
Proceedings of the Royal Society of Edinburgh, 149, 781–794, 2019

DOI:10.1017/prm.2018.40

Prescribed mean curvature equation on the unit
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Using the flow method, we prove some existence results for the problem of
prescribing the mean curvature on the unit ball. More precisely, we prove that there
exists a conformal metric on the unit ball such that its mean curvature is f , when f
possesses certain reflection or rotation symmetry.
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1. Introduction

The problem of prescribing scalar curvature on a closed manifold has been studied
extensively for last few decades. More precisely, let (M, g) be an n-dimensional com-
pact smooth Riemannian manifold without boundary. Given a smooth function f
on M , can we find a metric conformal to g such that its scalar curvature is f? This
has been studied in [3,5,14,27,32,33,37,42]. When (M, g) is the n-dimensional
standard sphere Sn, it is called the Nirenberg’s problem and has been studied exten-
sively. See [4,7–10,13,24,26,38,43,44] and the references therein. In particular,
Chang–Yang obtained in [9] a perturbation theorem which asserts that there exists
a conformal metric whose scalar curvature is equal to f , provided that the degree
condition holds for f which is a positive Morse function and is sufficiently closed to
n(n − 1) in C0 norm. See also [18,19,28–31,36] for related results of prescribing
the Webster scalar curvature on CR manifolds.

A geometric flow has been introduced to study the Nirenberg’s problem by Struwe
in [41] for n = 2, and has been generalized to n � 3 by Chen–Xu in [15]. More
precisely, the scalar curvature flow is defined as

∂

∂t
u =

n − 2
4

(αf − Rg̃)u,
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where Rg̃ is the scalar curvature of g̃ = u4/n−2g and α is a constant chosen
to preserve the volume along the flow. Using the scalar curvature flow, Chen–
Xu [15] was able to prove Chang–Yang’s result with the quantitative bound on
‖f − n(n − 1)‖C0(Sn).

Again using the scalar curvature flow, Leung–Zhou [34] proved an existence result
for prescribing scalar curvature with symmetry. To describe their result, we have
the following:

Assumption 1.1. f is symmetric under a mirror reflection upon a hyperplane H ⊂
R

n+1 passing through the origin.

Under assumption 1.1, without loss of generality, we may assume that H is the
hyperplane perpendicular to the x1-axis. Then the symmetry can be expressed as

f(γm(x)) = f(x)

where γm : Sn → Sn is given by

γm(x1, x2, . . . , xn+1) = (−x1, x2, . . . , xn+1) for x = (x1, x2, . . . , xn+1) ∈ Sn.

Then

F = H ∩ Sn = {(0, x2, . . . , xn+1) ∈ Sn}
is the fixed point set.

Assumption 1.2. f is invariant under a rotation γθ of angle θ = π/k with the
rotation axis being a straight line in R

n+1 passing through the origin. Here k > 1
is an integer.

Under assumption 1.2, without loss of generality, we may assume that the rota-
tion axis is the xn+1-axis. In this case, F = {N,S} is the fixed point set, where
N = (0, . . . , 0, 1) is the north pole and S = (0, . . . , 0,−1) is the south pole.

With these assumptions, we can state the result of Leung–Zhou in [34].

Theorem 1.1 (Leung–Zhou [34]). Suppose that f is a positive smooth function on
Sn satisfying assumptions 1.1 or 1.2. Assume that

xm ∈ F with f(xm) = max
F

f ⇒ ΔSnf(xm) > 0

where ΔSn is the Laplacian of the standard metric of Sn, and

max
Sn

f < 22/(n−2)
(
max
F

f
)

.

Then f can be realized as the scalar curvature of some metric conformal to the
standard metric of Sn.

Note that existence results for prescribing scalar curvature with symmetry were
obtained earlier by Moser [35] and by Escobar–Schoen [23].

