the proposed approach can be
applied to any product configuration system.

3. ATTRIBUTE SELECTION AS A COALITION
GAME

As stated in Section 1, it is crucial for configurators to capture
customers’ specifications efficiently, because customers are
not patient enough to specify a long list of attribute. From a
designer’s point of view, the configuration design task is to
select the attributes and the way of configuring them (Yu
et al., 1998). During product configuration process, an attri-
bute is presented for a customer to specify in each configuration
round. A well-designed series of attributes could potentially
shorten the lengthy iterative information exchange procedure.
Therefore attribute selection serves as a critical factor for im-
proving the efficiency of configurators. In this section we in-
troduce a coalition game-based attribute selection criteria to
accelerate the product configuration procedure.

3.1. Preliminaries

In this section we will recast the attribute selection problem
from game theory point of view, particularly coalition game.
In a coalitional game, a set of players have certain payoff
functions that represent the benefit achieved by different sub-
coalitions in the game. In a formal language, a coalition game
is defined by (N, v) where N is a set of players and v is a worth
function of any subset of N, that is, the coalition. The mean-
ing of the worth function is that if S is a coalition of players
who agree to cooperate in a game, then v is the expected ben-
efit they can get from the cooperation. Here, v is assumed to be
monotone, that is, v(S 0 ) � v(S) for S , S 0 and v(f) ¼ 0. Let

Table 1. Overview of different configuration approaches

Approach Advantages Limitations

Rule-based
configurator

† Intuitive way of
presenting design
knowledge and
configurations

† Good at representing and
evaluating heuristic
relations

† Difficult to maintain
when the product is
complex

Model-based
configurator

† Good at handling
constraints within the
configuration rules

† Limited efficiency
when solving
constraints

Case-based
configurator

† More efficient by using
existing cases

† The results may be
unreliable and
inaccurate

† Cannot adapt to new
product configuration
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fxigi[N be a partition of v(N ), that is,

v(N) ¼
X
i[N

xi,

where xi is the benefit that player i can get from the coopera-
tion. The marginal benefit for player i with respect to S [ N, i
� S isDi(S)¼ v(S < fig) 2 v(S). Intuitively, the worth function
and marginal benefit have the following properties:

† Dummy axiom: if player i is a dummy player, then xi ¼

0. It means that if a player contributes nothing in the
game, he should not receive any benefit.

† Symmetry axiom: if i = j such that Di(S )¼ Dj(S ) for all
i, j � S, then xi ¼ xj. It means that if two players contrib-
ute equally in the game, they should receive the same
amount of benefit.

† Linearity axiom: if v(S )¼ v1(S )þ v2(S ) where v1 and v2

are also nonnegative monotone function satisfying
v1(f) ¼ v2(f) ¼ 0, then xi ¼ x1

i þ x2
i where x j

i is the
cost share for vj. This axiom means that two coalition
games can be combined.

Then the Shapley value for the ith player is defined as the
expectation E(Xi) where Xi ¼ v((s1, s2, . . . , si)) 2 v((s1, s2,
. . . , si21)) and (s1, s2, . . . , si) is a permutation of (1, 2, . . . ,
i), where sj can be any number in the set (1, 2, . . . , i). For
example, (s1, s2, s3) can be any element in the set of {(1, 2,
3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. Shapley
value is the expected marginal worth of a player over all the
possible sets of coalitions. The expectation is calculated
with respect to all the possible permutations with equal prob-
ability. Shapley (1953) proved that Shapley value is the only
value that satisfies the three axioms.

3.2. Estimating attribute contribution by Shapley
value

As stated above, customers are not patient enough to specify a
long list of items. In addition, the attributes to be specified
differ a lot in terms of the usefulness to reveal customers’
needs. We want to estimate the usefulness of each attribute
and ask customers to specify the most useful one. In this pa-
per, the Shapley value of each attribute is used to measure the
usefulness level.

