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1. Introduction

Our goal in this paper is to contribute to the model theory of valued fields with a
valuation-preserving automorphism. The key ideas are due to Scanlon [9, 10] and to
Bélair et al . [3]. We obtain the main result in [3] under weaker assumptions, and give a
simpler proof.

Throughout we consider valued fields as three-sorted structures

K = (K, Γ, k; v, π),

where K is the underlying field, Γ is an ordered abelian group∗ (the value group), k is a
field, the surjective map v : K× → Γ is the valuation, with valuation ring

O = Ov := {a ∈ K : v(a) � 0}

and maximal ideal mv := {a ∈ K : v(a) > 0} of O, and π : O → k is a surjective ring
morphism. Note that then π induces an isomorphism of fields,

a + m �→ π(a) : O/m → k (m := mv),
∗ The ordering of an ordered abelian group is total, by convention.
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2 S. Azgin and L. van den Dries

and there will be no harm in identifying the residue field O/m with k via this isomor-
phism. Accordingly, we refer to k as the residue field. To simplify notation we often write
ā instead of π(a). We call the above K unramified if either

(i) charK = chark = 0, or

(ii) charK = 0, chark = p > 0 and v(p) is the smallest positive element of Γ .

Ax and Kochen and, separately, Ershov proved the following classical result, which we
shall refer to as the AKE-principle. (See Kochen [8] for a complete account.)

Let K and K′ be unramified henselian valued fields with residue fields k and k′ and value
groups Γ and Γ ′ respectively. Then K ≡ K′ if and only if k ≡ k′, as fields, and Γ ≡ Γ ′,
as ordered abelian groups.

Thus the elementary theory of an unramified henselian valued field is determined
by the elementary theories of its residue field and value group. Theorems 6.6 and 8.8
below are strong analogues of the AKE-principle in the presence of a valuation-preserving
automorphism.

Compared to the standard way of proving the AKE-theorems as in Kochen [8], the two
new tools we need are replacing a pseudo-Cauchy sequence by an equivalent one, in order
to rescue pseudo-continuity, and, for positive residue characteristic, the use of a certain
polynomial transformation, the D-transform. These two devices were introduced in [3],
but we use them in combination with a simpler notion of pc-sequence of σ-algebraic type.
The main improvement comes from a better understanding of purely residual extensions
via Lemma 2 below. This allows us to drop a strong assumption, the genericity axiom
of [3], about the automorphism induced on the residue field. Other differences with [3]
will be indicated at various places. We assume familiarity with valuation theory, including
henselization and pseudo-convergence.

This paper is a condensed version of [2] and is partly based on a chapter of the first
author’s thesis [1] with advice from the second author.

2. Preliminaries

Throughout, N = {0, 1, 2, . . . }, and m, n range over N. We let K× = K \ {0} be the
multiplicative group of a field K.

Difference fields

A difference field is a field equipped with a distinguished automorphism of the field,
the difference operator. A difference field is considered in the obvious way as a structure
for the language {0, 1,−, +, ·, σ} of difference rings, with the unary function symbol σ

to be interpreted in a difference field as its difference operator, which is accordingly also
denoted by σ (unless specified otherwise). Let K be a difference field. The fixed field of
K is its subfield

Fix(K) := {a ∈ K : σ(a) = a}.
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We let σn denote the nth iterate of σ and let σ−n denote the nth iterate of σ−1. Let
K ⊆ K ′ be an extension of difference fields and a ∈ K ′. We define K〈a〉 to be the
smallest difference subfield of K ′ containing K and a. The underlying field of K〈a〉 is
K(σi(a) : i ∈ Z).

We now introduce difference polynomials in one variable over K. Each polynomial

f(x0, . . . , xn) ∈ K[x0, . . . , xn]

gives rise to a difference polynomial F (x) = f(x, σ(x), . . . , σn(x)) in the variable x over
K; we put deg F := deg f ∈ N ∪ {−∞} (where deg f is the total degree of f), and refer
to F as a σ-polynomial (over K). If F is not constant (that is, F /∈ K), let f(x0, . . . , xn)
be as above with least possible n (which determines f uniquely), and put

order(F ) := n, complexity(F ) := (n, degxn
f,deg f) ∈ N3.

If F ∈ K, F 
= 0, then order(F ) := −∞ and complexity(F ) := (−∞, 0, 0). Finally,
order(0) := −∞ and complexity(0) := (−∞,−∞,−∞). So in all cases we have
complexity(F ) ∈ (N ∪ {−∞})3, and we order complexities lexicographically.

Let a be an element of a difference field extension of K. We say that a is σ-transcen-
dental over K if there is no non-zero F as above with F (a) = 0, and otherwise a is said to
be σ-algebraic over K. As an example, let F (x) := σ(x)−x. It has order 1, and F (a) = 0
for all a in the prime subfield of K, in particular, F (a) = 0 for infinitely many a ∈ K if
K has characteristic 0. If b is also an element in a difference field extension of K and a

and b are σ-transcendental over K, then there is a unique difference field isomorphism
K〈a〉 → K〈b〉 over K sending a to b.

A minimal σ-polynomial of a over K is a non-zero σ-polynomial F (x) over K such that
F (a) = 0 and G(a) 
= 0 for all non-zero σ-polynomials G(x) over K of lower complexity
than F (x). So a has a minimal σ-polynomial over K if and only if a is σ-algebraic over
K. Suppose b is also an element in some difference field extension of K, and a and b have
a common minimal σ-polynomial F (x) over K. Is there a difference field isomorphism
K〈a〉 → K〈b〉 over K sending a to b? The answer is not always yes, but it is yes if F

is of degree 1 in σm(x) with F of order m. Another case in which the answer is yes is
treated in Lemma 2 below.

A difference field extension L of K is said to be σ-algebraic over K if each c ∈ L is
σ-algebraic over K. For example, if a is σ-algebraic over K, then K〈a〉 is σ-algebraic
over K.

Let x0, . . . , xn, y0, . . . , yn be distinct indeterminates, and put x = (x0, . . . , xn), y =
(y0, . . . , yn). For a polynomial f(x) over a field K we have a unique Taylor expansion in
K[x,y]:

f(x + y) =
∑

i

f(i)(x) · yi,

where the sum is over all i = (i0, . . . , in) ∈ Nn+1, each f(i)(x) ∈ K[x], with f(i) = 0 for
|i| := i0 + · · · + in > deg F , and yi := yi0

0 · · · yin
n . (Also, for a tuple a = (a0, . . . , an) with

components ai in any field we put ai := ai0
0 · · · ain

n .) Thus i!f(i)(x) = ∂if where ∂i is
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the operator (∂/∂x0)i0 · · · (∂/∂xn)in on K[x], and i! = i0! · · · in!. We construe Nn+1 as a
monoid under + (componentwise addition), and let � be the (partial) product ordering
on Nn+1 induced by the natural order on N. Define ( i

j ) as ( i0
j0

) · · · ( in
jn

) ∈ N, when j � i

in Nn+1. We then have the following lemma.

Lemma 2.1. For i, j ∈ Nn+1 we have

(f(i))(j) =

(
i + j

i

)
f(i+j).

In particular, f(i) = f for |i| = 0, and if |i| = 1 with ik = 1, then

f(i) =
∂f

∂xk
.

Also, deg f(i) < deg f if |i| � 1 and f 
= 0.
Let K be a difference field, and x an indeterminate. When n is clear from context we

set σ(x) = (x, σ(x), . . . , σn(x)), and also σ(a) = (a, σ(a), . . . , σn(a)) for a ∈ K. Then for
f ∈ K[x0, . . . , xn] as above and F (x) = f(σ(x)) we have the following identity in the
ring of difference polynomials in the distinct indeterminates x and y over K:

F (x + y) = f(σ(x + y))

= f(σ(x) + σ(y))

=
∑

i

f(i)(σ(x)) · σ(y)i

=
∑

i

F(i)(x) · σ(y)i,

where F(i)(x) := f(i)(σ(x)).

Valued fields

We consider valued fields as three-sorted structures

K = (K, Γ, k; v, π)

as explained in the introduction. The three sorts are referred to as the field sort with
variables ranging over K, the value group sort with variables ranging over Γ , and the
residue sort with variables ranging over k. We say that K is of equal characteristic 0 if
char(K) = char(k) = 0. If char(K) = 0 and char(k) = p > 0, we say that K is of mixed
characteristic.

In dealing with a valued field K as above we also let v denote the valuation of any
valued field extension of K that gets mentioned, unless we indicate otherwise, and any
subfield E of K is construed as a valued subfield of K in the obvious way.

A valued field extension K′ of a valued field K is said to be immediate if the residue
field and the value group of K′ are the same as those of K. A valued field is maximal if
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it has no proper immediate valued field extension and is algebraically maximal if it has
no proper immediate algebraic valued field extension.

A key notion in the study of immediate extensions of valued fields is that of pseudo-
cauchy sequence. First, a well-indexed sequence is a sequence {aρ} indexed by the ele-
ments ρ of some non-empty well-ordered set without largest element; in this connection
‘eventually’ means ‘for all sufficiently large ρ’.

Let K be a valued field. A pseudo-Cauchy sequence (henceforth pc-sequence) in K is a
well-indexed sequence {aρ} in K such that for some index ρ0,

ρ′′ > ρ′ > ρ � ρ0 =⇒ v(aρ′′ − aρ′) > v(aρ′ − aρ).

In particular, a pc-sequence in K cannot be eventually constant. For a well-indexed
sequence {aρ} in K and a in some valued field extension of K we say that {aρ} pseudo-
converges to a, or a is a pseudo-limit of {aρ} (notation: aρ � a) if the sequence {v(a−aρ)}
is eventually strictly increasing; note that then {aρ} is a pc-sequence in K.

Let {aρ} be a pc-sequence in K, pick ρ0 as above, and put

γρ := v(aρ′ − aρ)

for ρ′ > ρ � ρ0; this depends only on ρ as the notation suggests. Then {γρ}ρ�ρ0 is strictly
increasing. The width of {aρ} is the set

{γ ∈ Γ ∪ {∞} : γ > γρ for all ρ � ρ0}.

Its significance is that if a, b ∈ K and aρ � a, then aρ � b if and only if v(a − b) is in
the width of {aρ}.

An old and useful observation by Macintyre is that if {aρ} is a pc-sequence in an
expansion of a valued field (for example, in a valued difference field), then {aρ} has a
pseudo-limit in an elementary extension of that expansion.

The following easy lemma will be useful in dealing with pc-sequences.

Lemma 2.2. Let Γ be an ordered abelian group, let A be a subset of Γ , and let {γρ}
be a well-indexed strictly increasing sequence in A. Let f1, . . . , fn : A → Γ be such that
for all distinct i, j ∈ {1, . . . , n} the function fi − fj is either strictly increasing or strictly
decreasing. Then there is a unique enumeration i1, . . . , in of {1, . . . , n} such that

fi1(γρ) < · · · < fin(γρ), eventually.

For this enumeration and δ ∈ Γ such that {γ ∈ Γ : 0 < γ < δ} is finite, if 1 � µ < ν � n,
then fiν (γρ) − fiµ(γρ) > δ, eventually.

For linear functions on Γ this was used by Kaplansky [7] in his work on immediate
extensions of valued fields. The last part of the lemma is needed in dealing with finitely
ramified valued fields of mixed characteristic. As in [3] we call the valued field K finitely
ramified if the following two conditions are satisfied:

(i) K has characteristic 0;

(ii) {γ ∈ Γ : 0 < γ < v(p)} is finite if k has characteristic p > 0.

In particular, K is finitely ramified if K is unramified as defined in the introduction.

https://doi.org/10.1017/S1474748010000174 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000174


6 S. Azgin and L. van den Dries

Let K = (K, Γ, k; v, π) be a valued field. A cross-section on K is a group morphism
s : Γ → K× such that v(sγ) = γ for all γ ∈ Γ . The following is well known.

Lemma 2.3. If K is ℵ1-saturated, then there is a cross-section on K. In particular, there
is a cross-section on some elementary extension of K.

Proof. With U(O) the multiplicative group of units of O, the inclusion U(O) → K×

and v : K× → Γ yield the exact sequence of abelian groups

1 → U(O) → K× → Γ → 0.

Suppose K is ℵ1-saturated. Then the group U(O) is ℵ1-saturated, hence pure-injective
by [4, p. 171]. It is also pure in K× since Γ is torsion-free, and thus the above exact
sequence splits. �

In the proof of Theorem 6.7 we need the following variant.

Lemma 2.4. Let K be ℵ1-saturated, let E = (E, ΓE , . . . ) be an ℵ1-saturated valued
subfield of K such that ΓE is pure in Γ , and let sE be a cross-section on E . Then sE

extends to a cross-section on K.

