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von Hippel–Lindau (VHL) disease is a dominantly inherited cancer syndrome
characterised by predisposition to multiple tumours of the eyes and central
nervous system (haemangioblastomas), kidneys (renal cell carcinoma; RCC),
adrenal chromaffin cells (phaeochromocytoma), and other organs. The VHL
gene was isolated in 1993 and mutations or deletions in the VHL gene have
been identified in the germline of nearly all tested individuals with VHL disease.
Genotype–phenotype correlations have been observed: individuals with
missense mutations are more likely to develop phaeochromocytoma than those
with deletions or protein-truncating mutations are, and specific missense
mutations at certain codons might not predispose to RCC. In accordance with
its role as a tumour suppressor gene, the normal allele of the VHL gene is
deleted, mutated or silenced by promoter methylation in the tumours from
VHL patients, and in a large proportion of sporadic tumours of the same
histological types as observed in VHL disease. Thus, the VHL gene is of major
importance in the development of RCC in the general population. Recent
advances in understanding the structure and function of the VHL protein
(pVHL) have revealed insights into the different phenotypes, with indications
that some retention of function might be required for predisposition to
phaeochromocytoma. pVHL interacts with many cellular proteins, mainly via
one of two protein-binding domains (α and β). The best-characterised interaction
is that of pVHL with elongin C, which forms a complex with elongin B and
Cullin 2 proteins. This complex has E3 ubiquitin ligase activity and promotes
ubiquitin-mediated proteasomal degradation of the hypoxia-inducible factor
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von Hippel–Lindau (VHL) disease is a
dominantly inherited, multisystem, family
cancer syndrome predisposing to tumours of
the eyes, central nervous system (CNS),
kidneys and other organs. It has been estimated
that the birth incidence of VHL disease is
between 1 in 36 000 and 1 in 45 500 live births
in the UK (Refs 1, 2). The tumours are of
specific histological types: retinal, cerebellar and
spinal haemangioblastomas, clear-cell type

(non-papillary) renal cell carcinoma (RCC),
phaeochromocytoma, and (in up to 10% of cases)
pancreatic islet cell tumours and endolymphatic
sac tumours of the inner ear (Fig. 1a). In addition,
multiple renal, pancreatic and epididymal
cysts occur. VHL disease was named after
Eugen von Hippel ,  who f irst  described
angiomas in the eye in 1904, and Arvid Lindau,
who recognised the association of retinal,
cerebellar and spinal haemangioblastomas in

1α (HIF-1α) transcription factor under normal oxygen (normoxic) conditions.
Loss of pVHL function leads to stabilisation of HIF-1 and expression under
normoxic conditions of hypoxia-inducible genes including vascular endothelial
growth factor (VEGF), which might explain the hypervascular phenotype of VHL
tumours. Several other genes implicated in intra- and intercellular signalling
and control of tumour growth are overexpressed in the absence of pVHL, but it
is not yet clear which features of pVHL function are most significant for tumour
suppression in different tissues. Further advances in understanding pVHL
function might eventually enable development of specific therapies for
prevention or treatment of VHL tumours and RCC.

Figure 1. von Hippel–Lindau (VHL) disease predisposes to multiple tumours. (a) List of tumours and
cysts that can develop in VHL disease; different patients develop various combinations of these tumour types
and often develop multiple tumours of the same type. (b) The cumulative probability of developing a cerebellar
haemangioblastoma (CHB), retinal angioma (RET) and renal cell carcinoma (RCC) in VHL disease increases
with age (Ref. 6) (fig001frb).
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1926. Haemangioblastomas are benign cystic
tumours that appear as an overproliferation of
blood vessels with a neoplastic stromal
component, but as a result of their location in the
eyes, brain stem or spine they cause considerable
morbidity (Ref. 3). RCC, phaeochromocytoma and
pancreatic tumours can all be malignant and
therefore early detection is vital.

Identification of the VHL gene has enabled
molecular diagnosis in affected individuals
and at-risk relatives to identify gene carriers.
Relatives who are shown not to carry the mutated
gene can be reassured and excluded from
screening protocols, while affected individuals
and unaffected gene carriers require life-long
surveillance to enable detection of tumours at a
presymptomatic stage. Early detection and
treatment of VHL complications, particularly
RCC and retinal haemangioblastomas, can reduce
morbidity and mortality from VHL disease. Thus,
unlike some other genetic diseases, there are
clear clinical benefits from predictive testing
in VHL disease, and the uptake rate for genetic
testing in affected families is high (>85%)
(Refs 4, 5).

Large studies of the clinical features of VHL
disease have demonstrated that the mean age
at onset is 26.3 years, with almost complete
penetrance such that 97% of patients have
presented with symptoms by 60 years .
Overall, 57–60% of patients develop cerebellar

haemangioblastoma, 41–59% retinal angioma,
24–28% RCC, 13–14% spinal haemangioblastoma
and 7–19% phaeochromocytoma (Refs 2, 6, 7).
These frequencies depend to some extent on
the particular germline mutation (see later).
Not only might each patient have several
different tumour types, but they often also
develop multiple tumours of the same type,
such as multiple retinal angiomas in the same
eye or in both eyes (bilateral), or multiple RCC
tumours in one or both kidneys. The earliest
manifestation of VHL disease tends to be
retinal or CNS haemangioblastoma, with RCC
developing later (Fig. 1b). VHL disease can be
split into several types, depending on the range
of tumours detected within the family (Refs 8, 9)
– in particular, the presence or absence of
phaeochromocytoma (Table 1).

Very early on it was proposed that the VHL
gene was a tumour suppressor gene, as defined
by Knudson in 1971 (Refs 10, 11). Therefore,
loss of function of both alleles would be required
for tumour formation and, in an individual
with a germline mutation in one allele, the
probability of a ‘second hit’ somatic mutation
occurring is much higher than the probability of
two independent ‘hits’ in a cell from a normal
individual (Fig. 2). This explains why VHL
patients often have multiple tumours that develop
at an earlier age than the equivalent sporadic
tumours in the general population.

Table 1. VHL disease types and different germline VHL mutations (tab001frb)

Tumour types observed Germline VHL mutation types most
VHL disease type  in families commonly associated with phenotype

HB RCC Phaeo

Type 1 + + - Deletions and truncationsa

Type 2A + - + Missense Tyr98Hisb and Tyr112His

Type 2B + + + Missensec

Type 2C (familial − − + Missense Leu188Val, Val84Leu, Ser80Leu
phaeochromocytoma)

a Also some missense mutations, usually of key structural amino acids in the hydrophobic core of the β-domain.
Truncations include both frameshift and nonsense mutations.
b The ‘Black Forest’ founder mutation.
c Missense mutations in amino acids of the α-domain or in the surface patch of the β-domain.
Abbreviations: HB, retinal and central nervous system haemangioblastoma; phaeo, phaeochromocytoma;
RCC, renal cell carcinoma; VHL, von Hippel–Lindau.
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The VHL gene
Mapping and identification of the VHL gene
Genetic linkage analysis was used to map the VHL
gene in affected families; in 1988 it was localised
to chromosome 3p (Ref. 12) and subsequent
analysis localised it to a small region of 3p25-p26
(Refs 13, 14, 15, 16, 17, 18, 19). Physical mapping
was then used to characterise the region (Refs
20, 21, 22, 23, 24, 25, 26, 27, 28), and analysis of
germline DNA from VHL patients by pulsed-
field gel electrophoresis and Southern blotting
identified a small number of cases who had large
[>50 kilobases (kb)] deletions (Refs 24, 26); these

deletions helped to pinpoint the position of the
VHL gene, which was finally identified in 1993
(Ref. 21).