The calculation of the Shapley value is usually time con-
suming for the attribute selection problem because it requires
summing over all the possible subsets of coalitions and per-
mutation on them. Keinan et al. (2004) presented an unbiased
estimator to calculate the Shapley value by uniformly sam-
pling from the permutation over N. Still, the estimator consid-
ers both large and small attributes sets to calculate the contri-
bution values. Cohen et al. (2005) found that in practical
problems, the contributions of players in a coalition formed
by a subset of N are not as significant as that in coalition N,
the coalition formed by all the players. They calculated the

contribution value of each player only with respect to N.
Thus, the computational complexity is reduced because coa-
litions with size smaller than N are not taken into considera-
tion. In this sense, the Shapley value of the ith attribute can be
approximated by

E(Xi) �
1
n
� Di(Nn{i}):

Because the parameter 1/n is the same for all the attributes, we
only need to considerDi(N \ fig) to select attribute. During each
configuration round, the Shapley value of each unconfigured
attribute will be calculated and the attribute with the biggest
Shapley value is presented to for the customer to configure.

In this paper, we try to eliminate the most uncertainty about
a customer’s needs in each configuration round. Hence, the
amount of uncertainty about customers’ needs is adopted as
the evaluation criterion. Because one of the key concerns in
configurator design is to achieve product configuration quickly
and accurately, the most informative attribute should be se-
lected from the remaining unspecified attributes pool. Bearing
this in mind, we take Di as the form of

Di(C) ¼ entropy(C)� entropy(Cji), (1)

where C is the set containing all the end products. Each product
has certain probability to be a customer’s target. After knowing
the value of the ith attribute, the set C will be reduced to a
subset Cji; C is a discrete random variable with possible
states 1, . . . , n. Its entropy is defined as

entropy(C) ¼ �
Xn

k¼1
pklog2 pk,

where pk is the probability that C is in state k (Shannon, 1948).
The concept of entropy in information theory describes how
much uncertainty there is in a signal or random event. Sim-
ilarly, the entropy of Cji is

entropy(Cji) ¼ Ei(entropy(Cji ¼ ik))

¼
X
ik

P(i ¼ ik)� entropy(Cji ¼ ik), (2)

where ik is the kth alternative of the ith attribute.
In summary, from designers’ perspective the Shapley value

of an attribute is the amount of uncertainty that the attribute
can eliminate after getting its value. Shapley value is deployed
to select attribute for a customer to configure in each configura-
tion round. The unspecified attribute that can eliminate the
most uncertainty will be chosen for the customer to specify.

3.3. Estimation of parameters

To calculate the Shapley value of each attribute, we need to
know the probability (conditional probability) that each end
product meets a customer’s needs. Given enough customers’
choices data, the probabilities can be estimated from the data.
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In this paper, we use the frequency that each end product
being selected by customers to approximate the probability
that the product will meet customers’ needs. It can be proven
that it is a maximum likelihood estimator of the probability.
The estimation is

P(Ai ¼ aij jAk ¼ akl) ¼
jaij > aklj
jaklj

,

where aij and akl are the alternatives of attribute Ai and Ak, re-
spectively; jaij > aklj is the number of cases with attribute Ai

having value aij and in the mean time attribute Ak having value
akl in existing configuration data; and jaklj is the number of
cases with attribute Ak having value akl. To avoid zero prob-
ability caused by data sparsity, we apply the widely used
smoothing technique by adding constants to both numerator
and denominator (Cox, 1972). Then the estimation becomes

P(Ai ¼ aij jAk ¼ akl) ¼
jaij > aklj þ 1
jaklj þ r

, (3)

where r is the number of alternatives of attribute Ai. If jaij > aklj
¼ jaklj ¼ 0,

P(Ai ¼ aij jAk ¼ akl) ¼
1
r
: (4)

It means that each alternative of attribute Ai is equally likely to
be selected by the customer, that is, we assume the prior prob-
ability distribution of customers’ choices is uniform. When
sufficient data are obtained, the knowledge discovered from
data will dominate the prior probability, because if jaij > aklj
is large enough,

P(Ai ¼ aij jAk ¼ akl) ¼
jaij > aklj þ 1
jaklj þ r

� jaij > aklj
jaklj

: (5)

Therefore, this estimation is actually the compromise between
the knowledge discovered from the data and the prior belief
about the probability distribution of customers’ potential like-
lihood toward different attributes.