Proof. By Lemma 2.3 we have a cross-section s on K. Now ΓE is pure-injective, and
pure in Γ , so we have an internal direct sum decomposition Γ = ΓE ⊕ ∆ with ∆ a
subgroup of Γ . This gives a cross-section on K that coincides with sE on ΓE and with s

on ∆. �

An angular component map on K is a multiplicative group morphism ac: K× → k×

such that ac(a) = π(a) whenever v(a) = 0; we extend it to ac : K → k by setting ac(0) = 0
and also refer to this extension as an angular component map on K. A cross-section s on
K yields an angular component map ac on K by setting ac(x) = π(x/s(v(x))) for x ∈ K×.
Thus Lemma 2.3 goes through with angular component maps instead of cross-sections.

Valued difference fields

A valued difference field is a valued field K as above where K is not just a field, but a
difference field whose difference operator σ satisfies σ(O) = O. It follows that σ induces
an automorphism of the residue field:

π(a) �→ π(σ(a)) : k → k, a ∈ O.

We denote this automorphism by σ̄, and k equipped with σ̄ is called the residue difference
field of K. (Likewise, σ induces an automorphism of the value group Γ ; at a later stage
we restrict attention to K where σ induces the identity on Γ .)

Let K be a valued difference field as above. The difference operator σ of K is also
referred to as the difference operator of K. By an extension of K we shall mean a valued
difference field K′ = (K ′, . . . ) that extends K as a valued field and whose difference
operator extends the difference operator of K′. In this situation we also say that K is
a valued difference subfield of K′, and we indicate this by K � K′. Such an extension
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is called immediate if it is immediate as an extension of valued fields. In dealing with
a valued difference field K as above v also denotes the valuation of any extension of K
that gets mentioned (unless specified otherwise), and any difference subfield E of K is
construed as a valued difference subfield of K in the obvious way. The residue field of the
valued subfield Fix(K) of K is clearly a subfield of Fix(k).

Let Kh = (Kh, Γ,k; . . . ) be the henselization of the underlying valued field of K. By the
universal property of ‘henselization’ the operator σ extends uniquely to an automorphism
σh of the field Kh such that Kh with σh is a valued difference field. Accordingly we shall
view Kh as a valued difference field, making it thereby an immediate extension of the
valued difference field K.

Given an extension K � K′ of valued difference fields and a ∈ K ′, we define K〈a〉
to be the smallest valued difference subfield of K′ extending K and containing a in its
underlying difference field; thus the underlying difference field of K〈a〉 is K〈a〉.

Two lemmas

Suppose K = (K, Γ, k; v, π) and K′ = (K ′, Γ ′,k′; v′, π′) are valued difference fields, put
O := Ov, O′ := Ov′ , and let σ denote both the difference operator of K and of K′. Let
E = (E, ΓE ,kE ; . . . ) be a valued difference subfield of both K and K′, that is, E � K and
E � K′. The next lemma is rather obvious, but Lemma 2 is more subtle. Our later use
of it enables us to drop the Genericity Axiom of [3], which says that for all n � 1 and
a0, . . . , an, b ∈ k with a0 
= 0, an 
= 0 and all non-zero F ∈ k[x0, . . . , xn] there is x ∈ k

such that
a0x + a1σ̄(x) + · · · + anσ̄n(x) = b, F (σ̄(x)) 
= 0.

Lemma 2.5. Let a ∈ O and assume α = ā is σ̄-transcendental over kE . Then

(i) v(P (a)) = minl{v(bl)} for each σ-polynomial P (x) =
∑

blσ
l(x) over E;

(ii) v(E〈a〉×) = v(E×) = ΓE , and E〈a〉 has residue field kE〈α〉;

(iii) if b ∈ O′ is such that β = b̄ is σ̄-transcendental over kE , then there is a valued
difference field isomorphism E〈a〉 → E〈b〉 over E sending a to b.

Proof. Let P (x) =
∑

blσ
l(x) be a non-zero σ-polynomial over E. Then P (x) = cQ(x)

where c ∈ E× and v(c) = minl{v(bl)}, and Q(x) is a σ-polynomial over the valuation
ring of E with some coefficient equal to 1. Since α = ā is σ̄-transcendental over kE ,
Q̄(ā) 
= 0. Therefore, v(Q(a)) = 0, and thus

v(P (a)) = v(c) = min
l

{v(bl)}.

It follows that v(E〈a〉×) = v(E×). A similar argument shows that E〈a〉 has residue field
kE〈α〉. It also follows from (i) that a is σ-transcendental over E, and (iii) is an easy
consequence of this fact and of (i). �

Recall that in the beginning of this section we defined the complexity of a difference
polynomial over a difference field.
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Lemma 2.6.∗ Assume that char(k) = 0, and let G(x) be a non-constant σ-polynomial
over the valuation ring of E whose reduction Ḡ(x) has the same complexity as G(x).
Let a ∈ O, b ∈ O′, and assume that G(a) = 0, G(b) = 0, and that Ḡ(x) is a minimal
σ̄-polynomial of α := ā and of β := b̄ over kE . Then

(i) E〈a〉 has value group v(E×) = ΓE and residue field kE〈α〉;

(ii) if there is a difference field isomorphism kE〈α〉 → kE〈β〉 over kE sending α to β,
then there is a valued difference field isomorphism E〈a〉 → E〈b〉 over E sending a

to b.

Proof. To simplify notation we set, for k ∈ Z,

ak := σk(a), αk := σ̄k(α), bk := σk(b), βk := σ̄k(β).

As in the proof of Lemma 2.5 one shows that if P (x) =
∑

blσ(x)l is a σ-polynomial over
E of lower complexity than G(x), then v(P (a)) = minl{v(bl)}. It is also clear that G is
a minimal σ-polynomial of a over E. Let G have order m and degree d > 0 with respect
to σm(x), so

G(x) = P0(x) + P1(x)σm(x) + · · · + Pd(x)σm(x)d,

where P0, . . . , Pd are σ-polynomials over the valuation ring of E of order less than m, with
Pd 
= 0. Then the valued subfield Em−1 := E(a0, . . . , am−1) of K has transcendence basis
a0, . . . , am−1 over E, the residue field of Em−1 is kE(α0, . . . , αm−1) with transcendence
basis α0, . . . , αm−1 over kE , and the value group of Em−1 is ΓE . Also, v(Pd(a)) = 0 and
v(Pi(a)) � 0 for i = 0, . . . , d − 1, and

g(T ) := T d + pd−1T
d−1 + · · · + p0, with pi := Pi(a)/Pd(a) for i = 0, . . . , d − 1,

is the minimum polynomial of am over Em−1 and has its coefficients in the valuation
ring of Em−1, and the reduction ḡ(T ) of g(T ) is the minimum polynomial of αm over
kE(α0, . . . , αm−1). For the rest of the proof we assume without loss that K and K′ are
henselian as valued fields.

For n � m we set

En := E(a0, . . . , an), a valued subfield of K,

we let Eh
n be the henselization of En in K, and let Eh

m−1 be the henselization of Em−1

in K. For n � m, let gn(T ) be the minimum polynomial of an over Eh
n−1.

Claim 1. For n � m the polynomial gn has its coefficients in the valuation ring of Eh
n−1,

the residue field of En is kE(α0, . . . , αn), the value group of En is ΓE , the reduction ḡn

of gn is the minimum polynomial of αn over kE(α0, . . . , αn−1).

∗ We thank Martin Hils for pointing out a serious error in the proof of a related lemma in [1].
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Valued fields equipped with a value-preserving automorphism 9

Claim 1 holds for n = m: ḡ(T ) is the minimum polynomial of αm over the residue
field kE(α0, . . . , αm−1) of Em−1, and so the monic polynomial g(T ) is necessarily the
minimum polynomial of am over Eh

m−1, that is, gm = g. Assume inductively that the
claim holds for a certain n � m. By applying σ to the coefficients of gn(T ) we obtain a
monic polynomial gσ

n(T ) over the valuation ring of Eh
n with an+1 as a zero. Thus gn+1(T )

is a monic irreducible factor of gσ
n(T ) in Eh

n[T ], and has therefore coefficients in the
valuation ring of Eh

n. Its reduction ḡn+1 divides the reduction of gσ
n (in the polynomial

ring kE(α0, . . . , αn)[T ]) and so αn+1, being a simple zero of this last reduction, is a
simple zero of ḡn+1. It only remains to show that ḡn+1 is irreducible in kE(α0, . . . , αn)[T ].
Suppose it is not. Then ḡn+1(T ) = φ(T )ψ(T ), where φ, ψ ∈ kE(α0, . . . , αn)[T ] are monic
of degree at least 1, with φ irreducible in this polynomial ring and φ(αn+1) = 0. Hence
φ and ψ are coprime. Then the factorization ḡn+1 = φψ can be lifted to a non-trivial
factorization of gn+1 in Eh

n[T ], a contradiction. Claim 1 is established.
It follows that E(ak : k ∈ N) has residue field kE(αk : k ∈ N) and value group ΓE .

Applying the valued field automorphism σ−n yields that the valued subfield E(ak−n :
k ∈ N) of K has residue field kE(αk−n : k ∈ N) and value group ΓE . Hence E〈a〉 has
residue field kE〈α〉 and value group ΓE . We have proved (i).

To prove (ii), let ι : kE〈α〉 → kE〈β〉 be a difference field isomorphism over kE sending
α to β. Let Fm−1 := E(b0, . . . , bm−1), a valued subfield of K′. Then

h(T ) := T d + qd−1T
d−1 + · · · + q0, with qi := Pi(b)/Pd(b) for i = 0, . . . , d − 1,

is the minimum polynomial of bm over Fm−1 and has its coefficients in the valuation
ring of Fm−1, and the reduction h̄(T ) of h(T ) is the minimum polynomial of βm over
kE(β0, . . . , βm−1). Now ḡ and h̄ correspond under ι. For n � m, let

Fn := E(b0, . . . , bn), a valued subfield of K′,

and let F h
n be the henselization of Fn in K′. For n � m, let hn(T ) be the minimum

polynomial of bn over F h
n−1, so hn has its coefficients in the valuation ring of F h

n−1, the
residue field of Fn is kE(β0, . . . , βn), the value group of Fn is ΓE , the reduction h̄n of
hn is the minimum polynomial of βn over kE(β0, . . . , βn−1). It follows that ḡn and h̄n

correspond under ι, for each n � m.

Claim 2. For n � m there is a (unique) valued field isomorphism in : En → Fn over E

sending ak to bk for k = 0, . . . , n.

From the remarks at the beginning of the proof it is clear that we have a unique valued
field isomorphism im−1 : Em−1 → Fm−1 over E sending ak to bk for k = 0, . . . , m − 1. It
follows that the minimum polynomials g and h correspond under im−1, and so we have
a field isomorphism Em → Fm extending im−1 and sending am to bm. This is a valued
field isomorphism since the residue field kE(α0, . . . , αm) of Em has the same degree over
the residue field kE(α0, . . . , αm−1) of Em−1 as Em has over Em−1, and likewise with Fm

and Fm−1. This proves Claim 2 for n = m. Assume the claim holds for a certain n � m.
Then gn and hn correspond under in−1, and so gσ

n and hσ
n correspond under in. From the

unique lifting properties of henselian local rings it follows that gn+1 is the unique monic
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polynomial in Eh
n[T ] that divides gσ

n, has its coefficients in the valuation ring of Eh
n, and

whose reduction is ḡn+1; likewise with hn+1. Therefore, gn+1 and hn+1 correspond under
in, and so we have a field isomorphism Eh

n(an+1) → F h
n (bn+1) that extends in and sends

an+1 to bn+1. Arguing as in the case n = m we see that this field isomorphism is a valued
field isomorphism; its restriction to En+1 is the desired in+1. This proves Claim 2, and
then it is easy to finish the proof of (ii). �

Lemma 2 and its proof go through if we replace the assumption chark = 0 by its
consequence that αm is a simple zero of its minimum polynomial over kE(α0, . . . , αm−1),
where m is the order of G as in the proof. (Just add to Claim 1 in the proof that αn is
a simple zero of ḡn, for all n � m.)

Hahn difference fields and Witt difference fields

Let k be a field and Γ an ordered abelian group. This gives the Hahn field k((tΓ )) whose
elements are the formal sums a =

∑
γ∈Γ aγtγ with aγ ∈ k for all γ, with well-ordered

support {γ : aγ 
= 0} ⊆ Γ . With a as above, we define the valuation v : k((tΓ ))× → Γ by
v(a) := min{γ : aγ 
= 0}, and the surjective ring morphism π : Ov → k by π(a) := a0. In
this way we obtain the (maximal) valued field K = (k((tΓ )), Γ, k; v, π) to which we also
just refer to as the Hahn field k((tΓ )).