The problem of prescribing the scalar curvature or the mean curvature has been
studied on manifolds with boundary. See [12,16,20,21,25,39,46] for example. In
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this paper, we consider the following problem of prescribing the mean curvature on
the unit ball, which is a natural analogy of the prescribing scalar curvature problem:
Let Bn+1 be the (n + 1)-dimensional unit ball equipped with the flat metric g0, that
is,

Bn+1 =

{
(x1, . . . , xn, xn+1) ∈ R

n+1 :
n+1∑
i=1

x2
i � 1

}
.

The boundary of Bn+1 is the n-dimensional unit sphere Sn, that is,

∂Bn+1 = Sn =

{
(x1, . . . , xn, xn+1) ∈ R

n+1 :
n+1∑
i=1

x2
i = 1

}
.

The mean curvature Hg0 of Sn with respect to g0 is equal to 1, that is, Hg0 = 1.
Conversely, the metric induced by g0 on Sn is the standard metric gSn of Sn.
We study the following problem: given a smooth function f on Sn, find a metric
conformal to g0 such that it is flat in the interior of Bn+1 and its mean curvature is
equal to f on ∂Bn+1 = Sn. The problem is equivalent to finding a positive harmonic
function u in the ball with nonlinear boundary condition:

Δg0u = 0 in Bn+1,

2
n − 1

∂u

∂νg0

+ u = fu((n+1)/(n−1)) on Sn.
(1.1)

Here, Δg0 is the Laplacian of g0 and ((∂)/(∂νg0)) is the outward normal deriva-
tive of g0. See [1,2,6,17,20–22,39,40] and references therein for the results
related to this problem. In particular, Chang–Xu–Yang proved in [11] that (1.1)
has a solution when f is a positive Morse function satisfying the degree condition
and being sufficiently closed to 1 in C0 norm. By the method of geometric flow,
Xu–Zhang [45] proved Chang–Xu–Yang’s result with the quantitative bound on
‖f − 1‖C0(Sn).

Inspired by the result of Leung–Zhou [34], we study the problem of prescribing
the mean curvature on the unit ball with symmetry. We prove the following:

Theorem 1.2. Suppose that f is a positive smooth function on Sn satisfying
assumption 1.1 or 1.2. Assume that

xm ∈ F with f(xm) = max
F

f ⇒ ΔSnf(xm) > 0 (1.2)

where ΔSn is the Laplacian of the standard metric of Sn, and

max
Sn

f < 21/(n−1)
(
max
F

f
)

. (1.3)

Then f can be realized as the mean curvature of some conformal metric on the unit
ball Bn+1.

We remark that Escobar has also studied in [21] the existence of a positive
solution to (1.1) when f has symmetry. The proof of Theorem 1.2 follows the
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arguments of Leung–Zhou in [34]. We also remark that we have used the arguments
of Leung-Zhou to study the problem of prescribing Webster scalar curvature on the
CR sphere with symmetry. See [31].

2. The flow and its properties

Let Bn+1 be the (n + 1)-dimensional unit ball equipped with the flat metric g0.
Then the n-dimensional sphere Sn = ∂Bn+1 is the boundary of Bn+1. Let f be a
positive smooth function defined on Sn. Given a smooth function u0 in Bn+1, we
consider the flow

ut =
n − 1

4
(αf − Hg)u on Sn (2.1)

for t � 0 with the initial condition

u|t=0 = u0,

where

Hg = u−((n+1)/(n−1))

(
2

n − 1
∂u

∂νg0

+ u

)
on Sn (2.2)

is the mean curvature of the conformal metric g = u4/n−1g0, and

Δg0u = 0 in Bn+1. (2.3)

Here, Δg0 is the Laplacian of g0 and ((∂)/(∂νg0)) is the outward normal derivative
of g0. Also, α = α(t) is defined as

α =
( 

Sn

Hgu
2n/n−1dμ

)/( 
Sn

fu((2n)/(n−1))dμ

)
, (2.4)

where dμ is the volume form of the standard metric gSn on Sn and
 

Sn

ϕdμ =
1

ωn

ˆ
Sn

ϕdμ for all ϕ ∈ C∞(Sn),

where ωn =
ˆ

Sn

dμ is the volume of Sn with respect to gSn .