VHL gene structure and sequence
The VHL gene consists of three exons encoding
a 4.7 kb mRNA (messenger RNA), covering
less than 20 kb of genomic DNA on chromosome
3p25-p26 (Fig. 3). The 642 nucleotide coding
region encodes a polypeptide of 213 amino acids
from the first methionine codon, with a second
methionine codon (with a better Kozak consensus
sequence for translation initiation) (Ref. 29) at

Figure 2. Knudson’s two-hit hypothesis for tumourigenesis involving a tumour suppressor gene (TSG)
(Ref. 10). One pair of chromosomes is depicted, with one TSG [the normal gene (grey), the mutated gene
(red), and deletion of the gene (absence) are shown]. (a) Normal individuals have two normal copies of the
TSG, so two independent ‘hits’ (mutations) are required in the same cell to initiate a cancer. (b) Individuals with
a germline mutation of the TSG already have a first ‘hit’ in every cell and require only one subsequent ‘hit’ in a
cell to initiate a cancer (fig002frb).
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Figure 3. von Hippel–Lindau (VHL) gene and protein structure and function. (a) The VHL gene structure
(nucleotides 1–4400) comprises three exons (blue). 5' and 3' untranslated regions (UTRs), and several
transcription start sites (curved arrows), are shown. (b) The α- and β-domain structure of the VHL protein
(codon numbers 1–213), and the two methionine (Met) start codons (at codons 1 and 54), are shown; the
(GXEEX)8 region is a pentameric repeat motif with unknown functional significance. (c) Regions of the protein
required for different functions are indicated (fig003frb).

codon 54 giving a protein of 160 amino acids. Both
codons 1 and 54 appear to be used as start codons
(see later). There is also alternative splicing: a
small proportion of VHL mRNA lacks exon 2
(isoform 2; see later), which is predicted to
produce an in-frame deletion of 41 amino acids,
if translated. There was initial confusion over the
numbering system for the amino acid sequence,
because of uncertainty over the N-terminus
when the gene was first cloned; some groups
numbered from the first codon of the apparent
open reading frame in the cloned cDNA (GenBank
Accession No. L15409), which is now known to
be 71 codons before the first methionine (ATG)
codon and is therefore not translated. The
nucleotide numbers used in this article are as
described in GenBank sequence L15409; codon 1
is the first ATG, at nucleotide 214.

The VHL gene sequence is highly conserved
in primates and rodents (Refs 30, 31), and has

homologues in the nematode worm Caenorhabditis
elegans (Ref. 30) and the fruit fly Drosophila
melanogaster (Refs 32, 33). Sequence conservation
is particularly high across regions known to be
involved in binding to other proteins or in
maintaining the VHL protein (pVHL) structure,
and conservation of function has recently been
confirmed in Drosophila (Ref. 33).

Codons 14 to 53 in human VHL encode eight
copies of an acidic pentameric repeat [Gly-X-Glu-
Glu-X; (GXEEX)8] with homology to a procyclic
surface membrane protein of Trypanosoma brucei.
However, VHL sequence conservation is poor
before codon 54 (the second methionine), and
this repeat is not present in the rodent VHL genes,
so the functional significance of this region is
unclear.

The VHL gene promoter has been sequenced
(GenBank Accession No. AF010238); it is a
GC-rich, TATA-less and CCAAT-less promoter,
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with transcription initiating around a putative
Sp1-binding site approximately 60 bp upstream
from the first methionine codon (Ref. 34). The
promoter contains numerous predicted binding
sites for transcription factors but, as yet,
functional analysis has not revealed how VHL
gene expression is controlled. The 3' untranslated
region (UTR) has also been characterised; part of
the sequence is conserved in rodents, and the
human 3' UTR contains 11 Alu repeats (Ref. 35).

Distribution of germline mutations
Germline mutations are those mutations that
are present in all the cells of an individual,
including the germ cells, and are therefore
heritable. Germline VHL mutations have now
been identified in more than 500 VHL families
worldwide, and these show considerable
heterogeneity in both their type and their location
within the VHL gene. Large deletions of at least
one exon [detected by Southern blotting or more
recently by fluorescence in situ hybridisation
(FISH)] occur in up to 40% of cases (Refs 24, 26,
36, 37), and intragenic mutations have been
identified in approximately 60% of cases (Refs
8, 21, 38, 39, 40, 41, 42). These include frameshift,
nonsense, missense and splice junction mutations,
as well as in-frame deletions, and some mutations
have been observed in more than one family
(Fig. 4). Most recurrent mutations result from
de novo mutations at hypermutable sequences
(‘hot spots’) (Ref. 43), although a founder effect
has been reported for the ‘Black Forest’ Tyr98His
mutation reported in German families and
American families of German descent (Refs 8, 9).
The hot spots include delPhe76, Asn78Ser/His/
Thr, Pro86Leu, Arg161Ter, Cys162Tyr/Phe/Trp,
Arg167Gln/Trp and Leu178Pro (Ref. 40).

No mutations have been detected in codons
1 to 54 (i.e. before the second methionine start
codon), suggesting that codons 1 to 54 might not
be required for tumour suppressor function. A
database of germline VHL mutations is accessible
at http://www.umd.necker.fr:2005/ (Ref. 44).

As many as 15% of VHL cases have no family
history of the disease and appear to represent
cases of de novo mutation (Ref. 43). However,
careful analysis of their clinically unaffected
parents can in some cases reveal mosaicism in a
parent, which will affect counselling of the
family (Ref. 45).

A significant proportion (35–50%) of cases
of familial or bilateral phaeochromocytoma

have a germline VHL mutation (particularly
missense mutations; see below) (Refs 46, 47), as do
up to 3% of patients with apparently sporadic
phaeochromocytoma (Refs 47, 48, 49, 50).
Similarly, 3–11% of individuals with a sporadic
haemangioblastoma under the age of 50 years
have a germline VHL mutation, although some
of these are missense variants of uncertain
pathological significance (Refs 41, 51).

Genotype–phenotype correlations
Germline deletions, or protein-truncating
mutations (frameshift and nonsense mutations),
are observed more frequently in VHL families
without phaeochromocytoma (i.e. with Type 1
VHL disease, presenting with haemangioblastoma
and RCC), whereas missense mutations are
observed more frequently in families with Type 2B
VHL disease (presenting with haemangioblastoma,
RCC and phaeochromocytoma) (Refs 8, 38, 52)
(Table 1). Codon 167 missense mutations are
particularly associated with Type 2B VHL disease,
with a high incidence of phaeochromocytoma
within the families. Two specific missense mutations
are associated with Type 2A VHL (presenting with
phaeochromocytoma and haemangioblastoma,
but no RCC); these are Tyr98His (the Black
Forest mutation) and Tyr112His (Refs 9, 40, 53).
Interestingly, a different missense mutation at
codon 112 (Tyr112Asn) in one family has given
rise to VHL disease that has so far resulted in
RCC, retinal and cerebellar haemangioblastoma
and one case of phaeochromocytoma (Type 2B)
(Ref. 54).

Specific missense mutations have also been
observed in families with phaeochromocytoma
but none of the other features of VHL (Type 2C
VHL disease, or familial phaeochromocytoma);
these are Leu188Val (Refs 55, 56), Val84Leu
(Ref. 57) and Ser80Leu (Ref. 46). Individuals
with these mutations are unlikely to develop
haemangioblastomas or RCC. However, some
patients with apparently isolated
phaeochromocytoma have mutations described
previously in Type 2B VHL disease (e.g.
Arg167Trp) (Ref. 57); these individuals are at
risk of developing the other tumour types.

