Proceedings of the Royal Society of Edinburgh, 150, 921-954, 2020
DOI:10.1017/prm.2018.131

Existence of solutions for critical Choquard
equations via the concentration-compactness
method

Fashun Gao

Department of Mathematics and Physics, Henan University of Urban
Construction, Pingdingshan 467044, People’s Republic of China
(fsgao@zjnu.edu.cn)

Edcarlos D. da Silva
IME C Universidade Federal de Goias, 74001-970 Goiania, GO, Brazil
(eddomingos@hotmail.com)

Minbo Yang
Department of Mathematics, Zhejiang Normal University, Jinhua
321004, People’s Republic of China (mbyang@zjnu.edu.cn)

Jiazheng Zhou
Departamento de Matemaética, Universidade de Bras “ilia, 70910-900
Bras’ilia DF, Brazil (jiazzheng@gmail.com)

(MS received 6 March 2018; accepted 28 June 2018)

In this paper, we consider the nonlinear Choquard equation

—Au+V(zx)u = </R G dy) g(u) in RN,

N |z —y|~

where 0 < u < N, N > 3, g(u) is of critical growth due to the
Hardy-Littlewood—Sobolev inequality and G(u) = (;L g(s) ds. Firstly, by assuming
that the potential V' (z) might be sign-changing, we study the existence of
Mountain-Pass solution via a nonlocal version of the second concentration-
compactness principle. Secondly, under the conditions introduced by Benci and
Cerami , we also study the existence of high energy solution by using a nonlocal
version of global compactness lemma.
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1. Introduction and main results
The nonlinear Choquard equation
— Au+V(z)u= (|| *[u?) |u|? %y, inRY (1.1)

arises in various fields of mathematical physics, such as the description of the quan-
tum theory of a polaron at rest by S. Pekar in 1954 [33] and the modelling of
an electron trapped in its own hole in 1976 in the work of P. Choquard. It was
also treated as a certain approximation to Hartree-Fock theory of one-component
plasma [21]. Sometimes equation (1.1) was also known as the Schrodinger-Newton
equation [34], since the convolution part might be treated as a coupling with a
Newton equation.

Mathematically, for (1.1) with p =1, ¢ =2 and V is a positive constant, Lieb
[21] proved the existence and uniqueness, up to translations, of the ground state by
using rearrangements technique. Later Lions [23] showed the existence of a sequence
of radially symmetric solutions by variational methods. In the last decades, a great
deal of mathematical efforts has been devoted to the study of existence, multi-
plicity and properties of the solutions of the nonlinear Choquard equation (1.1).
In [15,28,29], the authors showed the regularity, positivity and radial symme-
try of the ground states and derived decay property at infinity as well. For the
Choquard equation with constant potential, Moroz and Van Schaftingen [30] con-
sidered the existence of ground states under the assumption of Berestycki-Lions
type. If the periodic potential V(x) changes sign and 0 lies in the gap of the spec-
trum of —A + V, then the energy functional associated with the problem is strongly
indefinite indeed. For this case, the existence of solution for p = 2 was considered
in [11] there the authors developed reduction argument to obtain the existence
of weak solution. Still, for the strongly indefinite case, Ackermann [1] established
the splitting lemma for the nonlocal nonlinearities and proved the existence of
infinitely many geometrically distinct weak solutions. If the nonlinear Choquard
equation is equipped with deepening potential well V(z) = Aa(z) + 1 where a(x)
is a nonnegative continuous function such that Q = int (a=1(0)) is a nonempty
bounded open set with smooth boundary, Alves et al. [5] studied the existence
and multiplicity of multi-bump shaped solutions. In quantum physics, to describe
the transition from quantum mechanics to classical mechanics, people are lead to
consider the existence and concentration behaviour of solutions for the singularly
perturbed subcritical Choquard equation which was called semiclassical Problems,
see for example [2-4,6,14,32,37]. Among these references, Wei and Winter [37]
constructed families of solutions by a Lyapunov-Schmidt type reduction. Cingolani
et al. [14] showed that there exists a family of solutions having multiple concentra-
tion regions which are located around the minimum points of the potential. Moroz
and Van Schaftingen [32] developed a nonlocal penalization technique and showed
the existence of a family of solutions concentrating around the local minimum
of V. In [2, 3], Alves and Yang proved the existence, multiplicity and concentration
of solutions for the equation by penalization method and Lusternik-Schnirelmann
theory.