Let the field k also be equipped with an automorphism σ̄. Then∑
γ

aγtγ �→
∑

γ

σ̄(aγ)tγ

is an automorphism, to be denoted by σ, of the field k((tΓ )), with σ(Ov) = Ov. We
consider the three-sorted structure (k((tΓ )), Γ,k; v, π), with the field k((tΓ )) equipped
with the automorphism σ as above, as a valued difference field, and also refer to it as the
Hahn difference field k((tΓ )). Thus Fix(k((tΓ ))) = Fix(k)((tΓ )).

Now let k be a perfect field of characteristic p > 0. Then we have the ring W[k] of Witt
vectors over k; it is a complete discrete valuation ring whose elements are the infinite
sequences (a0, a1, a2, . . . ) with all an ∈ k; see, for example, [11] for how addition and
multiplication are defined. The Frobenius automorphism x �→ xp of k induces the ring
automorphism

(a0, a1, a2, . . . ) �→ (ap
0, a

p
1, a

p
2, . . . )

of W[k]. This automorphism of W[k] extends to a field automorphism, the Witt Frobenius,
of the fraction field W(k) of W[k]. We consider W(k) as a valued difference field by taking
the Witt Frobenius as its difference operator, by taking the valuation v to be the unique
one with valuation ring W[k], value group Z and v(p) = 1, and by letting π : W[k] → k

be the canonical map
(a0, a1, a2, . . . ) �→ a0.

We refer to this valued difference field as the Witt difference field W(k). For any perfect
subfield k′ of k we consider W(k′) as a valued difference subfield of W(k) in the obvious
way. In particular, with Fp the prime field of k, we have Fix(W(k)) = W(Fp), and the

https://doi.org/10.1017/S1474748010000174 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000174


Valued fields equipped with a value-preserving automorphism 11

latter is identified with the valued field Qp of p-adic numbers in the usual way. In the
last section the functorial nature of W plays a role: any field embedding ι : k → k′ into
a perfect field k′ induces the ring embedding

W[ι] : W[k] → W[k′], (a0, a1, a2, . . . ) �→ (ιa0, ιa1, ιa2, . . . ).

Three axioms

Let K be a valued difference field, and consider the following three conditions on K.
The first one says that σ preserves the valuation v.

Axiom 1. For all a ∈ K×, v(σ(a)) = v(a).

Axiom 2. For all γ ∈ Γ there is a ∈ Fix(K) such that v(a) = γ.

Axiom 3. For each integer d > 0 there is y ∈ k with σ̄d(y) 
= y. If char(k) = p > 0, then
for any integers d, e with d 
= 0 and e > 0 there is y ∈ k with σ̄d(y) 
= ype

.

It is easy to see that Axiom 2 implies Axiom 1. If Γ is an ordered abelian group and k

a difference field, then the Hahn difference field k((tΓ )) satisfies Axiom 2. If k is a perfect
field of characteristic p > 0, then the Witt difference field W(k) satisfies Axiom 2. If K
satisfies Axiom 1, so does any valued difference subfield of K, and any extension of K
with the same value group. If K satisfies Axiom 2, so does any extension with the same
value group.

Note that Axiom 3 is actually an axiom scheme. By [5, p. 201] Axiom 3 implies
that there are no residual σ-identities at all, that is, for every non-zero polynomial f ∈
k[x0, . . . , xn], there is a y in k with f(σ̄(y)) 
= 0 (and thus the set {y ∈ k : f(σ̄(y)) 
= 0}
is infinite).

From now on we assume that all our valued difference fields satisfy Axiom 1. By this
convention, whenever we refer to an extension of a valued difference field, this extension
is also assumed to satisfy Axiom 1.

3. Pseudo-convergence and σ-polynomials

If {aρ} is a pc-sequence in a valued field K and aρ � a with a ∈ K, then for an
ordinary non-constant polynomial f(x) ∈ K[x] we have f(aρ) � f(a) (see [7]). This fails
in general for non-constant σ-polynomials over valued difference fields. We do, however,
have a variant of this pseudo-continuity for σ-polynomials using equivalent pc-sequences,
a key device from [3]. This section presents the relevant definitions and facts but omits
most proofs. Some of these facts vary slightly from corresponding results in [3]. Readers
can either adapt proofs in [3] or consult [2]. Theorems 3.3, 3.5, 3.9 and 3.10 below
correspond to Theorems 5.6, 5.8 and 5.9 in [3].

Definition 3.1. Two pc-sequences {aρ}, {bρ} in a valued field are equivalent if for all a

in all valued field extensions, aρ � a ⇔ bρ � a.

This is an equivalence relation on the set of pc-sequences in a given valued field with
given index set.

https://doi.org/10.1017/S1474748010000174 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000174
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Lemma 3.2. Two pc-sequences {aρ} and {bρ} in a valued field are equivalent if and only
if they have the same width and a common pseudo-limit in some valued field extension.

Theorem 3.3. Let K be a valued difference field satisfying Axioms 2 and 3. If {aρ} is
a pc-sequence in K with aρ � a in an extension, and Σ is a finite set of σ-polynomials
G(x) over K, then there is a pc-sequence {bρ} from K, equivalent to {aρ}, such that
G(bρ) � G(a) for each non-constant G in Σ.

Corollary 3.4. The same with a removed, and one only asks that {G(bρ)} is a pc-
sequence for each non-constant G in Σ.

Thus σ-polynomials can be made to preserve pseudo-continuity by passing to equivalent
pc-sequences. Moreover, we have the following theorem.

Theorem 3.5. Let K be a valued difference field satisfying Axioms 2 and 3. Let {aρ} be
a pc-sequence from K and let a in some extension of K be such that aρ � a. Let G(x)
be a σ-polynomial over K such that

(i) G(aρ) � 0,

(ii) G(l)(bρ) 
� 0 whenever |l| � 1 and {bρ} is a pc-sequence in K equivalent to {aρ}.

Let Σ be a finite set of σ-polynomials H(x) over K. Then there is a pc-sequence {bρ} in
K, equivalent to {aρ}, such that G(bρ) � 0, and H(bρ) � H(a) for every non-constant
H in Σ.

The Witt case

Let K = (K, Γ, k; v, π) be a valued difference field, satisfying Axiom 1 as usual. Assume
that char(K) = 0, char(k) = p > 0, k is perfect, that Γ has a least positive element 1
with v(p) = 1, and, finally, that σ̄(y) = yp on k. We call this the Witt case (for p). These
assumptions are satisfied by the Witt difference field W(k).

Axiom 3 fails in the Witt case but we indicate below how to obtain analogues of
Theorems 3.3 and 3.5. As in [3] we use the formalism of ∂-rings from [6].

∂-rings

Let ∂0 : O → O be the identity map, and define

∂1 : O → O, ∂1(x) :=
σ(x) − xp

p
.

Usually ∂1 is written as ∂; it satisfies the axioms for a p-derivation on O, namely

∂(1) = 0,

∂(x + y) = ∂(x) + ∂(y) −
p−1∑
i=1

a(p, i)xiyp−i, a(p, i) :=
(

p

i

)/
p,

∂(xy) = xp∂(y) + yp∂(x) + p∂(x)∂(y).
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A ∂-ring is a commutative ring with 1 equipped with a unary operation ∂ satisfying the
above identities. For the basic facts on ∂-rings used below, see [6]. Because O is a ∂-ring,
there is a unique sequence of unary operations ∂0, ∂1, ∂2, · · · : O → O with ∂0, ∂1 as
above such that for all a ∈ O and all n,

σn(a) = Wn(∂0(a), . . . , ∂n(a)),

Wn(x0, . . . , xn) := xpn

0 + pxpn−1

1 + · · · + pnxn ∈ Z[x0, . . . , xn].

Recall that addition of Witt vectors [11] is given in terms of polynomials

Sn ∈ Z[y0, . . . , yn, z0, . . . , zn]

such that
Wn(y0, . . . , yn) + Wn(z0, . . . , zn) = Wn(S0, . . . , Sn)

and, accordingly, ∂n(a + b) = Sn(∂0(a), . . . , ∂n(a), ∂0(b), . . . , ∂n(b)) for all a, b ∈ O.
In W[k], the ∂n yield the components of Witt vectors, namely, each a ∈ W[k] equals

(∂0(a), ∂1(a), ∂2(a), . . . ). In our Witt case, O/pn+1O ∼= W[k]/(pn+1).

Lemma 3.6. Identifying the vectors (a0, . . . , an) ∈ kn+1 with the elements of
W[k]/(pn+1) in the usual way, we have a surjective ring morphism

O → W[k]/(pn+1), a �→ (∂0(a), ∂1(a), . . . , ∂n(a))

with kernel pn+1O.

The analogue of Theorem 3.3 for the Witt case is Theorem 3.9 below. A difference
with the treatment in [3] is that the proof in [2] uses the following lemma.

Lemma 3.7. Let g ∈ O[y0, . . . , yn] be such that its image ḡ ∈ k[y0, . . . , yn] is non-zero.
Then there is a g∗ ∈ O[y0, . . . , yn, z0, . . . , zn] such that, for all a, b ∈ O,

g(∂0(a + b), . . . , ∂n(a + b)) = g∗(∂0(a), . . . , ∂n(a), ∂0(b), . . . , ∂n(b)),

and the image of g∗(y0, . . . , yn, ∂0(b), . . . , ∂n(b)) in k[y0, . . . , yn] is non-zero.

Proof. With the Sn as above, put g∗ := g(S0, . . . , Sn). Then the displayed identity
holds. Let b ∈ O and put h := g∗(y0, . . . , yn, ∂0(b), . . . , ∂n(b)) ∈ O[y0, . . . , yn]. In order
to show that its image h̄ in k[y0, . . . , yn] is non-zero, we can assume that k is infinite
(passing to a suitable Witt extension of K if necessary). Take c0, . . . , cn ∈ k such that
ḡ(c0, . . . , cn) 
= 0. By Lemma 3.6, (c0, . . . , cn) = (∂0(x), ∂1(x), . . . , ∂n(x)) for a suitable
x ∈ O. Let a := x − b. Then by the above,

g(∂0(x), . . . , ∂n(x)) = h(∂0(a), . . . , ∂n(a)),

with image ḡ(c0, . . . , cn) 
= 0 in k. Thus h̄ 
= 0. �
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The D-transform

In analogy with σ and σ̄, we sometimes write ∂(a) for (∂0(a), . . . , ∂n(a)), and ∂̄(a) for
(∂0(a), . . . , ∂n(a)) for a in the valuation ring of a Witt extension. Thus σ(a) = D(∂(a))
for all such a, where

D(y0, . . . , yn) = (y0, y
p
0 + py1, . . . , y

pn

0 + pypn−1

1 + · · · + pnyn).

Let F ∈ K[x0, . . . , xn] be homogeneous of degree m > 0, and consider its D-transform
F (D(y0, . . . , yn)) ∈ K[y0, . . . , yn]. This D-transform is not in general homogeneous, but
its constant term is zero and it has total degree at most mpn. Write

F (x0, . . . , xn) =
∑

|l|=m

alx
l (all al ∈ K),

F (D(y0, . . . , yn)) =
∑

1�|j|�mpn

bjy
j (all bj ∈ K).

To express how the bj depend on the al we introduce a tuple (xl) of new variables,
indexed by the l with |l| = m.

Lemma 3.8. bj = Λj,m((al)) where Λj,m ∈ Z[(xl)] is homogeneous of degree 1 and
depends only on j, m and p, not on K or F .

Theorem 3.9. Let K be a Witt case valued difference field that satisfies Axiom 2 and
has infinite residue field. If {aρ} is a pc-sequence from K, and aρ � a in a Witt case
extension, then the conclusion of Theorem 3.3 holds. Also the corollary to Theorem 3.3
goes through.

Let K be a Witt case with k of characteristic p. For a σ-polynomial G(x) over K of
order at most n and a ∈ K we set

G(m, x) := (G(l)(x))|l|=m, G(m, a) := (G(l)(a))|l|=m.

Note that if G is non-constant, then Λj,m(G(m, x)) has lower complexity than G for
1 � m � deg G, j ∈ Nn+1, 1 � |j| � mpn, where Λj,m is as in Lemma 3.8.