The lack of protein-truncating mutations in
Type 2 VHL disease suggests a bias against complete
loss-of-function mutations for susceptibility to
phaeochromocytoma; this has been confirmed by
mapping of the mutations onto the structure of
pVHL (Ref. 58) (see below).
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Figure 4. The distribution of intragenic von Hippel–Lindau (VHL) mutations. Truncating mutations
(frameshift and nonsense) are shown with light-green lines; missense mutations are indicated with dark-green
lines. (a) Germline VHL mutations in a panel of 120 VHL families from the UK (Refs 38, 40; and E.R. Maher,
University of Birmingham Section of Medical and Molecular Genetics, UK, pers. commun.). Note that not
all of the mutation ‘hotspots’ were detected in this panel of families. (b) Somatic VHL mutations detected
in 152 renal cell carcinomas (RCCs), from the VHL mutation database created by C. Beroud et al. (Ref. 44), at
http://www.umd.necker.fr:2005/. (c) The protein domains encoded by the VHL gene aligned to illustrate that
most mutations are in the α- and β-domains (fig004frb).

Modifier genes?
The incidence of retinal angioma does not appear
to be correlated with specific germline mutations.
The development of retinal angioma might be
determined at an early age and be influenced by
genetic and/or environmental modifier effects.
However, no such modifier genes have yet been
identified (Ref. 59).

Somatic mutations in VHL tumours
In contrast to germline mutations, somatic
mutations are confined to somatic cells of an
individual (i.e. any cell type except germ cells),
and are therefore not heritable. Somatic mutations
that occur in tumour suppressor genes in relevant
tissues might initiate cancer development (Fig. 2).
Tumours from VHL patients generally show
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deletion, mutation or methylation of the wild-type
allele such that there is loss of the normal function
of VHL in tumours. This is characteristic of a
tumour suppressor gene.

Allelic deletions
In keeping with the role of VHL as a tumour
suppressor, deletion of the VHL gene, manifested
as loss of heterozygosity (LOH) of polymorphic
markers on chromosome 3p25-p26, is common in
tumours from VHL patients (51% of tumours),
including RCC, phaeochromocytoma, pancreatic
islet cell tumours and haemangioblastomas (Refs
60, 61). Loss of the normal VHL allele is likely to
be an early event in tumour development, because
it can be detected in the cystic and benign renal
lesions in VHL patients that are thought to represent
the early stages of neoplastic transformation to
RCC (Ref. 62). In haemangioblastomas of the
cerebellum (Ref. 63) or retina (Ref. 64), which are
of mixed cell types, the LOH is confined to the
stromal component; these stromal cells also
express vascular endothelial growth factor [VEGF;
also known as vascular permeability factor (VPF)
– see later] and might therefore be the true
neoplastic component, responsible for abundant
neovascularisation in haemangioblastomas (Ref.
64). LOH has also been detected in the pancreatic
microcystic adenomas that occasionally occur in
VHL patients (Ref. 65); these are not likely to
be benign precursors of the malignant pancreatic
cancers that occur in VHL patients as they have a
different histology, but this underlines the
importance of the VHL gene in the control of cell
growth in the pancreas.

Intragenic mutations
Somatic mutations in the VHL coding region
(i.e. protein-truncating frameshift mutations)
have been detected in 20% of haemangioblastomas
from VHL patients (Ref. 61), but only a few
intragenic somatic mutations have been detected
in RCCs from VHL patients (Ref. 61). Somatic
intragenic mutations in VHL phaeochromocytoma
also appear to be rare (Ref. 47).

Methylation
The VHL gene can also be inactivated by
hypermethylation of the normally unmethylated
CpG (cytosine–guanine dinucleotide) islands in
the 5' region of the VHL gene (Refs 61, 66, 67,
68), a phenomenon that has been detected in a
number of tumour suppressor genes (Ref. 69).

Hypermethylation has been detected in 33% of
VHL tumours that do not demonstrate LOH,
including RCC and haemangioblastoma (Ref.
61). Cis-specific local features are pivotal in
both maintaining and perpetuating aberrant
methylation of the VHL CpG island, because
changes in the methylation status are not
induced by transfer of unmethylated VHL
transgenes or a single chromosome 3 into cells
with a hypermethylated endogenous VHL gene,
or by fusion between cells with unmethylated and
hypermethylated VHL genes (Ref. 70). However,
the contribution of some trans-acting factor
to the generation of the initial aberrant VHL
hypermethylation pattern cannot be excluded.

Somatic mutations in sporadic tumours
In keeping with its role as a tumour suppressor
gene, loss of normal VHL function is also common
in sporadic tumours of the same types as occur in
VHL disease.

RCC
Intragenic VHL mutations have been observed in
56–69% of sporadic clear-cell (non-papillary type)
RCCs (Refs 66, 71, 72, 73, 74, 75, 76), accompanied
by loss of the other VHL allele (i.e. LOH) in 84–98%
of those samples (Refs 71, 72, 73, 75). Deletions
of a VHL allele have also been detected in 69% of
sporadic clear-cell RCCs by FISH, although there
was considerable intra-tumoural heterogeneity
(Ref. 77).

Like the germline mutations, the somatic
intragenic VHL mutations are distributed across
much of the gene, downstream of the second
methionine at codon 54 (Fig. 4). The mutations
are also heterogeneous in type, and include
missense and splice site mutations as well as
frameshift and nonsense mutations. A mutation
hotspot has been identified in RCC from
individuals exposed to trichloroethylene (C454T;
Pro81Ser), but this is not found in sporadic cases
(Ref. 78). Another mutation hotspot – deletion
of a T at a poly-T tract (nucleotides 653–657;
frameshift at codon 148) – was detected in RCC
in German patients but not elsewhere (Ref. 75),
suggesting that a specific carcinogen might
be involved. The VHL mutations are thought
to be an early event in renal tumourigenesis as
they are observed in localised (Stage I/II)
tumours as well as in advanced or metastatic
(Stage III/IV) RCC (Ref. 71). Other 3p loci,
especially 3p14-p21, also seem to be important for
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malignant transformation of renal cells (Ref. 67),
with or without VHL gene inactivation. However,
VHL gene inactivation is usually confined to the
clear-cell type of RCC (which is the same
histological type as occurs in VHL disease), and
few mutations have been observed in other
histological types such as papillary (chromophilic)
RCC (Refs 71, 73, 75). Epigenetic inactivation of the
VHL gene (i.e. silencing by promoter methylation)
is also observed in sporadic clear-cell RCC
tumours: 15–19% have promoter hypermethylation
(Refs 66, 67, 68, 75), which results in silencing of
this allele. Some RCCs show methylation of one
allele and deletion of the other, and occasionally
both alleles are methylated (Ref. 66).

Haemangioblastomas
LOH at the VHL locus has been detected in the
stromal cell component of 53% of sporadic
cerebellar haemangioblastomas and somatic
missense mutations have been detected in 10%
(Ref. 79). Somatic intragenic missense and
truncating mutations have also been detected in
at least 23% of sporadic CNS haemangioblastomas
(Ref. 80).

Phaeochromocytoma
Analysis of the VHL gene in 48 apparently
sporadic phaeochromocytomas revealed only
two somatic missense mutations (4%) (Ref. 47).
Thus, other genes are probably more important
for the development of most cases of
phaeochromocytoma.

Other tumour types
LOH at the VHL locus has been detected in
sporadic cases of pancreatic microcystic adenoma
(Ref. 65) and endolymphatic sac tumours (Ref. 81).
Mutations in the VHL gene are very rare in
tumour types that are not associated with VHL
disease – lung, breast, ovarian, testicular, cervical,
endometrial, prostate, colon and bladder cancers,
melanoma, mesothelioma, oral squamous cell
carcinoma and follicular thyroid carcinoma (Refs
71, 74, 82, 83, 84) – although some VHL gene
deletions have been reported in colon cancer
(Ref. 85).

VHL gene expression and function
VHL expression in different tissues
The VHL gene appears to be expressed in most
adult human tissues (Ref. 21). Two alternatively
spliced mRNA isoforms (with and without exon

2) are detectable but, since patients with deletion
of the whole of exon 2 have VHL disease (Ref.
36), the full-length isoform is likely to encode the
active tumour suppressor. Transcription starts
upstream of both methionine codons in exon 1
and so it is not possible to distinguish from the
mRNA which of the two protein translation start
sites is used.