We define the functionals

E[u] =
 

Sn

(
2

n − 2
∂u

∂νg0

+ u

)
udμ =

 
Sn

Hgu
((2n)/(n−1))dμ (2.5)

and

Ef [u] = E[u]

/( 
Sn

fu((2n)/(n−1))dμ

)((n−1)/(n))

. (2.6)

It follows from lemma 2.2 in [45] that

d

dt
Ef [u] � 0
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along the flow (2.1). In particular, we have

Ef [u] � Ef [u0] for all t � 0. (2.7)

It follows from § 2.3 in [45] that (2.1)–(2.3) has a unique solution u(t, x) on
Bn+1 × [0,∞) such that, given T > 0, there exists a constant C = C(T ) such that

C−1 � u(x, t) � C for all (x, t) ∈ Bn+1 × [0, T ]. (2.8)

Lemma 2.1. Given an isometry γ : (Sn, gSn) → (Sn, gSn), we assume that

f(γ(x)) = f(x) and u0(γ(x)) = u0(x) for all x ∈ Sn. (2.9)

Let u(x, t) be the solution of (2.1)–(2.3) with initial data u0. Then

u(γ(x), t) = u(x, t) for all (x, t) ∈ Sn × [0,∞). (2.10)

Proof. Since γ : (Sn, gSn) → (Sn, gSn) is isometry, for any ϕ ∈ C∞(B2n+1), we have

(
∂(ϕ ◦ γ)

∂νg0

)
(x) =

(
∂ϕ

∂νg0

)
(γ(x)) for all x ∈ Sn. (2.11)

Since the mean curvature of g(x, t) = u(x, t)((4)/(n−1))g0 satisfies

Hg(x,t)(x) = u(x, t)−((n+1)/(n−1))

(
2

n − 1
∂

∂νg0

u(x, t) + u(x, t)
)

for x ∈ Sn,

it follows from (2.10) and (2.11) that

Hg(x,t)(γ(x)) = Hg(γ(x),t)(x) for all x ∈ Sn. (2.12)

By (2.1)–(2.4), the flow can be written as

Δg0u = 0 in Bn+1,

ut = −n − 1
4

u−((2)/(n−1))

(
2

n − 1
∂u

∂νg0

+ u

)

+
n − 1

4

(´
Sn Hgu

((2n)/(n−1))dμ´
Sn fu((2n)/(n−1))dμ

)
fu on Sn.

(2.13)

From (2.16), (2.17), (2.19) and (2.20), we know that u(γ(x), t) is also a solution of
(2.13) with initial value u0. Now the assertion (2.18) follows from the uniqueness
result stated in lemma 4.8 in [12]. �

For r > 0 and x0 ∈ Sn, set B+
r (x0)= {x ∈ Bn+1 : dg0(x, x0)< r} and ∂′B+

r (x0) =
∂B+

r (x0) ∩ Sn. The following lemma was proved in [45]: (see § 4.2 in [45])
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Lemma 2.2. Let u(t) be the solution of the flow (2.1). Let (tk)∞k=1 be any
time sequence with tk → ∞ as k → ∞. Consider the sequence uk := u(tk) and
corresponding metrics gk = u(tk)4/n−1g0. Then, up to a subsequence, either

(i) the sequence uk is uniformly bounded in W 1,p(Sn, gSn) ↪→ L∞(Sn) for some
p > n; or

(ii) there exists a subsequence of uk and finitely many points x1, . . . , xL ∈ Sn such
that for any r > 0 and any l ∈ {1, . . . , L} there holds

lim inf
k→∞

(
ω−1

n

ˆ
∂′Br(xl)

|Hgk
|ndμgk

)1/n

� 1. (2.14)

In addition, if the alternative (ii) occurs, the sequence uk is also uniformly bounded
in Lp on any compact subset of (Sn\{xl, . . . , xL}, gSn).