To consider the nonlocal elliptic equation with Riesz type potential, it is necessary
to recall the well-known Hardy-Littlewood—Sobolev inequality.
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PROPOSITION 1.1. (Hardy-Littlewood—Sobolev inequality). (See [22].) Let t, r > 1
and 0 < p < N with 1/t +p/N+1/r=2, f€ L*RY) and h € L"(RN). There
exists a sharp constant C(t, N, u, r), independent of f, h, such that

/RN RN SL‘—y|U) dz dy C(t’N’M’r)|f‘t|h|f’7 (12)

where | - |4 for the LY(RN)-norm for q € [1, o). Ift = r = 2N/(2N — p), then

C(t,N,p,r) =C(N,p) =

w2 L (N/2 = p/2) {F (N/2) }HWM
I'(N—(u/2)) | T(N) :

In this case, there is equality in (1.2) if and only if f = Ch and
h(w) = Aly? + o — af?) =Y -0r2
for some AcC,0#~vcR and a € RV.

Let H'(RY) be the usual Sobolev spaces with norm

1/2
s o= ([ (Va4 Pyar)

DY2(R™) be equipped with norm

1/2
Jul] = ( / |Vu|2dx)
RN

and L*(RY), 1 < s < oo, denotes the Lebesgue space with norms

1/s
lu|s == (/ |u|sda:> .
RN

By the Hardy-Littlewood—Sobolev inequality, for every u € H'(R”Y), the integral
/ / lu@)[?lu(y)? dy
ry Jry |z =yl

2N — i 2N — ’
N \Q\N 5

Due to the Sobolev imbedding, (2N — p)/N will be called the Hardy-Littlewood—
Sobolev lower critical exponent and 27, = (2N — ) /(N — 2) the Hardy-Littlewood-
Sobolev upper critical exponent. In [12,31], the authors considered the nonlinear
Choquard equation (1.1) in RY with lower critical exponent (2N — u)/N and

is well defined if

https://doi.org/10.1017/prm.2018.131 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.131

924 F. Gao, E. D. da Silva, M. Yang, J. Zhou

obtained some existence and nonexistence results. In order to study the critical non-
local equation with upper critical exponent 27, let S be the best Sobolev constant
defined by:

Slu

2. g/ |Vu|>dz for all u € DV2(RY),
RN
we will use Sg,r to denote the best constant defined by

f]RN |Vu|? dz

SH = _
20/ (Ja — y|#)] da dy) V2N

s

2N—p)’

(1.3)

25

inf
weD 2RO} ([ o [(Ju() 2 uly)

In [18] it was observed that

PROPOSITION 1.2 (See [18]). The constant Sy 1, defined in (1.3) is achieved if and

only if
b (N=-2)/2
u(x)zc(bQ—Fx—aP) ’

where C' > 0 is a fized constant, a € RN and b € (0, oo) are parameters. What’s
more,

o S
L= (N, p)(N=2)/@N =)

where S is the best Sobolev constant and C'(N, p) is given in proposition 1.1.

Let Us.(x) := [N(N = 2)3]N=2/4/((6 4 |z — 2]2)N=2/2 § > 0, z € RN. We know
that Uy, is a minimizer for S [38] and

Us..(z) :== C(N, ﬂ)(Q*N)/(2(N*M+2))S((N*#)(2*N))/(4(N*M+2))(7672@) (1.4)

is the unique minimizer for Sy, that satisfies

o
—Au = fuy) dy | [u>2u  in RN (1.5)
Ry |z —yl*

and

/ VU,
RN

In [18,19] the authors considered the Brézis-Nirenberg type problem

Us, (%)% |Us, (y) [ o (N—
de:/ / |Us,= (%) Us = ()| A dy = SN/ (N t2).
RN JRN |z — y|~ ’

—Au= < |U(y)‘2“ dy) |u|2;_2u—|—/\f(u) in Q (1.6)

o lz—yl»

and established the existence, multiplicity and nonexistence of solutions for the non-
linear Choquard equation in bounded domain. It is observed in [35] that equation

https://doi.org/10.1017/prm.2018.131 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.131

Critical Choquard equation 925

(1.6) can be regarded as a limit problem for a critical Choquard equation with
deepening potential well, there the existence and asymptotic behaviour of the solu-
tions were investigated. In [6], by investigating the ground states of the critical
Choquard equation with constant coefficients, the authors studied the semiclassical
limit problem for the singularly perturbed Choquard equation in R® and charac-
terized the concentration behaviour by variational methods. The planar case was
considered in [4], there the authors established the existence of ground state for the
limit problem with critical exponential growth which complemented those results
for local case, and then they also studied the concentration around the global min-
imum set. Gao and Yang in [20] investigated the existence result for the strongly
indefinite Choquard equation with upper critical exponent in the whole space.