During human embryogenesis, VHL mRNA is
expressed in virtually all tissues from as early
as six weeks of gestation, with particularly high
levels in the urogenital system, brain, spinal cord,
sensory ganglia, eyes and bronchial epithelium
(Ref. 86). Thus, the areas of highest expression do
not completely correlate with the tissues that are
involved in VHL disease. In the developing
metanephric kidney, VHL is expressed in the
proximal tubule (from where RCC originates)
(Refs 86, 87), but it is also abundant in the loops
of Henle (which are not associated with RCC in
VHL disease). There is also no difference in the
relative amounts of the two differentially spliced
mRNA isoforms in the different fetal tissues (Ref.
86). VHL gene expression is similarly widespread
during mouse embryogenesis (Ref. 87).

Antibody staining of normal human adult
tissues demonstrates that pVHL is expressed in:
epithelial cells covering the body surface, the
alimentary canal, and the respiratory and
genitourinary tracts; secretory cells of the exocrine
and endocrine organs; parenchymal cells of
visceral organs; cardiomyocytes; neurons in
nervous tissue; lymphocytes in lymphoid tissue;
and macrophages (Refs 88, 89, 90). The tissue
specificity of VHL disease therefore cannot be
entirely explained by tissue-specific expression
during either fetal development or adulthood.
However, the antibodies used would not
distinguish between the different sized pVHLs
generated by alternative translation initiation sites
(see later) or by alternative splicing.

pVHL might play a role in the development
of the kidney: its expression is confined to
tubular components in the fetal kidney, and VHL
expression inhibits hepatocyte growth factor/
scatter factor-induced branching morphogenesis
and invasion in RCC cells in vitro (Ref. 91). Thus,
pVHL might limit branching morphogenesis in
renal tubules in vivo.

Knockout mice and other animal models
Homozygous Vhl−/− knockout mice die in
utero at 10.5–12.5 days of gestation, as a result
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of defective placental vasculogenesis (Ref. 92).
By contrast, heterozygous Vhl+/− mice appear
phenotypically normal, without any evidence of
spontaneous tumour development up to the age
of 15 months; thus, there is not yet a good
animal model of VHL disease. It has yet to be
established whether tumours would develop at
a higher rate than normal in heterozygous mice
treated with carcinogens, or against a different
genetic background. Conditional knockout
rodents (i.e. where the VHL gene is inactivated
only in specific cell types or tissues) are required
to define the true role of VHL in development
of tissues such as the kidney and brain.
However, it is known that expression of pVHL
correlates with neuronal differentiation in
rodent CNS cells, and VHL transduction induces
neuronal differentiation (Ref. 93). Furthermore,
nitrosamine treatment of normal rats induces
clear-cell RCC, and VHL mutations were detected
in 38% of these rat tumours, suggesting that the
tumour suppressor function of VHL is conserved
in rodents (Ref. 94).

A reduction of Drosophila Vhl expression by
RNA interference methodology causes breakage
of the main vasculature and excessive looping
of smaller vascular branches in the trachea,
while overexpression causes a general lack of
vasculature (Ref. 32). The authors of this study
propose that pVHL is involved in halting cell
movement at the end of vascular tube outgrowths.
This is a useful model for the mammalian
vasculature because branching morphogenesis in
mammals is regulated in a similar way to that in
Drosophila trachea.

The VHL protein
Size
As well as the full-length pVHL of 213 amino acids
with an apparent molecular mass of 24–30 kDa
[pVHL(30)] there is a second major product, of
18–19 kDa [pVHL(19)], that appears to result from
translation initiation at the second AUG codon
(codon 54). Both pVHL(30) and pVHL(19) are
functional in tumour suppression (Refs 95, 96, 97).
Analysis of various cell lines suggests that
pVHL(30) protein is the more abundant species,
although pVHL(19) translated from the second
methionine is also detectable (Refs 98, 99).
However, the first 53 amino acids from pVHL(30)
are less well conserved than the sequence after
codon 54, and no pathogenic mutations have
been identified in codons 1–53, suggesting that

this region might not be important for the
tumour suppressor function of VHL. There is,
as yet, no evidence for expression of pVHL
from the alternatively spliced mRNA lacking
exon 2 (isoform 2) in normal individuals. Post-
translational modification of pVHL has not yet
been thoroughly investigated, but it is possible
that pVHL is phosphorylated because there are
several kinase consensus sequences within the
protein. pVHL can self-associate via amino acids
96–122 when overexpressed in cells (Ref. 100),
which might cause dominant negative effects
for VHL mutations outside this region. However,
it has not been shown that pVHL is able to
self-associate when expressed at physiological
levels.

Structure
pVHL has two major structural domains, as
identified from the three-dimensional structure of
its heterotrimeric complex with elongins B and C
(Ref. 58) (see below). Details of the crystal
structure are available from the Protein Data Bank
at http://www.rcsb.org/pdb/ (PDB ID: 1vcb)
(Ref. 101). The β-domain consists of a seven-
stranded β sandwich (amino acids 63–154) and
one α-helix (amino acids 193–204). The smaller,
α-domain (amino acids 155–192) consists of
three α-helices, and binds to elongin C (Fig. 3).
The α-domain is a hot spot for missense mutations
in VHL (e.g. Arg167), and these amino acids have
been identified as being involved in direct
interaction with residues in elongin C or in
interactions with other pVHL residues to stabilise
the structure of the α-domain. Another region of
pVHL in which missense mutations are frequently
observed (Trp88, Asn90, Gln96, Tyr98, Tyr112) is
an area on the surface of the β-domain opposite
the binding site for elongin C; this surface patch
might represent another macromolecule-binding
site (Ref. 58). Analysis of different VHL mutations
with respect to the type of VHL disease (Type 1
or Type 2) has revealed that most Type 2 mutations
map to the binding site for elongin C or to the
surface patch in the β-domain, or are predicted to
cause relatively localised effects if a structural
residue is involved. By contrast, the few missense
mutations that cause Type 1 VHL disease tend to
map to residues in the β-domain hydrophobic core
and are predicted to cause complete unravelling
of the pVHL structure. This suggests a bias against
complete loss-of-function mutations in Type 2
VHL disease.
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Subcellular localisation
In cell cultures, pVHL is localised with a punctate
(dotted) nuclear pattern, a diffuse cytoplasmic
pattern, or as both in the same cell (Ref. 102). This
is because pVHL engages in nucleocytoplasmic
shuttling (Ref. 103), which is required for its
function. This shuttling is transcription dependent
(inhibition of transcription causes pVHL to
localise to the nucleus), and is mediated by
sequences within exon 2 (amino acids 114–154;
Fig. 3) because pVHL with exon 2 deleted
localises preferentially to the nucleus. Nuclear
export of pVHL does not require binding to cullin
2 (CUL2; see later), but is dependent on adenosine
triphosphate (ATP) and is mediated by Ran (Ref.
104), an abundant multifunctional GTPase that
mediates nuclear import and export of many
proteins (Ref. 105). There are also reports that
pVHL shuttling is cell-cycle dependent: pVHL is
both nuclear and cytoplasmic in subconfluent
cells, but is more nuclear in confluent cells
(Ref. 106); and cell-cycle analyses have shown
exclusively nuclear staining in cells in G0/G1,
with more diffuse cytoplasmic staining in cells in
S phase (Ref. 106). However, another report
showed that pVHL was nuclear in subconfluent
cells and more cytoplasmic in confluent cells
(Ref. 107). These contrasting findings might
indicate artefacts resulting from cell fixation and
antibody-staining protocols. Finally, there is a
further report (using green fluorescent protein-
tagged pVHL) suggesting that pVHL is located
in the mitochondria (Ref. 108).