Theorem 3.10. Suppose that K satisfies Axiom 2, and is a Witt case with infinite k of
characteristic p. Let {aρ} be a pc-sequence from K and aρ � a with a in a Witt case
extension. Let G(x) be a σ-polynomial over K of order at most n so that

(i) G(aρ) � 0;

(ii) Λj,m(G(m, bρ)) 
� 0 whenever 1 � m � deg G, j ∈ Nn+1, 1 � |j| � mpn, and {bρ}
is a pc-sequence in K equivalent to {aρ}.

Let Σ be a finite set of σ-polynomials H(x) over K. Then there is a pc-sequence {bρ} from
K, equivalent to {aρ}, such that G(bρ) � 0, and H(bρ) � H(a) for each non-constant
H ∈ Σ.
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4. Newton–Hensel approximation

Let K = (K, Γ, k; v, π) be a valued difference field, satisfying Axiom 1 of course. Until
Definition 4.4 we fix a σ-polynomial G over O of order at most n, and let a ∈ O.

Definition 4.1. G is σ-henselian at a if v(G(a)) > 0 and min|i|=1 v(G(i)(a)) = 0.

The coefficients of all G(i) are in O. Hence, if G is σ-henselian at a, and b ∈ O satisfies
v(a − b) > 0, then G is also σ-henselian at b. If G is σ-henselian at a and G(a) 
= 0, does
there exist b ∈ O such that v(a−b) > 0 and v(G(b)) > v(G(a))? To get a positive answer
we use an additional assumption on k.

Axiom 4n. Each inhomogeneous linear σ̄-equation

1 + α0x + · · · + αnσ̄n(x) = 0 (all αi ∈ k, some αi 
= 0),

has a solution in k. (And we say that K satisfies Axiom 4n if k does.)

Lemma 4.2. Suppose K satisfies Axiom 4n and G is σ-henselian at a, with G(a) 
= 0.
Then there is b ∈ O such that v(a − b) � v(G(a)) and v(G(b)) > v(G(a)). For any such
b we have v(a − b) = v(G(a)) and G is σ-henselian at b.

Proof. Let b = a + G(a)u where u ∈ O is to be determined later. Then

G(b) = G(a) +
∑
|i|�1

G(i)(a) · σ(G(a)u)i.

Extracting a factor G(a) and using Axiom 1 it follows that

G(b) = G(a) ·
(

1 +
∑
|i|=1

ciσ(u)i +
∑
|j|>1

cjσ(u)j

)
,

where mini|=1 v(ci) = 0 and v(cj) > 0 for |j| > 1. Using Axiom 4n, we can pick u ∈ O
such that ū is a solution of

1 +
∑
|i|=1

ci · σ̄(x)i = 0.

Then v(b − a) = v(G(a)), and v(G(b)) > v(G(a)). It is clear that any b ∈ O with
v(a − b) � v(G(a)) and v(G(b)) > v(G(a)) is obtained in this way. �

Lemma 4.3. Suppose K satisfies Axiom 4n and G(x) is σ-henselian at a. Suppose also
that there is no b ∈ K with G(b) = 0 and v(a−b) = v(G(a)). Then there is a pc-sequence
{aρ} in K with the following properties:

(1) a0 = a and {aρ} has no pseudo-limit in K;

(2) {v(G(aρ))} is strictly increasing, and thus G(aρ) � 0;

(3) v(aρ′ − aρ) = v(G(aρ)) whenever ρ < ρ′;

(4) for any extension K′ = (K ′, . . . ) of K and b, c ∈ K ′ such that aρ � b, G(c) = 0 and
v(b − c) � v(G(b)), we have aρ � c.
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Proof. Let {aρ}ρ<λ be a sequence in O with λ an ordinal greater than 0, a0 = a, and

(i) G is σ-henselian at aρ, for all ρ < λ,

(ii) v(aρ′ − aρ) = v(G(aρ)) whenever ρ < ρ′ < λ,

(iii) v(G(aρ′)) > v(G(aρ)) whenever ρ < ρ′ < λ.

(Note that for λ = 1 we have such a sequence.) Suppose λ = µ+ 1 is a successor ordinal.
Then Lemma 4.2 yields aλ ∈ K such that v(aλ − aµ) = v(G(aµ)) and v(G(aλ)) >

v(G(aµ)). Then the extended sequence {aρ}ρ<λ+1 has the above properties with λ + 1
instead of λ.

Suppose λ is a limit ordinal. Then {aρ} is a pc-sequence and G(aρ) � 0. If {aρ} has
no pseudo-limit in K we are done. Assume otherwise, and take a pseudo-limit aλ ∈ K of
{aρ}. The extended sequence {aρ}ρ<λ+1 clearly satisfies the conditions (i) and (ii) with
λ + 1 instead of λ. Since G is over O we have

v(G(aλ) − G(aρ)) � v(aλ − aρ) = v(aρ+1 − aρ) = v(G(aρ))

for ρ < λ. Therefore, v(G(aλ)) � v(G(aρ)) for ρ < λ, and by (iii) this yields v(G(aλ)) >

v(G(aρ)) for ρ < λ. So the extended sequence also satisfies (iii) with λ + 1 instead of
λ. For cardinality reasons this building process must come to an end and thus yield a
pc-sequence {aρ} satisfying (1)–(3).

Let b, c in an extension of K be such that aρ � b, G(c) = 0 and v(b − c) � v(G(b)).
Then G is σ-henselian at b, and for ρ < ρ′,

γρ := v(aρ′ − aρ) = v(G(aρ)) = v(b − aρ),

so
v(b − c) � v(G(b)) = v(G(b) − G(aρ) + G(aρ)) � γρ,

since v(G(b) − G(aρ)) � v(b − aρ) = γρ. Thus aρ � c, as claimed. �

Definition 4.4. We say K is σ-henselian if for each σ-polynomial G(x) over O and a ∈ O
such that G is σ-henselian at a, there exists b ∈ O such that G(b) = 0 and v(a − b) �
v(G(a)). (By the arguments above, any such b will actually satisfy v(a − b) = v(G(a)).)

Corollary 4.5. If K is σ-henselian, then the residue field of Fix(K) is Fix(k).

Proof. Suppose K is σ-henselian, and let α ∈ Fix(k); we shall find b ∈ Fix(K) such
that v(b) = 0 and b̄ = α. Take a ∈ K with v(a) = 0 and ā = α. Then v(σ(a) − a) > 0, so
σ(x) − x is σ-henselian at a. So there is a b as promised. �

By ‘Axiom 4’ we mean the axiom scheme {Axiom 4n : n = 0, 1, 2, . . . }.

Remark 4.6. If Γ = {0}, then K is σ-henselian. Suppose Γ 
= {0}, K satisfies Axiom 2
and is σ-henselian. Then K satisfies Axiom 4 by [9, Proposition 5.3], so σ̄n 
= idk for all
n � 1. Hence, if also char(k) = 0, then K satisfies Axiom 3.
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From part (1) of Lemma 4.3 we obtain the following corollary.

Corollary 4.7. If K is maximal as valued field and satisfies Axiom 4, then K is σ-
henselian. In particular, if K is complete with discrete valuation and satisfies Axiom 4,
then K is σ-henselian.

Thus if the difference field k satisfies Axiom 4, then the Hahn difference field k((tΓ ))
is σ-henselian. Suppose k has characteristic p > 0 and every equation

1 + α0x + α1x
p + · · · + αnxpn

= 0 (all αi ∈ k, some αi 
= 0)

is solvable in k. Then by Corollary 4.7 the Witt difference field W(k) is σ-henselian,
where σ is the Witt Frobenius. As noted in [3], this condition on the residue field k is
Hypothesis A in [7], where it is related to uniqueness of maximal immediate extensions of
valued fields. It is equivalent to k not having any field extension of finite degree divisible
by p (see [12]).

Note that if K is σ-henselian, then it is henselian as a valued field. We have the following
analogue of an important result about henselian valued fields:

Theorem 4.8. Suppose that K is σ-henselian and char(k) = 0. Let K0 ⊆ O be a σ-
subfield of K. Then there is a σ-subfield K1 of K such that K0 ⊆ K1 ⊆ O and K̄1 = k.

Proof. Suppose that K̄0 
= k. Take a ∈ O such that ā /∈ K̄0. If v(G(a)) = 0 for all
non-zero G(x) over K0, then K0〈a〉 is a proper σ-field extension of K0 contained in O.
Next, consider the case that v(G(a)) > 0 for some non-zero G(x) over K0. Pick such G of
minimal complexity. So v(H(a)) = 0 for all non-zero H(x) over K0 of lower complexity. It
follows that G is σ-henselian at a. So there is b ∈ O with G(b) = 0 and v(a−b) = v(G(a)),
so ā = b̄. We claim that K0〈b〉 is a proper σ-field extension of K0 contained in O. To
prove the claim, let G have order m. Then the σk(b) with k ∈ Z are algebraic over
K0(b, . . . , σm−1(b)) and thus

K0〈b〉 = K0(σk(b) : k ∈ Z) = K0(b, . . . , σm−1(b))[σk(b) : k ∈ Z] ⊆ O,

which establishes the claim. We finish the proof by Zorn’s Lemma. �

The notion ‘σ-henselian at a’ applies only to σ-polynomials over O and a ∈ O. It will
be convenient to extend it a little. Let G(x) be over K of order at most n and a ∈ K.

Definition 4.9. We say (G, a) is in σ-hensel configuration if G(i)(a) 
= 0 for some i ∈
Nn+1 with |i| = 1, and either G(a) = 0 or there is γ ∈ Γ such that

v(G(a)) = min
|i|=1

v(G(i)(a)) + γ < v(G(j)(a)) + |j| · γ

for all j with |j| > 1. For (G, a) in σ-hensel configuration we put

γ(G, a) := v(G(a)) − min
|i|=1

v(G(i)(a)).
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Let (G, a) be in σ-hensel configuration, G(a) 
= 0, and take c ∈ K with v(c) = γ(G, a)
and put H(x) := G(cx)/G(a), α := a/c. Then

H(α) = 1, min
|i|=1

v(H(i)(α)) = 0, v(H(j)(α)) > 0 for |j| > 1,

as is easily verified. In particular, H(α + x) is over O. Now assume that K satisfies also
Axiom 4. This gives a unit u ∈ O such that v(H(α + u)) > 0. We claim that H(α + x)
is σ-henselian at u. This is because for P (x) := H(α + x) we have v(P (u)) > 0, and, for
each i,

P(i)(u) = H(i)(α + u) = H(i)(α) +
∑
|j|�1

H(i)(j)(α)σ(u)j ,

so min|i|=1 v(P(i)(u)) = 0. If K is σ-henselian, we can take u as above such that H(α+u) =
0, and then b := a + cu satisfies G(b) = 0 and v(a − b) = γ. Summarizing, we have the
following lemma.

Lemma 4.10. Assume K satisfies Axiom 4 and is σ-henselian. Let (G, a) be in σ-hensel
configuration. Then there is b ∈ K such that G(b) = 0 and v(a − b) = γ(G, a).

Up to this point we treated the Witt and non-Witt case separately, but from now on it
makes sense to handle both cases at once. We say that K is workable if either it satisfies
Axioms 2 and 3 (as in Theorem 3.5) or it satisfies Axiom 2 and is a Witt case with
infinite k (as in Theorem 3.10). An extension of a workable K is an extension as before
(and does not have to be workable), but in the Witt case we also require the extension
to be a Witt case.

In the next definition we assume that K is workable, and that {aρ} is a pc-sequence
from K.

Definition 4.11. We say {aρ} is of σ-algebraic type over K if G(bρ) � 0 for some
σ-polynomial G(x) over K and an equivalent pc-sequence {bρ} in K.

If {aρ} is of σ-algebraic type over K, then a minimal σ-polynomial of {aρ} over K is
a σ-polynomial G(x) over K with the following properties:

(i) G(bρ) � 0 for some pc-sequence {bρ} in K, equivalent to {aρ};

(ii) H(bρ) 
� 0 whenever H(x) is a σ-polynomial over K of lower complexity than G

and {bρ} is a pc-sequence in K equivalent to {aρ}.

If {aρ} is of σ-algebraic type over K, then {aρ} clearly has a minimal σ-polynomial
over K. The next lemma is used to study immediate extensions in the next section. Its
finite ramification hypothesis is satisfied by all Witt cases. (‘Finitely ramified’ is defined
right after Lemma 2.2.) The next lemma is close to Theorem 6.10 in [3].

Lemma 4.12. Suppose K is workable and finitely ramified. Let {aρ} from K be a pc-
sequence of σ-algebraic type over K with minimal σ-polynomial G(x) over K, and with
pseudo-limit a in some extension. Let Σ be a finite set of σ-polynomials H(x) over K.
Then there is a pc-sequence {bρ} in K, equivalent to {aρ}, such that, with γρ := v(a−aρ):
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(1) v(a − bρ) = γρ, eventually, and G(bρ) � 0;

(2) if H ∈ Σ and H /∈ K, then H(bρ) � H(a);

(3) (G, a) is in σ-hensel configuration, and γ(G, a) > γρ, eventually.