Lemma 2.3. Suppose that lemma 2.2(ii) occurs. For a point x0 ∈ Sn with

max
Sn

f < 2((1)/(n−1))f(x0), (2.15)

suppose that the initial data u0 satisfies

Ef [u0] � 1
f(x0)((n−1)/(n))

+ ε. (2.16)

Then for ε > 0 small enough, we have L = 1.

Proof. Let x1, . . . , xL ∈ Sn be the blow-up points. If L > 2, let

r < min
1�i<j�L

dg0(xi, xj). (2.17)

For any ε > 0, there exists k being sufficiently large such that

L − ε �
L∑

l=1

(
ω−1

n

ˆ
∂′Br(xl)

|Hgk
|ndμgk

)1/n

� L1−1/n

(
ω−1

n

L∑
l=1

ˆ
∂′Br(xl)

|Hgk
|ndμgk

)1/n

� L1−1/n

( 
Sn

|Hgk
|ndμgk

)1/n

� L1−1/nα(tk)
( 

Sn

fndμgk

)1/n

+ L1−1/n

( 
Sn

|α(tk)f − Hgk
|ndμgk

)1/n

,

(2.18)

where the first inequality follows from Hölder’s inequality, the second inequality
follows from (2.14), and the third inequality follows from (2.17). By lemma 3.2 in
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[45], for any p � 2, we have
ˆ

Sn

|α(t)f − Hg|pdμg → 0 as t → ∞.

In particular, ˆ
Sn

|α(tk) − Hgk
|ndμgk

→ 0 as k → ∞. (2.19)

Conversely, by (2.4)–(2.6), we have

α =
( 

Sn

Hgu
((2n)/(n−1))dμ

)/( 
Sn

fu((2n)/(n−1))dμ

)

= Ef [u]

/( 
Sn

fu((2n/(n−1))dμ

)1/n

. (2.20)

Combining (2.18)–(2.20), we obtain

L − ε � L1−1/nEf [uk]
( 

Sn

fndμgk

)1/n
/( 

Sn

fdμgk

)1/n

+ o(1)

� L1−1/nEf [uk](max
Sn

f)n−1/n + o(1)

� L1−1/n

[(
maxSn f

f(x0)

)n−1/n

+ O(ε)

]
+ o(1)

� L1−1/n(21/n + O(ε)) + o(1),

where we have used (2.16) in the second last inequality, and (2.15) in the last
inequality. This implies that L = 1 when ε > 0 is small enough. �

We have the following lemma regarding the blow-up point. Its proof can be found
in [45].

Lemma 2.4. Under the assumptions of lemma 2.2(ii) and 2.3, there is a point
Q ∈ Sn such that the following statements hold:

(a) As k → ∞, the metrics gk concentrate at Q in the sense described by
(ii) in lemma 4.2 in [45]. As a consequence, for any positive number ρ,
max∂′Bρ(Q) uk cannot be uniformly bounded from above for all k 
 1,

(b) Q is a critical point of f ,

(c) ΔSnf(Q) � 0, and

(d) limk→∞ Ef [uk] = 1
f(Q)n−1/n .
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3. Proof of Theorem 1.2

As before, the south pole is denoted by S = (0, . . . , 0,−1) ∈ Sn. Let

R
n+1
+ = {(z1, . . . , zn, zn+1) ∈ R

n+1 : zn+1 � 0}
be the (n + 1)-dimensional upper half Euclidean space equipped with the Euclidean
metric gE . Consider the following map Σ : Bn+1\{S} → R

n+1
+ given by

Σ(x1, . . . , xn, xn+1) =
(

4x

|x|2 + (1 + xn+1)2
,
2(1 − |x|2 − x2

n+1)
|x|2 + (1 + xn+1)2

)
(3.1)

where x = (x1, . . . , xn). Note that

Σ(x) =
(

2x

1 + xn+1
, 0
)

for x ∈ Sn\{S}. (3.2)