Suppression of tumourigenesis and
effects on the cell cycle
Human VHL− RCC cells are tumourigenic in
nude mice (mutant hairless athymic mice that
are immunodeficient and thus do not reject
tumour transplants from other species) and
tumourigenesis is suppressed by re-introduction
of the VHL gene (Refs 96, 98, 109). The effect of re-
expression of VHL on the growth rate and cell-
cycle profile of RCC cells grown in vitro is variable
and might depend on the cell line: some lines
show no effect (Refs 98, 109), while others
demonstrate in vitro RCC cell growth inhibition
by VHL (Refs 110, 111). VHL expression can restore
the ability of RCC cell lines to exit the cell cycle
and enter G0 quiescence upon serum withdrawal
in culture (Ref. 112). The mechanism of these
effects of pVHL on the cell cycle is not clear,
but it might be associated with induction of the

cyclin-dependent kinase inhibitor p27Kip1 at both
RNA and protein levels (Ref. 111). When VHL−
RCC cells are grown as multicellular three-
dimensional spheroids in vitro (rather than as a
monolayer), introduction of a wild-type VHL gene
suppressed growth and induced features of cell
differentiation, including deposition of fibronectin
in the extracellular space (Ref. 113). This indicates
that pVHL does inhibit features of tumourigenesis
in RCC cells, confirming that VHL is a true tumour
suppressor gene. Recent experiments in an RCC
cell line suggest that pVHL protects cells from UV-
induced apoptosis (programmed cell death),
possibly by inducing growth arrest via elevation
of the levels of the cyclin kinase inhibitors p21
and p27 (Ref. 114). It seems counter-intuitive that
cells lacking the functional pVHL tumour
suppressor are more sensitive to apoptotic stimuli,
but perhaps increased apoptosis provides
selective pressure for cells that can escape death
under these conditions, resulting in clonal
outgrowth of tumourigenic cells following
mutations in other genes.

pVHL-binding proteins
The function of a novel protein can often be
elucidated by identification of the cellular proteins
with which it interacts. Immunoprecipitation
experiments reveal a large number of proteins that
bind to pVHL (either directly or indirectly), not all
of which have yet been characterised (Refs 102, 115).

Elongin C
pVHL binds a 9–14 kDa protein, which was
identified as elongin C, and a 14–18 kDa protein
(elongin B) binds to elongin C in this same
complex (Refs 102, 115, 116, 117). Elongins B and
C were originally identified as subunits of the
heterotrimeric transcription elongation factor
elongin (SIII). pVHL binds directly to elongin C
mainly via amino acids 157–172 (Refs 99, 115,
117, 118) – the α-domain of pVHL (Ref. 58). This
has been demonstrated by the following: when
compared with wild-type pVHL, a mutant pVHL
deleted from amino acids 157 to 213 (the C-
terminus) showed greatly reduced ability to bind
to elongin C/B, and mutant pVHLs with missense
mutations Arg167Gln, Arg167Trp, and Leu158Pro
(in the α -domain) also showed impaired
binding; a synthetic peptide of amino acids
157–172 competed with pVHL for binding;
and mutant pVHLs with missense mutations
Tyr98His, Tyr98Asn, Gly93Asp, Ser111Asn,
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Tyr112His and Phe119Leu (in the β-domain)
retained elongin C/B binding (Refs 115, 116, 117).

Folding and assembly of pVHL into a trimeric
complex with elongin C and elongin B (the
VCB complex; Fig. 5a) is directly mediated by
association of pVHL with the chaperonin protein
TriC (Ref. 119). The VCB complex is resistant to
proteasomal degradation, and pVHLs harbouring
mutations that disrupt elongin binding are
unstable and rapidly degraded (Ref. 120).

Because elongins B and C are regulatory
components of the transcription elongation
heterotrimer elongin (SIII) (elongins A + B + C)
(Ref. 121), it was originally suggested that
pVHL sequestered elongins B and C away from
elongin A and thus might inhibit transcriptional
elongation of target genes (Refs 116, 122).
However, the high cellular levels of elongin B
and C and low levels of pVHL suggested that
this is not the mechanism. Indeed, elongins B
and C were subsequently shown to have other
binding partners, including CUL2 (see below) and
proteins containing a 50 amino acid domain
referred to as a SOCS-box [because it was first
identified in the cytokine-inducible suppressors
of cytokine signalling (SOCS) proteins] (Ref. 123).
Recently, however, pVHL was shown to
repress transcriptional elongation of the gene
encoding tyrosine hydroxylase (TH) in rat
phaeochromocytoma cells, and this elongation
pause at a region downstream of the TH gene
was released by hypoxia (a physiological
stimulus for TH mRNA expression) (Ref. 124). It
is not clear whether pVHL-dependent regulation
of transcription elongation occurs in any other
genes, or whether this function is relevant to
tumour suppressor activity.

CUL2
The VCB complex binds to a 70–76 kDa CUL2
protein (Refs 99, 125), a human member of the
cullin gene family, which is involved in cell-cycle
control in yeast (Ref. 126). CUL2 does not bind to
pVHL in the absence of elongins B and C (Ref.
127), and while there is some evidence for
elongin C binding to CUL2 in the absence of
pVHL (Ref. 99), mutations that disrupt pVHL
binding to elongin C (Arg167Trp and 157del)
reduce the interaction with CUL2 (Ref. 127).
The VCB–CUL2 complex inhibits accumulation
of hypoxia-induced mRNAs such as VEGF
(Ref. 99) by ubiquitin-mediated proteolysis of
hypoxia-inducible factor 1 (HIF-1) (see below).

VCB–CUL2 is an important component of the
ubiquitin-mediated proteolysis system, which has
been shown to be involved in a wide range of
cellular functions, including cell-cycle progression
and signal transduction (Box 1). The VCB–CUL2
complex exhibits E3 ubiquitin ligase activity,
with Ubc5 a, b and c as the ubiquitin-conjugating
E2 enzyme, and with another protein (Rbx1)
enhancing the ligase activity (Refs 128, 129, 130,
131). Indeed, it was the sequence and structural
similarity between VCB–CUL2 and components
of the yeast SCF complex (Box 1) that led to the idea
that the VCB complex might also be involved in
ubiquitination; elongin C has homology to Skp1,
CUL2 to Cdc53/CUL1, and elongin B to ubiquitin.
pVHL does not share sequence homology with
the other component of SCF complexes, the F-box
proteins (Box 1), but there is structural similarity
(Refs 58, 127). To summarise, pVHL might be the
substrate recognition subunit of the VCB–CUL2
E3 ubiquitin ligase, a macromolecular complex
comprising VCB, CUL2 and Rbx1 that is able to
ubiquitinate proteins such as HIF-1 (see below and
Fig. 5a).

CUL2 is covalently modified at Lys689 by
NEDD8, a ubiquitin-like protein; pVHL complex
formation promotes this conjugation (Refs 132,
133), and the NEDD8–CUL2 conjugates are part
of the VCB–CUL2 complex in vivo. Although
the functional significance of this covalent
modification is unclear, one hypothesis is that
NEDD8 attachment protects CUL2 from self-
ubiquitination and degradation.

As it encodes a pVHL-binding protein,
CUL2 makes a good candidate tumour suppressor
gene. However, no pathogenic mutations were
detected by screening the CUL2 gene in sporadic
RCC, although LOH in the CUL2 region of
chromosome 10p11.1-p11.2 was detected in 24%
of informative cases (Ref. 134). Similarly, no
CUL2 mutations were detected in sporadic
phaeochromocytomas that lack VHL mutations,
although two polymorphic variants in CUL2 were
over-represented in the phaeochromocytoma
patients compared with a control population
(Ref. 135). Thus, unless CUL2 is inactivated
by epigenetic events, it is not a major tumour
suppressor gene in RCC or phaeochromocytoma.