Proof. Let G have order n. We can assume that Σ includes all G(i). In the rest of the
proof i, j, l range over Nn+1. Theorems 3.5 and 3.10 and their proofs yield an equivalent
pc-sequence {bρ} in K such that (1) and (2) hold. The proof of Theorem 3.3 shows that
we can arrange that in addition there is a unique m0 with 1 � m0 � deg G such that,
eventually,

v(G(bρ) − G(a)) = min
|i|=m0

v(G(i)(a)) + m0γρ < v(G(j)(a)) + |j| · γρ,

for each j with |j| � 1 and |j| 
= m0. Now {v(G(bρ))} is strictly increasing, eventually,
so v(G(a)) > v(G(bρ)) eventually, and for |j| � 1, |j| 
= m0:

v(G(bρ)) = min
|i|=m0

v(G(i)(a)) + m0 · γρ < v(G(j)(a)) + |j| · γρ, eventually.

We claim that m0 = 1. Let |i| = 1 with G(i) 
= 0, and let j > i; our claim will then follow
by deriving

v(G(i)(a)) + γρ < v(G(j)(a)) + |j|γρ, eventually.

The proof of Theorem 3.3 with G(i) in the role of G shows that we can arrange that our
sequence {bρ} also satisfies

v(G(i)(bρ) − G(i)(a)) � v(G(i)(l)(a)) + |l| · γρ, eventually,

for all l with |l| � 1. Since v(G(i)(bρ)) = v(G(i)(a)) eventually, this yields

v(G(i)(bρ)) � v(G(i)(l)(a)) + |l| · γρ, eventually,

for all l with |l| � 1, hence for all such l,

v(G(i)(bρ)) � v

(
i + l

i

)
+ v(G(i+l)(a)) + |l| · γρ, eventually.

For l with i + l = j, this yields

v(G(i)(a)) � v

(
j

i

)
+ v(G(j)(a)) + (|j| − 1) · γρ, eventually.

Now K is finitely ramified, so

v(G(i)(a)) < v(G(j)(a)) + (|j| − 1) · γρ, eventually,

hence
v(G(i)(a)) + γρ < v(G(j)(a)) + |j| · γρ, eventually.

Thus m0 = 1, as claimed. The above inequalities then yield (3). �
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5. Immediate extensions

Throughout this section K = (K, Γ, k; v, π) is a workable valued difference field. The
immediate extensions of K are then workable as well, and we prove here the basic facts
on these immediate extensions. To avoid heavy handed notation we often let K stand for
K when the context permits.

Definition 5.1. A pc-sequence {aρ} from K is said to be of σ-transcendental type over
K if it is not of σ-algebraic type over K, that is, G(bρ) 
� 0 for each σ-polynomial G(x)
over K and each equivalent pc-sequence {bρ} from K.

In particular, such a pc-sequence cannot have a pseudo-limit in K. The next two
lemmas are σ-analogues of familiar results for valued fields, and correspond to Lemmas 7.1
and 7.2 in [3], where ‘σ-algebraic’ and ‘σ-transcendental’ are defined in a slightly different
way. (For proofs, see [3] or [2].)

Lemma 5.2. Let {aρ} from K be a pc-sequence of σ-transcendental type over K. Then
K has an immediate extension (K〈a〉, Γ,k; va, πa) such that:

(1) a is σ-transcendental over K and aρ � a;

(2) for any extension (K1, Γ1,k1; v1, π1) of K and any b ∈ K1 with aρ � b there is a
unique embedding

(K〈a〉, Γ,k; va, πa) → (K1, Γ1,k1; v1, π1)

over K that sends a to b.

Lemma 5.3. Suppose K is finitely ramified. Let {aρ} from K be a pc-sequence of
σ-algebraic type over K, with no pseudo-limit in K. Let G(x) be a minimal σ-polynomial
of {aρ} over K. Then K has an immediate extension (K〈a〉, Γ, k; va, πa) such that

(1) G(a) = 0 and aρ � a;

(2) for any extension (K1, Γ1,k1; v1, π1) of K and any b ∈ K1 with G(b) = 0 and aρ � b

there is a unique embedding

(K〈a〉, Γ,k; va, πa) → (K1, Γ1,k1; v1, π1)

over K that sends a to b.

We note the following consequences of Lemmas 5.2 and 5.3.

Corollary 5.4. Let a from some extension of K be σ-algebraic over K and let {aρ} be
a pc-sequence in K such that aρ � a. Then {aρ} is of σ-algebraic type over K.

Corollary 5.5. Suppose K is finitely ramified. Then K as a valued field has a proper
immediate extension if and only if K as a valued difference field has a proper immediate
extension.
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We say that K is σ-algebraically maximal if it has no proper immediate σ-algebraic
extension, and we say it is maximal if it has no proper immediate extension. Corollary 5.4
and Lemmas 5.3 and 4.3 yield the following corollary.

Corollary 5.6. Suppose K is finitely ramified. Then

(1) K is σ-algebraically maximal if and only if each pc-sequence in K of σ-algebraic
type over K has a pseudo-limit in K;

(2) if K satisfies Axiom 4 and is σ-algebraically maximal, then K is σ-henselian.

It is clear that K has σ-algebraically maximal immediate σ-algebraic extensions, and
also maximal immediate extensions. If K satisfies Axiom 4 both kinds of extensions are
unique up to isomorphism, but for this we need one more lemma.

Lemma 5.7. Suppose K is finitely ramified and K′ is a workable finitely ramified
σ-algebraically maximal extension of K satisfying Axiom 4. Let {aρ} from K be a pc-
sequence of σ-algebraic type over K, with no pseudo-limit in K, and with minimal
σ-polynomial G(x) over K. Then there exists b ∈ K ′ such that aρ � b and G(b) = 0.

Proof. Lemma 5.3 provides a pseudo-limit a ∈ K ′ of {aρ}. Take a pc-sequence {bρ} in
K equivalent to {aρ} with the properties listed in Lemma 4.12. Since K′ is σ-henselian
and satisfies Axiom 4, Lemma 4.10 yields b ∈ K ′ such that

v′(a − b) = γ(G, a) and G(b) = 0.

Note that aρ � b since γ(G, a) > v(a − aρ) = γρ eventually. �

Together with Lemmas 5.2 and 5.3 this yields the following theorem.

Theorem 5.8. Suppose K is finitely ramified and satisfies Axiom 4. Then all its max-
imal immediate extensions are isomorphic over K, and all its σ-algebraically maximal
immediate σ-algebraic extensions are isomorphic over K.

We now state minor variants of these results using the notion of saturation from model
theory, as needed in the proof of the embedding theorem in the next section. Let |X|
denote the cardinality of a set X, and let κ be a cardinal.

Lemma 5.9. Suppose E = (E, ΓE , . . . ) � K is workable and K is finitely ramified,
σ-henselian, and κ-saturated with κ > |ΓE |. Let {aρ} from E be a pc-sequence of σ-
algebraic type over E, with no pseudo-limit in E, and with minimal σ-polynomial G(x)
over E. Then there exists b ∈ K such that aρ � b and G(b) = 0.

Proof. By the saturation assumption we have a pseudo-limit a ∈ K of {aρ}. Let
γρ = v(a − aρ). By Lemma 4.12, (G, a) is in σ-hensel configuration with γ(G, a) > γρ,
eventually. Since K is σ-henselian, it satisfies Axiom 4, so Lemma 4.10 yields b ∈ K such
that v(a−b) = γ(G, a) and G(b) = 0. Note that aρ � b since γ(G, a) > γρ eventually. �

In combination with Lemmas 5.2 and 5.3 this yields the following corollary.
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Corollary 5.10. If E = (E, ΓE , . . . ) � K is workable and satisfies Axiom 4, and K is
finitely ramified, σ-henselian, and κ-saturated with κ > |ΓE |, then any maximal imme-
diate extension of E can be embedded in K over E .

6. The equivalence theorem

Theorem 6.6, the main result of the paper, tells us when two workable σ-henselian valued
difference fields of equal characteristic zero are elementarily equivalent over a common
substructure. In § 8 we derive from it in the usual way some attractive consequences on
the elementary theories of such valued difference fields and on the induced structure on
value group and residue difference field. In § 9 we use coarsening to obtain analogues in
the mixed characteristic case.

We begin with a short subsection on angular component maps. The presence of such
maps simplifies the proof of the Equivalence Theorem, but in the aftermath we can often
discard these maps again, by Corollary 6.2.

Angular components

Let K = (K, Γ, k; v, π) be a valued difference field. An angular component map on K
is an angular component map ac on K as valued field such that in addition σ̄(ac(a)) =
ac(σ(a)) for all a ∈ K. Examples are the Hahn difference fields k((tΓ )) with angular
component map given by ac(a) = aγ0 for non-zero a =

∑
aγtγ ∈ k((tΓ )) and γ0 = v(a),

and also the Witt difference fields W(k) with angular component map determined by
ac(p) = 1. (To see this, use the next lemma and the fact that Fix(W(k)) = W(Fp) = Qp.)

Lemma 6.1. Suppose K satisfies Axiom 2. Then each angular component map on the
valued subfield Fix(K) of K extends uniquely to an angular component map on K. If in
addition K is σ-henselian, then every angular component map on K is obtained in this
way from an angular component map on Fix(K).

Proof. Given an angular component map ac on Fix(K) the claimed extension to K,
also denoted by ac, is obtained as follows: for x ∈ K× we have x = uy with u, y ∈ K×,
v(u) = 0, σ(y) = y; then ac(x) = ū ac(y). The second claim of the lemma follows from
Corollary 4.5. �

Here is an immediate consequence of Lemmas 2.3 and 6.1.

Corollary 6.2. Suppose K satisfies Axiom 2. Then there is an angular component map
on some elementary extension of K.

The main result

In this subsection we consider 3-sorted structures

K = (K, Γ, k; v, π, ac),

where (K, Γ, k; v, π) is a valued difference field (satisfying Axiom 1 of course) and where
ac : K → k is an angular component map on (K, Γ, k; v, π). Such a structure will be
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called an ac-valued difference field. Any subfield E of K is viewed as a valued subfield of
K with valuation ring OE := O ∩ E.

If char(k) = 0 and K is σ-henselian, then by Theorem 4.8 there is a difference ring
morphism i : k → O such that π(i(a)) = a for all a ∈ K; we call such i a σ-lifting of k

to K. This will play a minor role in the proof of the Equivalence Theorem.
A good substructure of K = (K, Γ, k; v, π, ac) is a triple E = (E, ΓE ,kE) such that

(1) E is a difference subfield of K,

(2) ΓE is an ordered abelian subgroup of Γ with v(E×) ⊆ ΓE ,

(3) kE is a difference subfield of k with ac(E) ⊆ kE (hence π(OE) ⊆ kE).

For good substructures E1 = (E1, Γ1,k1) and E2 = (E2, Γ2,k2) of K, we define E1 ⊆ E2

to mean that E1 ⊆ E2, Γ1 ⊆ Γ2, k1 ⊆ k2. If E is a difference subfield of K with
ac(E) = π(OE), then (E, v(E×), π(OE)) is a good substructure of K, and if in addition
F ⊇ E is a difference subfield of K such that v(F×) = v(E×), then ac(F ) = π(OF ).
Throughout this subsection

K = (K, Γ, k; v, π, ac), K′ = (K ′, Γ ′,k′; v′, π′, ac′)

are ac-valued difference fields, with valuation rings O and O′, and

E = (E, ΓE ,kE), E ′ = (E′, ΓE′ ,kE′)

are good substructures of K, K′ respectively. To avoid too many accents we let σ denote
the difference operator of each of K, K ′, E, E′, and put OE′ := O′ ∩ E′.

A good map f : E → E ′ is a triple f = (f, fv, fr) consisting of a difference field
isomorphism f : E → E′, an ordered group isomorphism fv : ΓE → ΓE′ and a difference
field isomorphism fr : kE → kE′ such that

(i) fv(v(a)) = v′(f(a)) for all a ∈ E×, and fv is elementary as a partial map between
the ordered abelian groups Γ and Γ ′;

(ii) fr(ac(a)) = ac′(f(a)) for all a ∈ E, and fr is elementary as a partial map between
the difference fields k and k′.