Both Ai and Ak can be generalized from one single attribute
to a set of attributes. The idea is also to use the frequency of
each event to approximate the true probability that we are in-
terested in. By law of large number, the estimation will con-
verge to the true probability when the data size increases. In
this way, the likelihood of customers’ choices dependency
among different attributes will be quantified by conditional
probabilities. The conditional probabilities will be deployed
for the calculation of Shapley value.

4. RECOMMENDATION OF PRODUCT
CONFIGURATIONS

The presented product configuration method aims at helping
customers find their target products quickly. To further im-
prove the efficiency of product configuration, a product recom-
mendation module is also used to present the most likely ac-

cepted product and thus truncate the product configuration
process as early as possible. After a customer configures an
attribute, certain number of products will be recommended.
If the customer is satisfied with one of them, he can select it
and terminate the configuration process ahead of time. Basi-
cally a recommendation method is to find the most likely ac-
cepted product configuration, that is, the one with the highest
probability to meet a customer’s requirements, based on the in-
complete specifications. In this section, two basic questions re-
garding product recommendation will be answered, namely,
how to calculate the probability of relevance for each product,
that is, the product’s probability of being a customer’s target
and in what order to present the recommendations if multiple
products are recommended.

Let E be the set of configured attributes and Q be the set of
attributes that are not specified. Let R denote the recommen-
dation that is an instantiation of Q plus the specified attributes
set E. Then we have

R ¼ E <

�
arg max

Q
P(QjE)

�
:

By Bayes rule,

P(QjE) ¼ jQ > Ej
jEj ,

where jQ > Ej is the number of configurations with attributes Q
and E and jEj is the number of configurations with attributes E.

If we assume customers’ choices among different attributes
are independent, the recommendation can be simplified to

R ¼ E <

�
<

qi[Q
arg max

qi

P(qijE)

�
, (6)

where qi is the ith unspecified attribute and P(qijE) can be
estimated by

P(qijE) ¼ jqi > Ej
jEj :

This independence assumption is often referred to as “local
independence” and has been applied in marketing research
(Kamakura & Wedel, 1995).

In this way, each end product’s probability of meeting the
customer’s needs can be calculated. A very natural way to
present the recommendations is based on the ranking of the
probabilities, which is known as probability ranking principle
(PRP; van Rijsbergen, 1979).

In information retrieval literature, expected search length is
used to measure the efficiency of a retrieval approach (van
Rijsbergen, 1979). It refers to the expected number of items
that a customer has screened when he finds a target one.
Let esl(S ) represent the expected search length given a set
of specifications S. Then,

esl(S) ¼ E[i] ¼
XN
i¼1

pi � i,
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where i is the search length and pi represents the correspond-
ing probability of occurrence of this search length. It is worth
noting that pi is a function of S. To simplify the notations, we
just use pi here. N is the number of possible search lengths and
is bounded by the total number of product configurations. It
can be proven that PRP guarantees the smallest expected
search length and thus the highest efficiency.

PROPOSITION 1. The PRP results in a minimal expected
search length. B

Proof: Given a set of partial specifications S from a cus-
tomer, let R1 ¼ (r11, r12, . . . , r1m) be the recommendation
based on PRP with corresponding probabilities of meeting
a customer’s needs (P11, P12, . . . , P1m), which satisfies P11

� P12 � . . . � P1m. Let us consider another recommendation
approach that proposes the same m recommendations in an-
other order R2 ¼ (r21, r22, . . . , r2m) with probabilities of meet-
ing a customer’s needs (Q11, Q12, . . . , Q1m), which is a per-
mutation of (P11, P12, . . . , P1m). The expected search length
can be reformulated as

esl(S) ¼ E[i] ¼
Xm
i¼1

pi � i ¼
Xm
n¼1

P(i � n),

where P(i � n)represents the probability that the first n 2 1
recommendations are not the target product (Durrett, 2003).
Then we can yield

PPRP(i � n) ¼
Yn�1

k¼1

(1� P1k):

Similarly,

Pothers(i � n) ¼
Yn�1

k¼1

(1� Q2k):

Because P11 � P12 � . . . � P1m and (Q11, Q12, . . . , Q1m) is a
permutation of (P11, P12, . . . , P1m), we can get

PPRP(i � n) ¼
Yn�1

k¼1

(1� P1k) �
Yn�1

k¼1

(1� Q2k)