Studies in RCC cells suggest that lack of pVHL
reduces the rate of elimination of abnormally
processed proteins (because of a lower rate of
proteolysis after ubiquitination), so that RCC
cells lacking pVHL are more sensitive to
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Figure 5. A model of the role of von Hippel–Lindau protein (pVHL) in ubiquitin-mediated proteasomal
degradation of HIF-1α (see next page for legend) (fig005frb).
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cytotoxicity caused by specific stresses such as
glucose deprivation (Ref. 136). This supports the
hypothesis of a role for pVHL in ubiquitin-
mediated proteolysis of cellular proteins and
suggests that other proteins in addition to HIF-1
might be targets for the VCB–CUL2 complex.

HIF-1
One target of the VCB–CUL2 complex is HIF-1,
which plays a key role in regulating genes
involved in energy metabolism, angiogenesis and
apoptosis in response to hypoxia (Refs 137, 138).
HIF-1 is a heterodimeric transcription factor
consisting of HIF-1α and HIF-1β [also known as
arylhydrocarbon-receptor nuclear translocator
(ARNT)] subunits (Ref. 138). HIF-1 activity is
primarily determined by stability of HIF-1α ,

which is rapidly degraded by ubiquitin-
mediated proteolysis under normal conditions
but becomes stabilised by hypoxia (Refs 139,
140). HIF-1α binds to the surface binding site
(β-domain) of pVHL and is ubiquitinated and
degraded in the presence of oxygen via the
VCB–CUL2 complex (Refs 131, 141, 142, 143)
(Fig. 6a). HIF-2α [also known as endothelial PAS
domain protein 1 (EPAS-1), HIF-related factor
(HRF), or HIF-like factor (HLF)] is a homologue
of HIF-1α and is also a ubiquitination target of
pVHL (Refs 142, 143). The mechanism whereby
VCB–CUL2-mediated proteolysis of HIF-1α
is inhibited in normal cells under hypoxic
conditions has not been established, but might
involve nuclear translocation and an intranuclear
event (Ref. 144).

Figure 5. A model of the role of von Hippel–Lindau protein (pVHL) in ubiquitin-mediated proteasomal
degradation of HIF-1α. (a) Wild-type pVHL under normal oxygen (normoxic) conditions binds via its α-domain
to elongin C and forms a complex with elongin B and CUL2. Assisted by Rbx1 and possibly NEDD8, this
complex acts as an E3 ubiquitin ligase, transferring ubiquitin from the E2 ubiquitin-conjugating enzyme onto
the substrate, the HIF-1α transcription factor, which is bound to the β-domain of pVHL. Ubiquitinated HIF-1α is
then targeted for degradation by the proteasome. (b) pVHL with a mutation in the β-domain is unable to bind to
HIF-1α, which does not become ubiquitinated and is not degraded. Elevated levels of HIF-1α protein then
activate transcription of target genes that are normally induced only by hypoxia, including VEGF, which might
play a role in development of the vascular tumours of VHL disease. (c) pVHL with a mutation in the α-domain
is unable to bind to elongin C, so the E3 ubiquitin ligase complex does not form and is unable to ubiquitinate
HIF-1α. HIF-1α levels increase and transcription of target genes is induced. Abbreviations: CUL2, cullin 2; E2,
E2 ubiquitin-conjugating enzyme (e.g. Ubc5a); GLUT-1, glucose transporter 1; HIF-1α, hypoxia-inducible
transcription factor 1α; PDGF-B, platelet-derived growth factor B chain; Ub, ubiquitin; VCB complex, trimeric
complex of pVHL, elongin C and elongin B; VEGF, vascular endothelial growth factor (fig005frb).

Box 1. Ubiquitin-mediated proteolysis

Ubiquitin-mediated proteolysis is involved in controlling the levels of many different proteins
within the cell, including cell-cycle regulators, transcription factors and signalling proteins (e.g.
ΙκΒα , β-catenin, E2F-1, cyclin-dependent kinase inhibitor p27Kip1, cyclins and p53) (Refs 130, 178,
179). Protein substrates are targeted for degradation following covalent attachment of the small
protein ubiquitin, catalysed by a cascade of ubiquitin transferase enzymes (E1, E2, E3).

First, ubiquitin is activated by adenosine triphosphate (ATP) to form a high-energy thiol ester
intermediate with the E1 ubiquitin-activating enzyme. Activated ubiquitin is then transferred from
E1 to an E2 ubiquitin-conjugating enzyme. In the presence of an E3 ubiquitin protein ligase, E2
transfers ubiquitin to an ε-amino group of a lysine residue in the specific protein substrate.
Polyubiquitin chains are then formed by generating isopeptide bonds between the C-terminal glycine
and Lys48 of conjugated ubiquitin molecules. Polyubiquitinated proteins are subsequently captured
and degraded by the 26S proteasome, an abundant protease particle.

The crucial substrate recognition step in ubiquitin-mediated proteolysis is mediated by the diverse
family of E3 ubiquitin ligases. One well-characterised type of E3 is the Skp1–CUL1–F-box (SCF)
protein complexes in yeast. The Skp1 subunit links any one of a set of adaptor F-box proteins to a
core ubiquitination complex that is composed of the scaffold protein Cdc53/CUL1, the RING-H2
finger protein Rbx1/ROC1 (Refs 180, 181) and typically the E2 enzyme Cdc34 (Ref. 179).
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Tumour-associated missense mutations in
the β-domain of pVHL reduce or abrogate
binding and degradation of HIF-1 (Refs 131, 142,
143, 144) (Fig. 5b). Mutation in the α-domain of
pVHL also stabilises HIF-1 since it prevents the
formation of the VCB complex (Fig. 5c). Lack of
wild-type pVHL results in stabilised HIF-1 and
overexpression under normoxic conditions of
genes containing a hypoxia-response element

(HRE) in their promoter, including VEGF and
glucose transporter 1 (GLUT-1). Thus, constitutive
HIF-1 activation might underlie the hypervascular
phenotype of VHL-associated tumours. Indeed,
immunohistochemistry has shown elevated levels
of HIF-1α and HIF-2α proteins in VHL-associated
RCC and haemangioblastoma (Ref. 145).

It should be noted that the p53 tumour
suppressor protein also promotes ubiquitin-

Figure 6. Summary of interactions and possible functions of the wild-type von Hippel–Lindau protein
(pVHL). Double-headed, blue arrows indicate interactions between proteins. Single-headed, black arrows
indicate events that occur as a result of pVHL binding to its partner. Black T-shaped lines indicate events that
are inhibited by pVHL binding to its partner. Question marks indicate components of the network that are
yet to be identified. Fibronectin, HIF-1α, Sp1 and protein kinase C isoforms have been reported to bind to
the β-domain of pVHL; elongin C and probably VBP1 bind to the α-domain of pVHL. pVHL promotes correct
formation of the fibronectin extracellular matrix, and might promote cell cycle exit and destabilisation of growth
factor mRNAs via unknown mechanisms. pVHL inhibits HIF-1α- and Sp1-induced transcription of genes, and
might inhibit cell signalling by protein kinase C. The pVHL complex with elongins and CUL2 has E3 ubiquitin
ligase activity that is responsible for the inhibition of HIF-1α; it is not yet clear whether E3 activity is also
responsible for the other functions of pVHL. Elongins C and B bind to other cellular proteins (elongin A and
proteins containing a SOCS-box motif) independently of pVHL; there might be competition between these
different pathways. Abbreviations: CUL2, cullin 2; GLUT-1, glucose transporter 1; HIF-1α, hypoxia-inducible
transcription factor 1α; PDGF-B, platelet-derived growth factor B chain; SOCS, suppressor of cytokine signalling;
TGF, transforming growth factor; VBP1, VHL-binding protein 1; VEGF, vascular endothelial growth factor
(fig006frb).
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mediated proteasomal degradation of HIF-1α
(Ref. 146), and overexpression of HIF-1α protein
is a feature of many tumour types (possibly
because of hypoxia) (Ref. 147). Thus, the tissue-
specificity of tumour types associated with VHL
mutation might not be related to its interaction
with HIF-1α. Furthermore, pVHL might recognise
target proteins for protein degradation in addition
to HIF-1α and HIF-2α. Several other proteins have
been shown to bind to the β-domain of pVHL (see
below), but their functional significance has not
yet been determined.