Also, Σ−1 : R
n+1
+ → Bn+1\{S} is given by

Σ−1(z, zn+1) =
(

4z

|z|2 + (2 + zn+1)2
,

4 − z2
n+1 − |z|2

|z|2 + (2 + zn+1)2

)
(3.3)

where (z, zn+1) ∈ R
n+1
+ and z = (z1, . . . , zn). Note that Σ−1 : (Rn+1

+ , gE) →
(Bn+1\{S}, g0) is a conformal map such that

[(
4

(2 + zn+1)2 + |z|2
)n−1/2

]4/n−1

gE = (Σ−1)∗(g0). (3.4)

For u ∈ C∞(Bn+1), let

v(z) =
(

4
(2 + zn+1)2 + |z|2

)n−1/2

u(Σ−1(z)).

It follows from (3.4) that

[(
4

(2 + zn+1)2 + |z|2
)n−1/2

]((n+1)/(n−1))(
2

n − 1
∂

∂νg0

u + u

)
(Σ−1(z))

=
2

n − 1
∂

∂νgE

v(z).

This implies that the mean curvatures of g = u4/n−1g0 and g̃ = v4/n−1gE are related
by

u−((n+1)/(n−1))

(
2

n − 1
∂u

∂νg0

+ u

)
= Hg(Σ−1(z)) = Hg̃(z)

=
2

n − 1
v−((n+1)/(n−1)) ∂

∂νgE

v, (3.5)
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Therefore, by (2.5), (2.6) and (3.5), we have

Ef [u] =

(
ω−1

n

ˆ
∂R

n+1
+

Hg̃(z)v(z)((2n)/(n−1))dz

)/

(
ω−1

n

ˆ
∂R

n+1
+

f(Σ−1(z))v(z)((2n)/(n−1))dz

)n−1/n

. (3.6)

Lemma 3.1. For any point x0 ∈ Sn and any positive number ε > 0, there exists a
function u0 ∈ C∞(Sn) such that

Ef [u0] � 1
f(x0)n−1/n

+ ε.

Moreover, we can choose u0 to be invariant under the reflection upon a hyperplane
passing through x0 and the origin 0 ∈ Rn+1, and invariant under rotations with the
axis passing through x0 and 0.

Proof. As the situation is unchanged after a rotation of Sn, we may assume that
x0 = N = (0, . . . , 0, 1) the north pole. For λ > 0, we let

v0(z) =
(

2λ

|z|2 + (zn+1 + λ)2

)n−1/2

for z = Σ(x).

Then v0 satisfies the equation:

Δv0 = 0 in R
n+1
+ ,

2
n − 1

∂v0

∂zn+1
+ v

((n+1)/(n−1))
0 = 0 in ∂R

n+1
+ ,

(3.7)

for some c0 > 0. We choose λ such that
ˆ

∂R
n+1
+

v0(z)((2n)/(n−1))dz = ωn.

If g̃ = v0(z)4/n−1gE , then it follows from (3.7) that
ˆ

∂R
n+1
+

Hg̃(z)v0(z)((2n)/(n−1))dz = ωn. (3.8)

We estimateˆ
∂R

n+1
+

v0(z)((2n)/(n−1))f(Σ−1(z))dz

=
ˆ

∂R
n+1
+

v0(z)((2n)/(n−1))[f(Σ−1(z)) − f(Σ−1(0))]dz

+ f(Σ−1(0))
ˆ

∂R
n+1
+

v0(z)((2n)/(n−1))dz
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=
ˆ

∂R
n+1
+

v0(z)((2n)/(n−1))[f(Σ−1(z)) − f(Σ−1(0))]dz

+ f(Σ−1(0))
ˆ

∂R
n+1
+

v0(z)((2n)/(n−1))dz

=
ˆ

Bδ(0)

v0(z)((2n)/(n−1))[f(Σ−1(z)) − f(Σ−1(0))]dz

+
ˆ

∂R
n+1
+ \Bδ(0)

v0(z)((2n)/(n−1))[f(Σ−1(z)) − f(Σ−1(0))]dz

+ f(Σ−1(0))ωn

= O(ε1) + O

([
λ

δ1

]n)
+ f(N)ωn, (3.9)

since

|f(Σ−1(z)) − f(Σ−1(0))| � ε1 whenever z ∈ Bδ1(0)

and

|v0(z)| � C

(
λ

δ1

)n

whenever z ∈ ∂R
n+1
+ \Bδ1(0)

for some uniform constant C. By first choosing δ1 > 0 to be small enough so that
ε1 > 0 is small and then choosing a small λ > 0 so that λ · δ−1