¼ Pothers(i � n)

for any n. By applying rearrangement inequality, we arrive at

eslPRP(S) ¼
Xm
n¼1

PPRP(i � n) �
Xm
n¼1

Pothers(i � n)

¼ eslothers(S):

Because R2 is selected arbitrarily, the PRP results in the mini-
mal expected search length comparing with any other recom-
mendation approaches. B

It is worth noting that we assume each customer has certain
target product(s) in mind that is unknown to designers. How-
ever, designers can guess which configuration(s) may be the
target product(s) based on the customer’s partial specifications
during product configuring process. This proposition states that
the best strategy for designers to present recommendations is
based on the probability of relevance. Customers’ expected
search length can be minimized in this way.

5. THE PROCESS OF ADAPTIVE ATTRIBUTE
SELECTION FOR CONFIGURATOR DESIGN

The configuring process is an interactive and adaptive commu-
nication procedure. A schematic configuration process is shown
in Figure 1. The conditional probabilities of customers’ choices
are estimated offline from existing configuration data. Once the
probabilities are estimated, they will serve as the supporting base
for product configuration procedure, particularly the attribute se-
lection and recommendation. It sequentially selects the most rel-
evant item from the remaining attributes pool for a customer to
configure and recommendations will be presented afterward.
The whole operation process can be summarized as follows:

1. Put all of the unspecified attributes into candidate set CS.
2. For each unspecified attributes qi, calculate the condi-

tional probability P(qijE) according to Eq. (3), where E
is the set of all the combination of the remaining attributes.

3. For each unspecified attribute qi, calculate its Shapley
value E(Xi) based on Eq. (1).

4. Select the attribute with the biggest Shapley value and
present it to the customer to configure.

5. Get the customer’s specification and remove the attri-
bute from the candidate set CS.

Fig. 1. The product configuration process. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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6. Calculate the probability that each end product meets
the customer’s needs

P

�[
i

{qi}jE
�
¼
Y

i

P(qijE)

according to Eq. (6) and present recommendations ac-
cording to the ranking of the probabilities.

7. Get the customer’s feedback toward the recommenda-
tions. If the customer is satisfied with one recommenda-
tion, end.

8. If CS ¼ f, end. Otherwise goes to step 3.

Note that we assume the customer’s target product is in
current product family. Because the purpose of this paper is
to elicit customer needs and provide customer’s target
product efficiently, the case that no target product exists in
current product family is not considered here (Fig. 1).

6. CASE STUDY

This section uses the configuration process of a simplified
personal computer as an example to illustrate the ideas pro-
posed in this paper. The set of components and their alterna-
tives are listed in Table 2. Here we use a sixtuple to represent
one PC configuration. For example, ,1, 2, 2, 3, 2, 2. stands
for the configuration containing the components A1, B2, C2,
D3, E2, and F2. A survey was conducted in an East Asian uni-
versity and 69 customers’ preferred configurations data were
obtained. We want to use them to estimate the conditional
probabilities P(qijE) that we need to run our method. How-
ever, the sample size is too small for the scale of the config-
uration task. To handle the data sparsity issue, we generated
1380 configuration data as training data to estimate the
conditional probability and 345 testing data by a perturbative
bootstrap approach. Bootstrap is a powerful data resampling
method in statistics (Efron, 1979). It generates samples
from an existing data set, where each sample is obtained by
random sampling with replacement from the data set.
Considering that customers may be flexible to some choices
(Lilien et al., 1992), we add some variants when generating

resamples. We call the resampling method perturbative boot-
strap.

Before conducting the resampling method, each attribute
alternative’s substitutes are identified according to the simi-
larity of performance, price and other characteristics. To
make the algorithm more general, let us suppose a product’s
attributes set is fAi : 1 � i� kg, where kis the number of at-
tributes. Each attribute Ai has a set of alternatives aij : 1� i
� k, 1� j � ni, where ni is the number of alternatives for
the ith attribute. Each attribute alternative aij has a substitute
set aij determined beforehand. The substitute set aij can be
empty if there is no proper substitute for aij. The detailed
data resampling algorithm is as follows:

For l ¼ 1 to m ==m is the data size of the original data set

For i ¼ 1 : k

For j ¼ 1 : ni

u ¼ randð0,1Þ; ==generating a random number following uniformð0,1Þ

if u . h and aij is not empty, aij
� equals to one value in aij with probability

1
jaijj

where jaijj is the cardinal of set aij and h is a predetermined threshold;

else aij
� ¼ aij;

end

end

end

Table 2. List of components and their alternatives for PC

Component Code Description

Processor (A) A1 Intel Core 2 duo 3.16 GHz
A2 Intel Core 2 duo 2.66 GHz
A3 Intel Core 2 duo 2.8 GHz
A4 Intel Pentium Dual-Core 2.6 GHz
A5 Intel Core 2 quad processor 2.5 GHz
A6 Intel Core 2 quad processor 2.6 GHz

Memory (B) B1 2 GB DDR2
B2 4 GB DDR2
B3 6 GB DDR2
B4 8 GB DDR2

Monitor (C) C1 17-in. LCD
C2 19-in. LCD
C3 20-in. LCD
C4 22-in. LCD or above

Hard disk (D) D1 160 GB
D2 250 GB
D3 500 GB
D4 750 GB

Disk driver (E) E1 16X DVD+/2RW*
E2 Blu-ray disk
E3 Blu-ray disk + 16X DVD+/2RW*

Display card (F) F1 Intel GMA 3100
F2 512-MB NVIDIA GeForce 9800GT
F3 256-MB ATI Radeon HD 3450 LE
F4 256-MB ATI Radeon HD 3650
F5 512-MB ATI Radeon HD 4670
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In this numerical example, h is set to 0.9. After running the
algorithm once, a new set of configuration data are generated.
It has the same size as the original data set. We repeat the pro-
cess 25 times and generate 1380 training data and 345 testing
data. Because of the limit of pages, the conditional probabil-
ities estimated from the training data set are omitted here.

6.1. A product configuration example by applying the
proposed approach

Suppose a new customer’s target configuration is ,1, 2, 2, 3,
2, 2. that is unknown to designers before the product config-
uring process.

STEP 1. The probabilities P(qijE) are calculated according
to Eq. (3). Because no attributes are specified at the begin-
ning, P(qi) is used instead.

STEP 2. The Shapley values of each attribute are calculated
according to Eq. (1). For example,

DA(S) ¼ entropy(S)� entropy(SjA)

¼ �
X69

i¼1
0:014� log 0:014

� �0:246
X17

i¼1
0:059� log 0:059

 

�0:159�
X11

i¼1
0:091� log 0:091

�0:246�
X17

i¼1
0:059� log 0:059

�0:087�
X6

i¼1
0:167� log 0:167

�0:159�
X11

i¼1
0:091� log 0:091

�0:101�
X7

i¼1
0:143� log 0:143

!

¼ 2:48:

Similarly, we can get the Shapely values of other attributes.

DB(S) ¼ entropy(S)� entropy(SjB) ¼ 1:76;

DC(S) ¼ entropy(S)� entropy(SjC) ¼ 1:75;

DD(S) ¼ entropy(S)� entropy(SjD) ¼ 1:69;

DE(S) ¼ entropy(S)� entropy(SjE) ¼ 1:53;

DF(S) ¼ entropy(S)� entropy(SjF) ¼ 2:26:

As a result, we present the attribute A that has the highest
Shapley value to the customer.

STEP 3. After getting the customer’s specification A1, we
can present the corresponding recommendation just by

checking the conditional probability table. The independence
assumption stated in the last session is used here to present
the recommendation. The following recommendation can
be yielded:

arg max
B

P(BijA ¼ A1) ¼ B2; arg max
C

P(CijA ¼ A1) ¼ C3;

arg max
D

P(DijA ¼ A1) ¼ D3; arg max
E

P(EijA ¼ A1) ¼ E2;

arg max
F

P(FijA ¼ A1) ¼ F3:

Because the output recommendation ,1, 2, 3, 3, 2, 3. differs
from the target configuration ,1, 2, 2, 3, 2, 2 ., further pro-
cessing is required.