Fibronectin
The extracellular adhesive glycoprotein
fibronectin is a multifunctional protein that binds
to cell-surface integrins and plays a role in the
control of tumour cell migration and metastasis.
Fibronectin has been shown to bind to wild-type
but not to mutant pVHLs (including those with
missense mutations in the β-domain) (Refs 143,
148); binding probably occurs with a fraction of
pVHL associated with the endoplasmic reticulum
(ER) during ER-mediated export of fibronectin to
the cell surface. Assembly of the fibronectin
extracellular matrix is grossly defective in
VHL−/− RCC cells and can be partially restored
by re-introduction of wild-type pVHL (Ref. 148).
Furthermore, Vhl−/− mouse embryo fibroblasts
are also impaired in fibronectin extracellular
matrix assembly compared with wild-type
counterparts (Ref. 148). This suggests a direct role
for pVHL in fibronectin matrix assembly.

Sp1 transcription factor
One group has reported that the transcription
factor Sp1 interacts with pVHL, and that pVHL
represses Sp1-mediated activation of the VEGF
promoter in a reporter construct (Ref. 149). pVHL
might partially downregulate VEGF transcription
by directly binding and inhibiting Sp1 (Ref. 100),
and also by inhibiting protein kinase C ζ (PKC-ζ)
binding to and phosphorylation of Sp1 (Ref. 150).
pVHL amino acids 96–122 (in the β-domain) are
sufficient for binding to the zinc fingers of Sp1,
thereby interfering with the ability of Sp1 to bind
DNA (Ref. 100). The interaction of pVHL with Sp1
has yet to be confirmed by other groups.

PKC
Two groups have reported that part of the β-
domain of pVHL (amino acids 114–122) interacts
directly with the regulatory domain of several

PKC isotypes (δ, ζ and λ) and inhibits kinase
activity (Refs 151, 152); these PKC isotypes have
been implicated in regulation of cell growth and
apoptosis (Ref. 152). Binding of pVHL to PKC-δ
and PKC-ζ might prevent PKC translocation to
the cell membrane and thus prevent signalling
steps [including mitogen-activated protein
kinase (MAPK) activation] that result in VEGF
overexpression (Ref. 151). Furthermore, pVHL
inhibits PKC-ζ binding to (and phosphorylating
and activating) the Sp1 transcription factor and
thus might prevent activation of VEGF promoter
expression (Ref. 150). Finally, pVHL inhibition of
PKC-δ interaction with insulin-like growth factor
1 (IGF-1) receptor might inhibit IGF-1-mediated
signalling (Ref. 153).

Other pVHL-binding proteins
Yeast two-hybrid analysis using VHL cDNA has
identified seven polypeptides that bind to pVHL
(Ref. 154), including elongin C and a novel protein
named pVHL-binding protein 1 (VBP1). VBP1
binds to full-length pVHL (213 amino acids), but
does not bind pVHL truncated at amino acid 187.
This result is the same as for elongin C in this
assay, suggesting involvement of α-domain
binding. The VBP1 gene was investigated as a
candidate gene in sporadic RCC but no mutations
were found (Ref. 134), and the function of this
protein is unknown.

Imidopeptidase bound to a region of pVHL
within the N-terminal amino acids 1–57, as did two
unidentified proteins. Human immunodeficiency
virus (HIV) Tat-binding protein 1 and the actin-
binding protein filamin bound to a region
contained within pVHL amino acids 1–187. The
significance of these interactions has yet to be
investigated.

pVHL target genes
Interaction of pVHL with its various binding
partners results in changes in gene expression that
inhibit tumour cell growth, angiogenesis, and
other functions. Identifying these pVHL target
genes is crucial to understanding the mechanism
of tumourigenesis resulting from VHL mutation
and should ultimately enable the development of
specific treatments for VHL disease.

VEGF
Known pVHL target genes include VEGF (Ref.
155), which is a hypoxia-inducible gene that is
highly expressed in many tumours, including
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VHL-associated and sporadic RCC, and stimulates
neoangiogenesis in growing solid tumours.
Hypoxia regulates the production of VEGF in
normal tissues at both transcriptional and post-
transcriptional levels, by activating the HIF-1
transcription factor, leading to increased VEGF
transcription, and by increasing VEGF mRNA
stability.

RCC cells with inactivated endogenous VHL
overexpress VEGF mRNA and protein in vitro;
re-expression of wild-type VHL inhibits VEGF
expression (Refs 109, 156, 157) and restores its
hypoxia inducibility. Several studies have shown
that inhibition by pVHL does not affect VEGF
transcription initiation or elongation (as was
originally suggested because of the pVHL–
elongin association) (Ref. 109), but does decrease
the half-life of VEGF mRNA (Ref. 156), suggesting
that pVHL regulates VEGF expression at a post-
transcriptional level (i.e. independent of HIF-1
and Sp1 transcription factor activity). pVHL might
control VEGF mRNA stability by decreasing
the formation of a novel hypoxia-inducible
protein complex bound to the VEGF 3' UTR (Ref.
158). However, one group has shown that pVHL
does indeed inhibit Sp1-mediated transcription
from the VEGF promoter by pVHL binding to Sp1
and to PKC-ζ (Refs 149, 150). Also, since HIF-1,
which is known to activate VEGF transcription,
is destablised by pVHL it seems likely that pVHL
does inhibit VEGF trancription. Taken together,
these results suggest that loss of pVHL function
might lead to overexpression of VEGF via
both transcriptional and post-transcriptional
mechanisms, at least in cultured cells.

In vivo, alteration of the VHL gene is associated
with upregulation of VEGF. Primary clear-cell
RCC tumours show overexpression of VEGF
mRNA and protein (Ref. 159), particularly in those
with reduced VHL expression (Ref. 160). Elevated
serum VEGF levels have also been detected in
patients with RCC (Ref. 161). In addition, VEGF
is overexpressed in the stroma of VHL-associated
and sporadic CNS haemangioblastomas (Refs
162, 163) and in retinal angiomas (Ref. 64),
whereas the vascular endothelial-cell component
of haemangioblastomas expresses the two
homologous VEGF receptors Flt-1 (Fms-like
tyrosine kinase) and KDR (kinase insert domain-
containing receptor) (Ref. 162). Recent studies
have shown that the VEGF overexpression
correlates with elevated levels of expression of the
HIF-2α transcription factor in haemangioblastomas

(Ref. 164). Elevated VEGF mRNA was also
detected in epididymal cystadenoma cells
from a VHL patient (Ref. 163). It is not known
whether human phaeochromocytomas express
VEGF, but VEGF mRNA is expressed by the rat
phaeochromocytoma cell line PC12 (Ref. 165).

In summary, pVHL suppresses VEGF gene
expression under normoxic conditions (probably
via both transcriptional and post-transcriptional
mechanisms), and loss of pVHL leads to
overexpression of VEGF (at least partially by
stabilisation of HIF-1). Overexpression of VEGF
is a consistent feature of tumours with VHL
mutations, which might explain the hypervascular
phenotype of most VHL tumours.