Let f : E → E ′ be a good map as above. Then the field part f : E → E′ of f is a
valued difference field isomorphism, and fv and fr agree on v(E×) and π(OE) with the
maps v(E×) → v′(E′×) and π(OE) → π′(OE′) induced by f . We say that a good map
g = (g, gv, gr) : F → F ′ extends f if E ⊆ F , E ′ ⊆ F ′, and g, gv, gr extend f , fv, fr,
respectively. The domain of f is E .

The next two lemmas show that condition (ii) above is automatically satisfied by
certain extensions of good maps.

Lemma 6.3. Let f : E → E ′ be a good map, and F ⊇ E and F ′ ⊇ E′ subfields of K

and K ′, respectively, such that v(F×) = v(E×) and π(OF ) ⊆ kE . Let g : F → F ′ be a
valued field isomorphism such that g extends f and fr(π(u)) = π′(g(u)) for all u ∈ OF .
Then ac(F ) ⊆ kE and fr(ac(a)) = ac′(g(a)) for all a ∈ F .
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Proof. Let a ∈ F . Then a = a1u, where a1 ∈ E and u ∈ OF , v(u) = 0, so ac(a) =
ac(a1)π(u) ∈ kE . It follows easily that fr(ac(a)) = ac′(g(a)). �

In the same way we obtain the following lemma.

Lemma 6.4. Suppose π(OE) = kE , let f : E → E ′ be a good map, and let F ⊇ E

and F ′ ⊇ E′ be subfields of K and K ′, respectively, such that v(F×) = v(E×). Let
g : F → F ′ be a valued field isomorphism extending f . Then ac(F ) = π(OF ) and
gr(ac(a)) = ac′(g(a)) for all a ∈ F , where the map gr : π(OF ) → π′(OF ′) is induced by
g (and thus extends fr).

The following is useful in connection with Axiom 2.

Lemma 6.5. Let b ∈ K×. Then the following are equivalent:

(1) there is c ∈ Fix(K) such that v(c) = v(b);

(2) there is d ∈ K such that v(d) = 0 and σ(d) = (b/σ(b)) · d.

Proof. For c as in (1), d = cb−1 is as in (2). For d as in (2), c = bd is as in (1). �

We say that E satisfies Axiom 2 (respectively, Axiom 3, Axiom 4) if the valued dif-
ference subfield (E, v(E×), π(OE); . . . ) of K does. Likewise, we say that E is workable
(respectively, σ-henselian) if this valued difference subfield of K is.

Theorem 6.6. Suppose char(k) = 0, K, K′ satisfy Axiom 2 and are σ-henselian. Then
any good map E → E ′ is a partial elementary map between K and K′.

Proof. The theorem holds trivially for Γ = {0}, so assume that Γ 
= {0}. Then K and
K′ are workable. Let f = (f, fv, fr) : E → E ′ be a good map. By passing to suitable
elementary extensions of K and K′ we arrange that K and K′ are κ-saturated, where
κ is an uncountable cardinal such that |kE |, |ΓE | < κ. Call a good substructure E1 =
(E1,k1, Γ1) of K small if |k1|, |Γ1| < κ. We shall prove that the good maps with small
domain form a back-and-forth system between K and K′. (This clearly suffices to obtain
the theorem.) In other words, we shall prove that under the present assumptions on E , E ′

and f , there is for each a ∈ K a good map g extending f such that g has small domain
F = (F, . . . ) with a ∈ F .

In addition to Corollary 5.10, we have several basic extension procedures.

(1) Given α ∈ k, arranging that α ∈ kE . By saturation and the definition of ‘good map’
this can be achieved without changing f , fv, E, ΓE by extending fr to a partial
elementary map between k and k′ with α in its domain.

(2) Given γ ∈ Γ , arranging that γ ∈ ΓE . This follows in the same way.

(3) Arranging kE = π(OE). Suppose α ∈ kE , α /∈ π(OE); set α′ := fr(α).

If α is σ̄-transcendental over π(OE), we pick a ∈ O and a′ ∈ O′ such that ā = α

and ā′ = α′, and then Lemmas 2.5 and 6.3 yield a good map g = (g, fv, fr) with
small domain (E〈a〉, ΓE ,kE) such that g extends f and g(a) = a′.
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Next, assume that α is σ̄-algebraic over π(OE). Let G(x) be a σ-polynomial over
OE such that Ḡ(x) is a minimal σ̄-polynomial of α over π(OE) and has the same
complexity as G(x). Pick a ∈ O such that ā = α. Then G is σ-henselian at a. So
we have b ∈ O such that G(b) = 0 and b̄ = ā = α. Likewise, we obtain b′ ∈ O′

such that f(G)(b′) = 0 and b̄′ = α′, where f(G) is the difference polynomial over
E′ that corresponds to G under f . By Lemmas 2 and 6.3 we obtain a good map
extending f with small domain (E〈b〉, ΓE ,kE) and sending b to b′.

By iterating these steps we can arrange kE = π(OE); this condition is actually pre-
served in the extension procedures (4)–(6) below, as the reader may easily verify. We do
assume in the rest of the proof that kE = π(OE), and so we can refer from now on to kE
as the residue difference field of E.

(4) Extending f to a good map whose domain satisfies Axiom 2. Let δ ∈ v(E×). Pick
b ∈ E× such that v(b) = δ. Since Axiom 2 holds in K, we can use Lemma 6.5 to
get d ∈ K such that v(d) = 0 and G(d) = 0 where

G(x) := σ(x) − b

σ(b)
· x.

Note that v(qd) = 0 and G(qd) = 0 for all q ∈ Q× ⊆ E×. Hence by saturation we
can assume that v(d) = 0, G(d) = 0 and d̄ is transcendental over kE . We set α = d̄,
so Ḡ(x) is a minimal σ̄-polynomial of α over kE . By Lemma 2,

E〈d〉 = E(d), v(E(d)×) = v(E×), π(OE(d)) = kE(α), σ(E(d)) = E(d).

We shall find a good map extending f with domain (E(d), ΓE ,kE(α)). Consider
the σ-polynomial H := f(G), that is,

H(x) = σ(x) − f(b)
σ(f(b))

· x.

By saturation we can find α′ ∈ k′ with H̄(α′) = 0 and a difference field isomorphism
gr : kE(α) → kE′(α′) that extends fr, sends α to α′ and is elementary as a partial
map between the difference fields k and k′. Using again Lemma 6.5 we find d′ ∈ K ′

such that v′(d′) = 0 and H(d′) = 0. Since H̄(d̄′) = H̄(α′) = 0, we can multiply d′

by an element in K ′ of valuation zero and fixed by σ to assume further that d̄′ = α′.
Then Lemmas 2 and 6.4 yield a good map g = (g, fv, gr) where g : E(d) → E′(d′)
extends f and sends d to d′. The domain (E(d), ΓE ,kE(α)) of g is small.

In the extension procedures (3) and (4) the value group v(E×) does not change, so
if the domain E of f satisfies Axiom 2, then so does the domain of any extension of f

constructed as in (3) or (4). Also ΓE does not change in (3) and (4), but at this stage
we can have ΓE 
= v(E×). By repeated application of (1)–(4) we can arrange that E is
workable and satisfies Axiom 4. Then by Corollary 5.10 we can arrange that in addition
E is σ-henselian. (Any use of this in what follows will be explicitly indicated.)
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(5) Towards arranging ΓE = v(E×); the case of no torsion modulo v(E×).

Suppose γ ∈ ΓE has no torsion modulo v(E×), that is, nγ /∈ v(E×) for all n > 0.
Take a ∈ Fix(K) such that v(a) = γ. Let i be a σ-lifting of the residue difference
field k to K. Since ac(a) is fixed by σ̄, a/i(ac(a)) ∈ Fix(K) and v(a/i(ac(a))) = γ.
So replacing a by a/i(ac(a)) we arrange that v(a) = γ and ac(a) = 1. In the same
way we obtain a′ ∈ Fix(K ′) such that v′(a′) = γ′ := fv(γ) and ac′(a′) = 1. Then
by a familiar fact from the valued field context we have an isomorphism of valued
fields g : E(a) → E′(a′) extending f with g(a) = a′. Then (g, fv, fr) is a good map
with small domain (E(a), ΓE ,kE); this domain satisfies Axiom 2 if E does.

(6) Towards arranging ΓE = v(E×); the case of prime torsion modulo v(E×). Here we
assume that E satisfies Axiom 2 and is σ-henselian.

Let γ ∈ ΓE \ v(E×) with �γ ∈ v(E×), where � is a prime number. As E satisfies
Axiom 2 we can pick b ∈ Fix(E) such that v(b) = �γ. Since E is σ-henselian we
have a σ-lifting of its difference residue field kE to E and we can use this as in (5) to
arrange that ac(b) = 1. We shall find c ∈ Fix(K) such that c� = b and ac(c) = 1. As
in (5) we have a ∈ Fix(K) such that v(a) = γ and ac(a) = 1. Then the polynomial
P (x) := x� − b/a� over K is henselian at 1. This gives u ∈ K such that P (u) = 0
and ū = 1. Now let c = au. Clearly, c� = b and ac(c) = 1. Note that σ(c)� = b,
hence σ(c) = ωc where ω is an �th root of unity. Using ac(c) = 1 we get ac(ω) = 1,
so ω = 1, that is, c ∈ Fix(K), as promised. Likewise we find c′ ∈ Fix(K ′) such
that c′� = f(b) and ac′(c′) = 1. Then f extends easily to a good map with domain
(E(c), ΓE ,kE) sending c to c′; this domain satisfies Axiom 2.

By iterating (5) and (6) we can assume in the rest of the proof that ΓE = v(E×), and
we shall do so. This condition is actually preserved in the earlier extension procedures (3)
and (4), as the reader may easily verify. Anyway, we can refer from now on to ΓE as the
value group of E. Note also that in the extension procedures (5) and (6) the residue
difference field does not change.

Now let a ∈ K be given. We want to extend f to a good map whose domain is
small and contains a. At this stage we can assume kE = π(OE), ΓE = v(E×), and E
is workable. Appropriately iterating and alternating the above extension procedures we
arrange in addition that E satisfies Axiom 4 and E〈a〉 is an immediate extension of E.
Let E〈a〉 be the valued difference subfield of K that has E〈a〉 as underlying difference
field. By Corollary 5.10, E〈a〉 has a maximal immediate valued difference field extension
E1 � K. Then E1 is a maximal immediate extension of E as well. Applying Corollary 5.10
to E ′ and using Theorem 5.8, we can extend f to a good map with domain E1, construed
here as a good substructure of K in the obvious way. It remains to note that a is in the
underlying difference field of E1. �

A variant

At the cost of a purity assumption we can eliminate angular component maps in the
Equivalence Theorem. More precisely, let K, K′ be as before except that we do not require
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angular component maps as part of these structures. The notion of good substructure of K
is similarly modified by changing clause (3) in its definition to ‘kE is a difference subfield
of k with π(OE) ⊆ kE ’. In defining good maps, condition (ii) on fr is to be changed to
‘fr(π(a)) = π′(f(a)) for all a ∈ OE ’, and fr is elementary as a partial map between the
difference fields k and k′.

Theorem 6.7. Suppose char(k) = 0, K, K′ satisfy Axiom 2 and are σ-henselian, and
v(E×) is pure in Γ . Then any good map E → E ′ is a partial elementary map between K
and K′.

Proof. The case Γ = {0} being trivial, let Γ 
= {0}, and let f : E → E ′ be a good map;
our task is to show that f is a partial elementary map between K and K′. We first arrange
that the valued difference subfield (E, v(E×), π(OE); . . . ) of K is ℵ1-saturated by passing
to an elementary extension of a suitable many-sorted structure with K, K′, E , E ′ and f as
ingredients. As in the beginning of the proof of Theorem 6.6 we arrange next that K and
K′ are κ-saturated, where κ is an uncountable cardinal such that |kE |, |ΓE | < κ. Then we
apply the extension procedures (2) and (3) in the proof of Theorem 6.6 to arrange that
kE = π(OE) and E satisfies Axiom 2, without changing v(E×). To simplify notation we
identify E and E ′ via f ; we have to show that then K ≡E K′. Since (E, v(E×), π(OE); . . . )
is ℵ1-saturated, Lemmas 2.3 and 2.4 yield cross-sections

sE : v(E×) → Fix(E)×, s : Γ → Fix(K)×, s′ : Γ ′ → Fix(K ′)×

such that s and s′ extend sE . These cross-sections induce angular component maps acE

on Fix(E), ac on Fix(K), and ac′ on Fix(K ′), which by Lemma 6.1 extend uniquely to
angular component maps on E , K and K′. (Here we use that E satisfies Axiom 2.) This
allows us to apply Theorem 6.6 to obtain the desired conclusion. �

7. Relative quantifier elimination

Here we derive various consequences of the Equivalence Theorem of § 6. We use the
symbols ≡ and � for the relations of elementary equivalence and being an elementary
submodel, in the setting of many-sorted structures, and ‘definable’ means ‘definable with
parameters from the ambient structure’. Let L be the 3-sorted language of valued fields,
with sorts f (the field sort), v (the value group sort), and r (the residue sort). We view a
valued field (K, Γ, k; . . . ) as an L-structure, with f-variables ranging over K, v-variables
over Γ and r-variables over k. Augmenting L with a function symbol σ of sort (f, f) gives
the language L(σ) of valued difference fields, and augmenting it further with a function
symbol ac of sort (f, r) gives the language L(σ, ac) of ac-valued difference fields. In this
section,

K = (K, Γ, k; . . . ), K′ = (K ′, Γ ′,k′; . . . )

are ac-valued difference fields of equicharacteristic 0 that satisfy Axiom 2 and are σ-
henselian; they are considered as L(σ, ac)-structures.