1 to be small, we
obtain from (3.6), (3.8) and (3.9) that

Ef [u0] � 1
f(x0)n−1/n

+ ε.

Here,

u0(x) =
(

1
1 + |z|2

)n−1/2

v0(z) =
(

1
1 + |z|2

)n−1/2( 2λ

|z|2 + λ2

)n−1/2

for z = Σ(x), (3.10)

where x ∈ Sn. By (3.1)–(3.3), we have

|z|2 =
2|x|2

|1 + xn+1|2 =
2(1 − |xn+1|2)
|1 + xn+1|2 for z = Σ(x),

where x ∈ Sn. That is, u0 defined in (3.10) depends only on xn+1. One can verify
the claimed symmetries directly. �

We are ready to prove theorem 1.2.
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Proof of Theorem 1.2. Without loss of generality, we may assume that

S ∈ F and f(S) = max
F

f

where S = (0, . . . , 0,−1) ∈ Sn is the south pole. We claim that there is δ > 0 such
that

f(S) � f(xc) + δ for any point xc ∈ F with ΔSnf(xc) � 0. (3.11)

If not, then there exists a sequence of points xci
∈ F such that

lim
i→∞

f(xci
) = f(S) = max

F
f and ΔSnf(xci

) > 0.

By passing to subsequence, we assume that xci
→ xm ∈ F as i → ∞ such that

lim
i→∞

f(xm) = max
F

f and ΔSnf(xm) � 0,

which contradicts (1.2). This proves (3.11).
It follows from (3.11) that

1
f(S)n−1/n

+ ε <
1

f(xc)n−1/n
for xc ∈ F with ΔSnf(xc) � 0, (3.12)

where ε > 0 is a small positive number. Let u0 be the positive smooth function con-
structed in lemma 3.1. We claim that, with this choice of initial data, lemma 2.1(i)
occurs. Suppose not, lemma 2.1(ii) occurs. It follows from lemma 2.3 that L = 1.
Let Q be the blow-up point.

We are going to show that Q ∈ F . Suppose Q �∈ F . Then there exists an isometry
γ described in assumptions 1.1 or 1.2 such that

γ(Q) �= Q,

which implies that

max
∂′Br(γ(Q))

uk � C for all k 
 0 (3.13)

whenever r is small enough, since {uk} is uniformly bounded on any compact
subsets of Sn\{Q} by lemma 2.2. But lemma 2.1 implies that

uk(γ(x)) = u(γ(x), tk) = u(x, tk) = uk(x) for all x ∈ Sn.

This together with (3.13) implies that max∂′Br(Q) uk is uniformly bounded, which
contradicts lemma 2.4(a). This proves that Q ∈ F .

Hence, by lemma 2.4(c), Q ∈ F and ΔSnf(Q) � 0. This together with (3.12)
implies that

1
f(S)n−1/n

+ ε <
1

f(Q)n−1/n
.
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Combining this with lemma 2.4(d) and lemma 3.1, we obtain

Ef [u0] � 1
f(S)n−1/n

+ ε <
1

f(Q)n−1/n
= lim

k→∞
Ef [uk],

which contradicts (2.7).
Therefore, lemma 2.1(i) occurs. By lemma 4.2(i) in [45], uk converges to u∞

along the flow (2.1)–(2.3) such that

Δg0u∞ = 0 in Bn+1,

2
n − 1

∂u∞
∂νg0

+ u∞ = α∞fu((n+1)/(n−1))
∞ on Sn

for some α∞ > 0. This proves theorem 1.2. �
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