Other hypoxia-inducible genes
As well as overexpressing VEGF, VHL−/− RCC
cells overexpress GLUT-1 and the platelet-derived
growth factor B chain (PDGF-B), which are two
other genes that are normally induced by hypoxia.
Re-introduction of wild-type pVHL inhibited the
production of these mRNAs under normoxic
conditions and restored their normal hypoxia
inducibility (Ref. 156). Similarly, erythropoeitin
is a hypoxia-inducible gene that is overexpressed
in VHL tumours, including haemangioblastomas
(Ref. 166), which can occasionally lead to excessive
production of red blood cells (secondary
polycythaemia or paraneoplastic erythrocytosis)
(Ref. 167) in VHL patients. Two carbonic anhydrase
genes (CA12 and CA9) are overexpressed in some
RCC cell lines and are inhibited by re-introduction
of wild-type pVHL (Ref. 168), and it has recently
been demonstrated that CA9 and CA12 are
hypoxia-inducible genes directly regulated by the
HIF/pVHL system (Ref. 169). Carbonic anhydrase
enzymes produce carbonic acid from CO2 and
might acidify the immediate extracellular
milieu surrounding cancer cells, creating a
microenvironment conducive to tumour growth
and spread. As mentioned earlier, another
hypoxia-inducible mRNA – TH – is also regulated
by pVHL in rat phaeochromocytoma cells (Ref. 124).

Urokinase-type plasminogen activator (uPA)
Urokinase-type plasminogen activator (uPA)
mRNA and protein levels are higher, and
plasminogen activator inhibitor 1 (PAI-1) levels
are lower, in RCC cells with wild-type pVHL
compared with RCC cells lacking pVHL or
expressing mutant pVHL. This suggests that
pVHL might play a role in regulation of
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angiogenesis by regulation of plasmin-mediated
proteolysis of the extracellular matrix (Ref. 170).

Transforming growth factor β1 (TGF-β1)
pVHL represses TGF-β1 mRNA and protein levels
in RCC cells by decreasing the mRNA half-life.
Overexpression of TGF-β1 is a feature of some
patients with RCC and loss of pVHL might
allow overexpression of TGF-β1. This cytokine
acts in a paracrine fashion to aid metastasis and
angiogenesis (Ref. 171).

Transforming growth factor α (TGF-α)
TGF-α is an important growth factor for RCC and
is overexpressed in many RCC tumours and cell
lines. Introduction of pVHL decreases TGF-α
mRNA and protein levels in RCC cells by
decreasing mRNA stability (Ref. 172). It is possible
that pVHL modulates the activity of certain RNA-
binding proteins that are involved in mRNA
stability, as has been found for VEGF (Ref. 158).

The future: functional aspects
In conclusion, it is clear that inactivation of the
VHL gene (by deletion, mutation or methylation)
is a key event in the development of tumours
in VHL disease and also in the development
of a large proportion of sporadic RCCs and
haemangioblastomas. Wild-type pVHL has
multiple interactions with other cellular
proteins and multiple effects on target genes
(Fig. 6). Key features are the binding of pVHL
to elongin C, forming a complex with elongin
B and CUL2 that has E3 ubiquitin ligase
activity. pVHL might act as the substrate
recognition subunit of this complex, to recruit
proteins such as HIF-1α for ubiquitination and
subsequent proteasome-mediated degradation.
Loss of pVHL leads to increased levels of
HIF-1α  under normoxic conditions, resulting in
overexpression of hypoxia-inducible genes such
as VEGF. This is likely to be one of the key
events that results in tumour growth, but other
pVHL functions (perhaps involving its interaction
with fibronectin) might also play a role in
tumourigenesis. More genes with expression
affected by pVHL will certainly be identified in
the near future, particularly using microarray
technology to investigate the cell signalling
pathways involved. Therefore, there is still
considerable work to do to elucidate clearly the
key functions of pVHL that are critical for tumour
suppression.

Little is known about how expression of VHL
is regulated, so experiments are under way to
identify the transcription factors that control VHL
mRNA expression. Similarly, analysis of pVHL is
required to determine whether its levels are
regulated under different conditions, and whether
its function is controlled by post-translational
modifications such as phosphorylation.

Analysis of many different VHL mutations is
under way to determine whether the different
VHL phenotypes are related to the ability of the
mutant proteins to retain certain protein-binding
functions. Much of the research to date has
concentrated on RCC (because of the availability
of cell lines), but there might be tissue-specific
functions that relate to phaeochromocytoma
and haemangioblastoma that have yet to be
identified.

The future: clinical aspects
Identification of the VHL gene and genotype–
phenotype correlations might allow predictions
of the risk of developing particular tumour
types, so that personalised screening protocols
can be designed for each patient once his or her
mutation is known. The screening techniques,
including magnetic resonance imaging (MRI),
computed tomography (CT) and ultrasound,
enable early detection of tumours and cysts in
brain and abdomen. Treatment is becoming
more sophisticated: nephron-sparing surgery
tends to be used where feasible now, instead of
radical nephrectomy, to maintain as much
kidney function as possible for as long as possible
in VHL patients. Once radical nephrectomy
becomes inevitable, renal dialysis or transplant
is required (Ref. 173). Similarly, laparoscopic
adrenal-sparing surgery is being developed for
phaeochromocytoma, to delay the necessity for
lifelong steroid replacement therapy after total
adrenalectomy. There are also advances in
treatment of CNS haemangioblastomas, such
as stereotactic radiosurgery, which allows
ablation of some tumours that were previously
untreatable because of their location (Ref. 3).
Peripheral retinal angiomas can be successfully
treated by cryotherapy or laser treatment at an
early stage, but others, such as those close to the
optic disk, are more difficult to treat without
affecting visual acuity (Ref. 174). Thus, although
current surgical techniques aim to reduce
morbidity and mortality in VHL patients, they are
limited in their effectiveness, and the generation
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of specific biological and/or chemical therapies
for VHL tumours would be beneficial.

Phase I and II clinical trials of a specific VEGF
inhibitor are under way in VHL patients with
kidney and brain tumours (results not yet
published), and many other anti-angiogenic drugs
are under evaluation in other cancer patients (Refs
175, 176). If effective, these might inhibit the
growth of hypervascular VHL tumours. Attempts
are also being made to develop gene therapy for
treatment of VHL tumours (and sporadic RCC in
which pVHL function has been lost), initially
using recombinant adenovirus to express the
normal VHL gene (Ref. 177). Such methods are in
their infancy, but there is hope that further
advances in understanding the function of the
pVHL tumour suppressor will lead ultimately to
effective therapies for the prevention or treatment
of VHL tumours.
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Further reading, resources and contacts

Hodgson, S.V. and Maher, E.R. (1999) A Practical Guide to Human Cancer Genetics (2nd edn), Cambridge
University Press, Cambridge, UK

Online sources of general information on cancer and specific information on VHL disease, directed at patients:

Oncolink (University of Pennsylvania Cancer Center)
http://cancer.med.upenn.edu

CancerNET (US National Cancer Institute) and CancerNET UK
http://cancernet.nci.nih.gov

http://www.graylab.ac.uk/cancernet.html

The VHL Family Alliance (Patient Support Group)
http://www.vhl.org

Relevant research databases:

Online Mendelian Inheritance In Man (all known human genetic diseases and the genes associated with
them; OMIM Accession No. for VHL disease is 193300)

http://www3.ncbi.nlm.nih.gov/Omim

GenBank (human gene sequences)
http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html

VHL gene mutation database
http://www.umd.necker.fr:2005/

Protein Data Bank at Research Collaboratory for Structural Bioinformatics (protein structure database)
http://www.rcsb.org/pdb/

Online review on ubiquitin-dependent proteolysis
http://www.proteasome.com/proteolysis2000.htm

Institute home page
http://www.bham.ac.uk/ich/genetics.htm
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Figure 1. von Hippel–Lindau (VHL) disease predisposes to multiple tumours (fig001frb).
Figure 2. Knudson’s two-hit hypothesis for tumourigenesis involving a tumour suppressor gene (TSG) (fig002frb).
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