Corollary 7.1. K ≡ K′ if and only if k ≡ k′ as difference fields and Γ ≡ Γ ′ as ordered
abelian groups.
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Proof. The ‘only if’ direction is obvious. Suppose k ≡ k′ as difference fields, and Γ ≡
Γ ′ as ordered groups. This gives good substructures E := (Q, {0}, Q) of K, and E ′ :=
(Q, {0}, Q) of K′, and a trivial good map E → E ′. Now apply Theorem 6.6. �

Thus K is elementarily equivalent to the Hahn difference field k((tΓ )) with angular
component map defined in the beginning of § 6.

Corollary 7.2. Let E = (E, ΓE ,kE ; . . . ) be a σ-henselian ac-valued difference subfield
of K satisfying Axiom 2 such that kE � k as difference fields, and ΓE � Γ as ordered
abelian groups. Then E � K.

Proof. Take an elementary extension K′ of E . Then K′ satisfies Axiom 2, (E, ΓE ,kE)
is a good substructure of both K and K′, and the identity on (E, Γ, kE) is a good map.
Hence by Theorem 6.6 we have K ≡E K′. Since E � K′, this gives E � K. �

The proofs of these corollaries use only weak forms of the Equivalence Theorem, but
now we turn to a result that uses its full strength: a relative elimination of quantifiers
for the L(σ, ac)-theory T of σ-henselian ac-valued difference fields of equicharacteristic 0
that satisfy Axiom 2. We specify that the function symbols v and π of L(σ, ac) are to be
interpreted as total functions in any K as follows: extend v : K× → Γ to v : K → Γ by
v(0) = 0, and extend π : O → k to π : K → k by π(a) = 0 for a /∈ O.

Let Lr be the sublanguage of L(σ, ac) involving only the sort r, that is, Lr is a copy
of the language of difference fields, with σ̄ as the symbol for the difference operator. Let
Lv be the sublanguage of L(σ, ac) involving only the sort v, that is, Lv is the language
of ordered abelian groups.

Let x = (x1, . . . , xl) be a tuple of distinct f-variables, y = (y1, . . . , ym) a tuple of
distinct r-variables, and z = (z1, . . . , zn) a tuple of distinct v-variables. Define a special
r-formula in (x, y) to be an L(σ, ac)-formula

ψ(x, y) := ψ′(ac(q1(x)), . . . , ac(qk(x)), y),

where k ∈ N, ψ′(u1, . . . , uk, y) is an Lr-formula, and q1(x), . . . , qk(x) ∈ Z[x]. Also, a
special v-formula in (x, z) is an L(σ, ac)-formula

θ(x, z) := θ′(v(q1(x)), . . . , v(qk(x)), z),

where k ∈ N, θ′(v1, . . . , vk, y) is an Lv-formula, and q1(x), . . . , qk(x) ∈ Z[x]. Note that
these special formulae do not have quantified f -variables. We can now state our relative
quantifier elimination.

Corollary 7.3. Every L(σ, ac)-formula φ(x, y, z) is T -equivalent to a boolean combina-
tion of special r-formulae in (x, y) and special v-formulae in (x, z).

Proof. Let ψ(x, y) and θ(x, z) range over special formulae as described above. For a
model K = (K, Γ, k; . . . ) of T and a ∈ Kl, r ∈ km, γ ∈ Γn, let

tpK
r (a, r) := {ψ(x, y) : K |= ψ(a, r)},

tpK
v (a, γ) := {θ(x, z) : K |= θ(a, γ)}.
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Let K and K′ be any models of T , and let

(a, r, γ) ∈ Kl × km × Γn, (a′, r′, γ′) ∈ K ′l × k′m × Γ ′n

be such that

tpK
r (a, r) = tpK′

r (a′, r′)

and

tpK
v (a, γ) = tpK′

v (a′, γ′).

It suffices to show that under these assumptions we have

tpK(a, r, γ) = tpK′
(a′, r′, γ′).

Let E := (E, ΓE ,kE), where E := Q〈a〉, ΓE is the ordered subgroup of Γ generated by
γ over v(E×), and kE is the difference subfield of k generated by ac(E) and r, so E is
a good substructure of K. Likewise we define the good substructure E ′ of K′. For each
q(x) ∈ Z[x] we have q(a) = 0 if and only if ac(q(a)) = 0, and also q(a′) = 0 if and only if
ac′(q(a′)) = 0. In view of this fact, the assumptions give us a good map E → E ′ sending
a to a′, γ to γ′ and r to r′. It remains to apply Theorem 6.6. �

In the proof above it is important that our notion of a good substructure E =
(E, ΓE ,kE) did not require ΓE = v(E×) or kE = π(OE). This is a difference with the
treatment in [3]. Related to it is that in Corollary 7.3 we have a separation of r- and
v-variables; this makes the next result almost obvious.

Corollary 7.4. Each subset of km × Γn definable in K is a finite union of rectangles
X × Y with X ⊆ km definable in the difference field k and Y ⊆ Γn definable in the
ordered abelian group Γ .

Proof. By Corollary 7.3 and using its notation it is enough to observe that, for a ∈ Kl,
a special r-formula ψ(x, y) in (x, y), and a special v-formula θ(x, z) in (x, z), the set {r ∈
km : K |= ψ(a, r)} is definable in the difference field k and the set {γ ∈ Γn : K |= θ(a, γ)}
is definable in the ordered abelian group Γ . �

Corollary 7.4 says in particular that the relations on k definable in K are definable in
the difference field k, and likewise, the relations on Γ definable in K are definable in the
ordered abelian group Γ . Thus k and Γ are stably embedded in K. The corollary says in
addition that k and Γ are orthogonal in K.

By Corollary 6.2 we can get rid of angular component maps in Corollaries 7.1 and 7.4:
these go through if we replace ‘ac-valued’ by ‘valued’. Also Corollary 7.2 goes through
with this change, but for this we need Theorem 6.7. In particular, any σ-henselian valued
difference field satisfying Axiom 2, with residue difference field k of characteristic 0 and
value group Γ , is elementarily equivalent to the Hahn difference field k((tΓ )).
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8. The unramified mixed characteristic case

We now aim for mixed characteristic analogues of §§ 6 and 7. Kochen [8] has a clear
account how a result like Corollary 7.1 for henselian valued fields can be obtained in
mixed characteristic from the equicharacteristic zero case by coarsening. We follow here
the same track, but to get the mixed characteristic Equivalence Theorem 8.8 we use an
elementary fact (Lemma 8.6) in a way that may be new and yields a proof that differs
from the rather complicated treatment in [3].

A better equivalence theorem

We first improve Theorem 6.6 by allowing extra structure on the residue difference
field and on the value group.

Let L be the 3-sorted language of valued fields and L(σ, ac) the language of ac-valued
difference fields, as introduced in § 7. Consider now a language L∗ ⊇ L(σ, ac) such that
every symbol of L∗ \L(σ, ac) is a relation symbol of some sort (v, . . . , v) or (r, . . . , r). Let
L∗

v be the sublanguage of L∗ involving only the sort v, that is, the language of ordered
abelian groups together with the new relation symbols of sort (v, . . . , v). Also, let L∗

r
be the sublanguage of L∗ involving only the sort r, that is, (a copy of) the language of
difference fields together with the new relation symbols of sort (r, . . . , r). (The difference
operator symbol of L∗

r is σ̄, to avoid confusion with the difference operator symbol σ of
sort (f, f).) By a ∗-valued difference field we mean an L∗-structure whose L(σ, ac)-reduct
is an ac-valued difference field.

Let K = (K, Γ, k; . . . ) be a ∗-valued difference field. Then we shall view Γ as an
L∗

v-structure and k as an L∗
r -structure, in the obvious way. Any subfield E of K is

viewed as a valued subfield of K with valuation ring OE := O ∩ E.
A good substructure of K = (K, Γ, k; . . . ) is a triple E = (E, ΓE ,kE) such that

(1) E is a difference subfield of K,

(2) ΓE ⊆ Γ as L∗
v-structures with v(E×) ⊆ ΓE ,

(3) kE ⊆ k as L∗
r -structures with ac(E) ⊆ kE .

In the rest of this subsection K = (K, Γ, k; . . . ) and K′ = (K ′, Γ ′,k′; . . . ) are ∗-valued
difference fields, and E = (E, ΓE ,kE), E ′ = (E′, ΓE′ ,kE′) are good substructures of K, K′

respectively.
A good map f : E → E ′ is a triple f = (f, fv, fr) consisting of an isomorphism

f : E → E′ of difference fields, an isomorphism fv : ΓE → ΓE′ of L∗
v-structures and an

isomorphism fr : kE → kE′ of L∗
r -structures such that

(i) fv(v(a)) = v′(f(a)) for all a ∈ E×, and fv is elementary as a partial map between
the L∗

v-structures Γ and Γ ′;

(ii) fr(ac(a)) = ac′(f(a)) for all a ∈ E, and fr is elementary as a partial map between
the L∗

r -structures k and k′.
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Theorem 6.6 goes through in this enriched setting, with the same proof except for
obvious changes.∗

Theorem 8.1. If char(k) = 0 and K, K′ satisfy Axiom 2 and are σ-henselian, then any
good map E → E ′ is a partial elementary map between K and K′.

The four corollaries of § 8 also go through in this enriched setting, with residue differ-
ence fields and value groups replaced by their L∗

r -expansions and L∗
v-expansions, respec-

tively. In the notions used in Corollary 7.3 the roles of Lr and Lv are of course taken
over by L∗

r and L∗
v, respectively. Except for obvious changes the proofs are the same as

in § 8, using Theorem 8.1 in place of Theorem 6.6.

A variant

In dealing with the mixed characteristic case it is useful to eliminate angular component
maps in Theorem 8.1. So let K, K′ be as in the previous subsection except that we do
not require angular component maps as part of these structures. The notion of good
substructure of K is then modified by replacing in clause (3) of its definition the condition
ac(E) ⊆ kE by π(OE) ⊆ kE . In defining the notion of a good map f = (f, fv, fr) : E → E ′

the condition on fr is to be changed to fr(π(a)) = π(f(a)) for all a ∈ OE , and fr

is elementary as a partial map between the L∗
r -structures k and k′. Then the same

arguments as we used in proving Theorem 6.7 yield the following.

Theorem 8.2. If char(k) = 0 and K and K′ satisfy Axiom 2 and are σ-henselian, and
E and E ′ are good substructures of K and K′, respectively, with v(E×) pure in Γ , then
any good map E → E ′ is a partial elementary map between K and K′.

Coarsening

To reduce the mixed characteristic case to the equal characteristic zero case we use
coarsening. In this subsection K = (K, Γ, k; . . . ) is a valued difference field. Let ∆ be a
convex subgroup of Γ , let Γ̇ := Γ/∆ be the ordered quotient group, and let v̇ : K× → Γ̇

be the composition K× → Γ → Γ̇ of v with the canonical map Γ → Γ̇ , so v̇ is again a
valuation. Let Ȯ be the valuation ring of v̇, and ṁ its maximal ideal, so

Ȯ = {x ∈ K : v(x) � δ, for some δ ∈ ∆} ⊇ O := Ov,

ṁ = {x ∈ K : v(x) > ∆} ⊆ m.

Let k̇ = Ȯ/ṁ be the residue field for v̇ and let π̇ : Ȯ → k̇ be the canonical map. This
gives a valued difference field K̇ := (K, Γ̇ , k̇; v̇, π̇) satisfying Axiom 1. Some other axioms
are also preserved.

Lemma 8.3. If K satisfies Axiom 2, so does K̇. If K satisfies Axiom 2 and is σ-henselian,
then K̇ is σ-henselian.