STEP 4. The Shapley values given that A1 is selected are
calculated and result to

DBjA1(S) ¼ entropy(SjA1)� entropy(SjA1, B) ¼ 1:45;

DCjA1(S) ¼ entropy(SjA1)� entropy(SjA1, C) ¼ 1:61;

DDjA1(S) ¼ entropy(SjA1)� entropy(SjA1, D) ¼ 1:55;

DEjA1(S) ¼ entropy(SjA1)� entropy(SjA1, E) ¼ 1:16;

DFjA1(S) ¼ entropy(SjA1)� entropy(SjA1, F) ¼ 2:26:

The highest Shapley value is the one for the attribute F, which
we therefore present to the customer to configure.

STEP 5. After getting the customer’s specification F2, the
following recommendation can be reached by checking the
conditional probability table.

arg max
B

P(BijA ¼ A1, F2) ¼ B2;

arg max
C

P(CijA ¼ A1, F2) ¼ C3;

arg max
D

P(DijA ¼ A1, F2) ¼ D3;

arg max
E

P(EijA ¼ A1, F2) ¼ E3:

Thus, ,1, 2, 3, 3, 3, 2. is recommended.

STEP 6. Because the recommendation is still not satisfac-
tory, the previous attribute selection process should be re-
peated until the recommendation meets the requirement.

In summary, the configuring process for this customer is
shown in Table 3. After three configuration rounds, the cus-
tomer gets his target PC. Section 6.2 presents the experiment
results to show the advantage of the proposed method.

6.2. Performance comparison

In this section, we compare the performance of the proposed
approach with other attribute selection and recommendation
methods. Let “FixSeq þ PRP” represent the method using
fixed query sequence and PRP based recommendation. Ac-
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cording to the number of attributes, there are 6! ¼ 720 possi-
ble query sequences for this PC configurator. We calculate
the average configuration rounds of all the possible sequences
(AverFixSeq þ PRP). The results of two arbitrarily selected
sequences (“FixSeq1 þ PRP” and “FixSeq2 þ PRP”) are
also presented for comparison. The other approach uses the
Shapley value based attributes selection method addressed
in this paper but recommends the configuration randomly
(Shapley þ Rand). The proposed approach is abbreviated
as “Shapley þ PRP.”

The products in the testing set generated by perturbative
bootstrap are used as customers’ targets. In previous section’s
example, only one recommendation is provided in each
round. In this numerical analysis, multiple products are rec-
ommended according to their probabilities of relevance. If a
customer’s target PC is in the set of recommendations, the
process will end and the corresponding configuration rounds
will be recorded. The number of configuration rounds is used
as the measure of efficiency. It can be anticipated that if the
whole framework performs better, then fewer rounds of com-

munications will occur. Figure 2 shows the experiment results
under different approaches.

The x axis represents the number of recommendations in
each round and y axis is the number of recommendations
rounds needed for the customer to find the target product. Be-
cause there are six attributes altogether in this example, the
worst case requires six configuration rounds. We can see
that the “Shapley þ PRP” approach proposed in this paper
outperforms others. When more recommendations are pre-
sented, the configuration rounds are also decreased, because
bigger recommendation set is more likely to contain the target
product. The experiment results show that our approach pro-
vides a promising direction of improving the efficiency of
product configuration.

7. CONCLUSION

This paper recasts the attribute selection task in configurator
design from game theory’s point of view. Shapley values are
adopted to measure the usefulness of different attributes.

Fig. 2. A comparison of the configuration approaches. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Table 3. The specification defining process for the customer with preference fA1, B2, C2, D3, E2, F2g

Specification
Round Information Gain Proposed Item Recommendation Target

1 EA ¼ 2.48, EB ¼ 1.76,
EC ¼ 1.75, ED ¼ 1.69,
EE ¼ 1.53, EF ¼ 2.26

CPU (A) ,1, 2, 3, 3, 2, 3 . No

2 EB ¼ 1.45, EC ¼ 1.61,
ED ¼ 1.55, EE ¼ 1.16,
EF ¼ 2.26

Display card (F) ,1, 2, 3, 3, 3, 2 . No

3 EB ¼ 0.92, EC ¼ 0.92,
ED ¼ 0, EE ¼ 0.92

Monitor (C) ,1, 2, 2, 3, 2, 2 . Yes
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The most relevant attribute is selected for customers to con-
figure during product configuring procedure. The main con-
tributions are as follows:

1. A product configuring process is treated as a sequential
decision making procedure. In each configuring round,
the most uncertainty about a customer’s needs is elimi-
nated. The interactive process runs in an adaptive man-
ner in the sense that different customers will have dif-
ferent query sequences. This offers a brand new
perspective for us to understand configurator issues in
product customization context.