In works [4, 6, 20], the method developed by Brezis and Nirenberg has been suc-
cessfully adopt to study the Choquard equation with Hardy-Littlewood—Sobolev
upper critical exponents. There the authors are able to prove the existence results
by showing that the minimax value was below some critical criteria where the (PS)
condition still holds. In the present paper, we continue to study the Choquard
equation with upper critical exponents, but with different types of potential func-
tions. We will see that the arguments in [4,6,20] does not apply for these new
situations any longer.

On one hand, we are going to study the critical Choquard equation with
subcritical perturbation and potential functions that might change sign

2% P *
~dus Vi | [ PO ) (i D) e,
RN |z —yl 2

' (1.7)

where N >3, 0 < pu <N, 2N —p)/N <p< (2N —p)/(N —2) and 2, = (2N —
1)/(N —2) is the upper critical exponent in the sense of the Hardy—Littlewood—
Sobolev inequality. To obtain the existence result we are going to prove that the
lack of compactness is recovered by using the second concentration compactness
principle. As in [39], we assume that the functions V(x) satisfies the following
condition:

(V) There exists 7o > 0 such that the set Q,, = {z € RV : V(x) < 79} has finite
Lebesgue measure. Moreover, V € L2 (RV) N LY/2(RV) and there holds

Vo = |V,(CL')|N/2 < S,

where S is the best Sobolev constant and V_ = max{—V (x), 0}.
We can draw the following conclusion.

THEOREM 1.3. Suppose that assumption (V) holds, N >3, 0<u<N and
(2N —p)/N <p < (2N — p)/(N —2). Then (1.7) admits a nontrivial solution.

On the other hand, we are concerned with the existence of high energy solu-
tion for the critical Choquard equation. In [7], Benci and Cerami considered the
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following problem
—Au+V(z)u=|u* "2u, inRY, (1.8)
where the potential V' (x) satisfies (V1), (V) below and (V)
V(@) j2 < S@N = 1),
They developed some global compactness lemma and proved that problem (1.8)

has at least one positive high energy solution. Here we are quite interested if the
same result still holds for the nonlocal Choquard equation

2.72y  in RV,

—Au+V(z)u= (f]RN lu()[* dy) |u

lz—yl* (1.9)
u € DL2(RY),
here 0 < p < N, N >3, 2), = (2N — p)/(N — 2) and the potential V satisfies the
assumptions
(V1) V € C(RN, R), V > v > 0 in a neighbourhood of 0.
(Va) 3p1 < N/2, ps > N/2 and for N = 3, pa < 3, such that

V(z)e LP, Vpé€[p1,pa]

|V(ac)|N/2 < C(N, M)(Nf2)/(2N7u)SH L(2(N+2*N)/(2N*H) -1),

where Sp 1, is defined in (1.3) and C'(N, p) is given in proposition 1.1. Under these
assumptions, we have

THEOREM 1.4. Suppose that assumptions (V1), (Vo) and (V3) hold, 0 < pu <
min{4, N} and N > 3. Then equation (1.9) has at least one nontrivial solution u.

An outline of this paper is as follows: In §2, we prove a version of Concentration-
Compactness principle for the nonlocal type problem which complements the results
in [8,9,26]. After that, we can use the compactness lemma to prove that the (PS)
condition still holds below some criteria level and obtain the existence of solutions
by Mountain-Pass Theorem. In §3, we prove a version of global compactness lemma
for the nonlocal Choquard equation and then we show the existence of high energy
solution for (1.9) following the linking arguments in [7].

2. Mountain-pass solution

In this section, we will study the existence of solutions for equation (1.7) under
assumption (V). To prove the existence of solutions by variational methods, we
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introduce the Hilbert spaces

E = {ueﬂl(RN): V+(x)u2dx<oo}

RN

with inner products

(u,v) == / (VuVo + Vi (z)uv) dz
]RN
and the associated norms

lull¥ = (u,w).

Obviously, E embeds continuously in H*(RY) (see [17]). Moreover,

LEMMA 2.1 ([39], lemma 2.3). There exist C1, C2 >0 depending only on the
structural constants such that

CillullF < Collully < /]RN(IW\2 +V(@)uP)de < [ullf, weB. (21)

. 1/(2-2:])
ullnr = / / L) P ) P dz dy
RN |»T_ |“ 7

the following splitting Lemma was proved in lemma 2.2 of [18].