∗ The referee informed us that Theorem 8.1 is also a formal consequence of Theorem 6.6 and the stable
embeddedness and orthogonality coming from Corollary 7.4.
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Proof. The claim about Axiom 2 is obvious. Assume K satisfies Axiom 2 and is
σ-henselian. Let G(x) over Ȯ (of order at most n) be σ-henselian at a ∈ Ȯ,
with respect to K̇. It is easy to check that then G, a is in σ-hensel configura-
tion with respect to K. Lemma 4.10 and Remark 4.6 then yield b ∈ K such that
v(a − b) = v(G(a)) − min|i|=1 v(G(i)(a)), and thus v̇(a − b) = v̇(G(a)), as desired. �

Let σ̇ be the automorphism of the field k̇ induced by the difference operator σ of K̇.
The field k̇ carries the valuation v∆ : k̇× → ∆ given by v∆(x + ṁ) = v(x) for x a
unit of Ȯ. The valuation ring of v∆ is π̇(O), and we have the surjective ring morphism
π∆ : π̇(O) → k given by π∆(π̇(a)) = π(a) for all a ∈ O. Note that

((k̇, σ̇), ∆,k; v∆, π∆)

is a valued difference field satisfying Axiom 1 with σ̇ inducing on the residue field k

the same automorphism σ̄ as the difference operator σ of K does. The following is now
immediate.

Lemma 8.4. If K satisfies Axiom 3, so does K̇.

Let k̇(∗) be the expansion (k̇, σ̇, π̇(O)) of the difference field (k̇, σ̇), and let K̇(∗) be the
corresponding expansion (K, Γ̇ , k̇(∗); v̇, π̇) of K̇. Note that O is definable in the structure
K̇(∗) by a formula that does not depend on K:

O = {a ∈ Ȯ : π̇(a) ∈ π̇(O)}.

In this way we reconstruct K from K̇(∗). The advantage of working with K̇(∗) is that it
has equicharacteristic 0 if K has mixed characteristic and v(p) ∈ ∆.

Now let K be unramified with charK = 0, chark = p > 0. Then Z · v(p) is a con-
vex subgroup of Γ . We set ∆ := Z · v(p) and note that then char k̇ = 0. With these
assumptions we have the following.

Lemma 8.5. If K is workable, so is K̇.

Proof. Suppose K is workable. Then either K satisfies Axioms 2 and 3 or it satisfies
Axiom 2 and is a Witt case with infinite k. In the first case, K̇ also satisfies Axioms 2
and 3 by Lemmas 8.3 and 8.4, and is thus workable. It remains to consider the case that
K satisfies Axiom 2 and is a Witt case with infinite k. Then K̇ satisfies Axiom 2 by
Lemma 8.3, and because k is infinite and σ̄ is the Frobenius map, we have σ̄d 
= id for
all d > 0, and thus σ̇d 
= id for all d > 0. So K̇ satisfies Axiom 3 as well. �

Keeping the assumptions preceding Lemma 8.5, assume also that K is ℵ1-saturated
and k is perfect. Then the saturation assumption guarantees that π̇(O) is a complete
discrete valuation ring of k̇. Since k is perfect, this gives a unique ring isomorphism
ι : W[k] ∼= π̇(O) such that π∆ ◦ ι : W[k] → k is the projection map (a0, a1, a2, . . . ) �→ a0.
Denote the extension of ι to a field isomorphism W(k) ∼= k̇ also by ι. If K is a Witt case,
this gives an isomorphism (ι, . . . ) of the Witt difference field W(k) onto (k̇, ∆,k; v∆, π∆).
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Two lemmas

The proof of the next lemma uses mainly the functoriality of W.

Lemma 8.6. Let k0 be a perfect field with char(k0) = p > 0, let k and k′ be perfect
extension fields of k0, and let σ and σ′ be automorphisms of k and k′, respectively.
Let κ be an uncountable cardinal such that the difference fields (k, σ) and (k′, σ′) are
κ-saturated, |k0| < κ, and (k, σ) ≡k0 (k′, σ′). Then, as difference rings,

(W[k], W[σ]) ≡W[k0] (W[k′], W[σ′]).

Proof. We just apply the functor W to a suitable back-and-forth system between (k, σ)
and (k′, σ′). In detail, let (k1, σ1) range over the difference subfields of (k, σ) such that
k0 ⊆ k1 and |k1| < κ, and let (k2, σ2) range over the difference subfields of (k′, σ′)
such that k0 ⊆ k2 and |k2| < κ. Let Φ be the set of all difference field isomorphisms
φ : (k1, σ1) → (k2, σ2) that are the identity on k0 and are partial elementary maps
between (k, σ) and (k′, σ′). Note that some φ ∈ Φ maps the definable closure of k0 in
(k, σ) onto the definable closure of k0 in (k′, σ′), so Φ 
= ∅ and Φ is a back-and-forth
system between (k, σ) and (k′, σ′). The functorial properties of W and κ-saturation yield
a back-and-forth system W[Φ] between (W[k], W[σ]) and (W[k′], W[σ′]) consisting of the

W[φ] : (W[k1], W[σ1]) → (W[k2], W[σ2]),

with φ : (k1, σ1) → (k2, σ2) an element of Φ. �

A similar use of functoriality gives the following.

Lemma 8.7. Let Γ0 be an ordered abelian group with smallest positive element 1 and
let Γ and Γ ′ be ordered abelian extension groups of Γ0 with the same smallest positive
element 1. Let κ be an uncountable cardinal such that Γ and Γ ′ are κ-saturated, |Γ0| < κ,
and Γ ≡Γ0 Γ ′. Let ∆ be the common convex subgroup Z · 1 of Γ0, Γ and Γ ′. Then the
ordered quotient groups Γ̇ := Γ/∆ and Γ̇ ′ := Γ ′/∆ are elementarily equivalent over their
common ordered subgroup Γ̇ 0 := Γ0/∆.

Equivalence in mixed characteristic

In this final subsection we fix a prime number p, and K = (K, Γ, k; v, π) is a σ-henselian
valued difference field such that char(K) = 0, k is perfect with char(k) = p, and v(p)
is the smallest positive element of Γ . Moreover, assume either that k is infinite and
σ̄(x) = xp for all x ∈ k (the Witt case), or that k satisfies Axiom 2. In particular, K is
workable and K is not equipped here with an angular component map.

We make the corresponding assumptions about K′ = (K ′, Γ ′,k′; v′, π′). Also, assume
that E = (E, ΓE ,kE) and E ′ = (E′, ΓE′ ,kE′) are good substructures of K and K′, respec-
tively, in the ac-free sense specified at the end of § 6, where we defined the corresponding
ac-free notion of a good map E → E ′. Theorem 6.7 goes through in the present setting.

Theorem 8.8. Suppose that v(E×) is pure in Γ and f : E → E ′ is a good map. Then
f is a partial elementary map between K and K′.
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Proof. We first arrange that K and K′ are κ-saturated, where κ is an uncountable
cardinal such that |kE |, |ΓE | < κ. To simplify notation we identify E and E ′ via f , so
f becomes the identity on E . We have to show that then K ≡E K′. With v(p) = 1 as
the smallest positive element of Γ0 := ΓE and of Γ and Γ ′ and using the notations of
Lemma 8.7 we have Γ̇ ≡Γ̇0

Γ̇ ′ by that same lemma. From the purity of v(E×) in Γ it
follows that v̇(E×) is pure in Γ̇ . Since K and K′ are ℵ1-saturated, it is harmless to identify
k̇ and k̇′ with the fields W(k) and W(k′), respectively. Then the respective valuation
rings π̇(O) and π̇′(O′) of k̇ and k̇′ are W[k] and W[k′], and we have the common subfield
k̇E := W(kE) of k̇ and k̇′. It now follows from Lemma 8.6 that k̇(∗) ≡k̇E

k̇′(∗). Hence
the assumptions of Theorem 8.2 are satisfied with K̇(∗), and K̇′(∗) in the role of K and
K′, and Ė(∗) := (E, Γ̇0, k̇E) in the role of both E and E ′. and with the identity on Ė(∗)
as a good map. This theorem therefore gives

K̇(∗) ≡Ė(∗) K̇′(∗).

This yields K ≡E K′ by what we observed just after Lemma 8.4. �

Corollary 8.9. K ≡ K′ if and only if k ≡ k′ as difference fields and Γ ≡ Γ ′ as ordered
abelian groups.

Proof. The ‘only if’ direction is obvious. Suppose k ≡ k′ as difference fields, and Γ ≡ Γ ′

as ordered groups. Then we have good substructures E := (Q, Z, Fp) of K, and E ′ :=
(Q, Z, Fp) of K′, and an obviously good map E → E ′. Now apply Theorem 8.8. �

In particular, any σ-henselian Witt case valued difference field satisfying Axiom 2, with
infinite residue field k and value group Γ ≡ Z as ordered abelian groups, is elementarily
equivalent to the Witt difference field W(k). The next result follows from Theorem 8.8
in the same way as Corollary 7.2 from Theorem 6.6.

Corollary 8.10. Let E = (E, ΓE ,kE ; . . . ) be a σ-henselian valued difference subfield
of K satisfying Axiom 2 such that kE � k as difference fields, and ΓE � Γ as ordered
abelian groups. Then E � K.

Theorem 8.8 does not seem to give a nice relative quantifier elimination such as Corol-
lary 7.3 but it does yield the following analogue of Corollary 7.4.

Corollary 8.11. Each subset of km × Γn that is definable in K is a finite union of
rectangles X × Y with X ⊆ km definable in the difference field k and Y ⊆ Γn definable
in the ordered abelian group Γ .

Proof. By standard arguments we can reduce to the following situation: K is ℵ1-satu-
rated, E = (E, ΓE ,kE ; . . . ) � K is countable, r, r′ ∈ km have the same type over kE , and
γ, γ′ ∈ Γn have the same type over ΓE :

tp(r|kE) = tp(r′|kE) (in the difference field k),

tp(γ|ΓE) = tp(γ′|ΓE) (in the ordered abelian group Γ ).
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It suffices to show that then (r, γ) and (r′, γ′) have the same type over E in K. Let k1

and k′
1 be the definable closures of kE(r) and kE(r′) in the difference field k, and let Γ1

and Γ ′
1 be the ordered subgroups of Γ generated over ΓE by γ and γ′. Then (E, Γ1,k1)

and (E, Γ ′
1,k

′
1) are good substructures of K, and the assumption on types yields a good

map (E, Γ1,k1) → (E, Γ ′
1,k

′) that is the identity on (E, ΓE ,kE), sends γ to γ′ and r to
r′. Note also that v(E×) = ΓE is pure in Γ . It remains to apply Theorem 8.8. �

Acknowledgements. We thank the referee for helpful suggestions.

References

1. S. Azgin, Model theory of valued difference fields, PhD thesis, University of Illinois at
Urbana-Champaign (2007).

2. S. Azgin and L. van den Dries, Equivalence of valued difference fields with a valuation
preserving automorphism, preprint (arXiv:0902.0422v1; 2009).

3. L. Bélair, A. Macintyre and T. Scanlon, Model theory of Frobenius on Witt vectors,
Am. J. Math. 129 (2007), 665–721.

4. G. Cherlin, Model theoretic algebra—selected topics, Lecture Notes in Mathematics,
Volume 521 (Springer, 1976).

5. R. M. Cohn, Difference algebra (Interscience/John Wiley & Sons, 1965).
6. A. Joyal, δ-anneaux et vecteurs de Witt, C. R. Math.-Math. Rep. Acad. Sci. Canada 7

(1985), 177–182.
7. I. Kaplansky, Maximal fields with valuations, Duke Math. J. 9 (1942), 303–321.
8. S. Kochen, The model theory of local fields, in Proc. Logic Conf., Kiel, 1974, Lecture

Notes in Mathematics, Volume 499, pp. 384–425 (Springer, 1975).
9. T. Scanlon, A model complete theory of valued D-fields, J. Symb. Logic 65 (2001),

1758–1784.
10. T. Scanlon, Quantifier elimination for the relative Frobenius, in Valuation Theory and

Its Applications, Saskatoon, SK, 1999, Volume II, Fields Institute Communications, Vol-
ume 33, pp. 323–352 (American Mathematical Society, Providence, RI, 2003).

11. J. P. Serre, Local fields (Springer, 1979).
12. G. Whaples, Galois cohomology of additive polynomials and nth power mappings of

fields, Duke Math. J. 24 (1957), 143–150.

https://doi.org/10.1017/S1474748010000174 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000174


https://doi.org/10.1017/S1474748010000174 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000174