2. PRP is adopted for product recommendation. It could
shield customers from the tedious process of screening
and making a selection from a vast number of products
and thus overcome the information overload issue. Ana-
lytical results show that PRP is optimal with respect to
expected search length. The efficiency of matching be-
tween demand and supply is thus enhanced.

The presented method also has some limitations and can be
enriched along several dimensions. It functions well for cus-
tomers who have enough expertise and can clearly configure
each attribute. For customers who only have vague functional
requirements, there are no links between the customers’ needs
and the detailed attributes in this framework. The configura-
tion task is hard to conduct. How to incorporate customer
needs in fuzzy functional requirements form into the config-
uration task is a future research direction. In addition, this pa-
per assumes the product configuration space is fixed. Innova-
tion and evolvement in a product family are not considered.
Apparently, it is not profitable to start from scratch again to
collect data and implement the approach addressed in this pa-
per. One potential solution is to adapt previous configuration
data to the updated product family via some econometric
methods. Another direction is to improve the computational
complexity of the configuration design task. If the product
contains m attributes and each attribute has n attribute alterna-
tives, then the computational complexity of the proposed
attribute selection task is O(m2n). How to improve the com-
putational complexity remains to be a practical and signifi-
cant research issue.
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Stumptner, M., Friedrich, G., & Haselböck, A. (1998). Generative constraint-
based configuration of large technical systems. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 12(4), 307–320.

Tseng, H., Chang, C., & Chang, S. (2005). Applying case-based reasoning
for product configuration in mass customization environments. Expert
Systems With Applications 29(4), 913–925.

Tseng, M., & Piller, F. (2003). New direction for mass customization. In The
Customer Centric Enterprise (Piller, F., & Tseng, M., Eds.), pp. 519–535.
Berlin: Springer.

van Rijsbergen, C.J. (1979). Information Retrieval. London: Butterworths.
Wang, Y., & Tseng, M.M. (2008). Incorporating probabilistic model of cus-

tomers’ preferences in concurrent engineering. Annals of the CIRP 58(1),
137–140.

Wang, Y., & Tseng, M.M. (2009). Attribute selection for configurator design
based on Shapley value. Proc. ASME 2009 Int. Design Engineering
Technical Conf., Computers and Information in Engineering Conf.
(IDETC/CIE 2009), Paper No. DETC2009-86904.

Wielinga, B., & Schreiber, G. (1997). Configuration-design problem solving.
IEEE Expert: Intelligent Systems and Their Applications 12(2), 49–56.

Yu, B., Skovgaard, H.. & Baan Frond Office Systems. (1998). A configura-
tion tool to increase product competitiveness. IEEE Intelligent Systems
13(July/August), 34–41.

Yue Wang received his PhD from the Department of Indus-
trial Engineering and Logistics Management at the Hong
Kong University of Science and Technology and his BS
and MS degrees in electronic engineering from Peking Uni-
versity, Beijing. Dr. Wang’s research interest is focused on
engineering design and manufacturing, artificial intelligence,
and applied statistics.

Mitchell M. Tseng is a Professor and the Director of the Ad-
vanced Manufacturing Institute and Zhejiang Advanced
Manufacturing Institute of Hong Kong University of Science
and Technology. Prof. Tseng joined Hong Kong University
of Science and Technology as the founding department
head of industrial engineering in 1993 after holding executive
positions at Xerox and DEC. He previously held faculty po-
sitions at the University of Illinois at Urbana–Champaign and
the Massachusetts Institute of Technology. Dr. Tseng re-
ceived MS and PhD degrees in industrial engineering from
Purdue University and a BS degree from National Tsing
Hua University. He is a fellow of the International Academy
of Production Engineers (CIRP) and ASME.

Adaptive attribute selection for configurator design via Shapley value 195

https://doi.org/10.1017/S0890060410000624 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000624