Denote

LEMMA 2.2. Let N >3 and 0<pu < N. If {up,} is a bounded sequence in
LEN)V/(N=2)(RNY) such that u,, — u almost everywhere in RN as n — oo, then the
following hold,

2-27 2.2% .
lunllng = llun — ully " — llully,
as n — oo.
To study the problem variationally, we introduce the energy functional associated
with equation (1.7) by
1
) = L / (IVal? + V(@)ul?) de
2 Jgn
2 Ju(@)[P) (July)

RN |z —y|~

(Ju(z)

)

22; RN

The Hardy-Littlewood—Sobolev inequality implies that .J is well defined on F and
belongs to C! with

o) = [ (VuVe+V@upda— [ [
(lu(@) %+ Ju(@)[P) ()P u(m)ew) + 0/ @) @)~ >uy)e) )

X dz dy.
|z — yl~

So u is a weak solution of (1.7) if and only if  is a critical point of the functional .J.
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2.1. Concentration-compactness principle

To describe the lack of compactness of the injection from DV2(RN) to L (RN),
P.L. Lions established the well-known Concentration-compactness principles [24—
27]. Here we would like to recall the second concentration-compactness principle
[26] for the convenience of the readers.

LEMMA 2.3. Let {u,} be a bounded sequence in D*2(RN) converging weakly and
a.e. to some ug € DV2(RN). |Vu,|? = w, [u,|?” — ¢ weakly in the sense of mea-
sures where w and ¢ are bounded nonnegative measures on RN . Then we have:

(1) there exists some at most countable set I, a family {z; :i € I} of distinct
points in RN, and a family {¢; : i € I} of positive numbers such that

¢=luol” +>_Gb.,,
el

where 6, is the Dirac-mass of mass 1 concentrated at v € RV,

(2) In addition, we have

w > |Vuol® + Zwi5zi
iel

for some family {w; : i € I}, w; > 0 satisfying
SC?/? <wj, foralliel.
In particular, Y, ; Ciz/(?) < 0.

The second concentration-compactness principle, roughly speaking, is only con-
cerned with a possible concentration of a weakly convergent sequence at finite points
and it does not provide any information about the loss of mass of a sequence at infin-
ity. The following concentration-compactness principle at infinity was developed
by Chabrowski [13], J. Bianchi, Chabrowski, Szulkin [9], Ben-Naoum, Troestler,
Willem [8] which provided some quantitative information about the loss of mass of
a sequence at infinity.

LEMMA 2.4. Let {u,} C DV2(RY) be a sequence in lemma 2.3 and define
R—o0 nooco —° n—oo

Weo 1= lim 1imsup/ \Vu,|?dz, (s := lim limsup/ lun|?" de.
|z|>R n o[> R

Then it follows that

SC? < Weo,

limsup|Vun|g:/ dw + weo,
RN

5:/ AC + Coo.
RN

lim sup |u,,

n—oo
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The concentration-compactness principles [24-27] help not only to investigate
the behaviour of the weakly convergent sequences in Sobolev spaces where the lack
of compactness occurs either due to the appearance of a critical Sobolev exponent
or due to the unboundedness of a domain, but also to find level sets of a given
variational functional for which the Palais-Smale condition holds. It was mentioned
in the famous paper by P.L. Lions [26] that the limit embeddings

)P ) 1/(21)
/ / uly dzdy < Co/ |Vu|? dz
Ry Sy Tyl RN

also cause the concentration of a weakly convergent sequence at finite points and
the results in lemma 2.3 holds with |u,|?" replaced by

2;/ |un ()] dy
RN [T —yl#

Moreover, a version of concentration-compactness principle corresponding to
lemma 2.3 was established in [27] to study the minimizing problem associated with
the attainability of the best constant in the Hardy-Littlewood-Sobolev inequality
of the form

[tn

s«u| < Colulp

1
||

for some Cy depending on N, u, q, p, where 0 < p < N and p, ¢ satisfy

In the present paper, we are interested in the existence of solutions for the criti-
cal Choquard equation due to the Hardy-Littlewood—Sobolev inequality. Since the
lack of compactness also occurs when researchers consider the critical Choquard
equation in unbounded domain, it is quite natural for people to turn to a possi-
ble use of the second concentration-compactness principle for the convolution type
nonlinearities. However, to the best knowledge of the authors, there seems no such
existing lemmas that describe the possible concentration of a weakly convergent
sequence both at finite points and at infinity. And there also seems no applica-
tion of such a second concentration-compactness principle in studying the critical
Choquard equation. By taking some ideas from [26,27], we prove a concentration-
compactness principle involving the convolution nonlinearities to study the critical
Choquard equation.

LEMMA 2.5. Let {u,} be a bounded sequence in DY2(RY) converging weakly
and a.e. to some ug and w, Wso, C, (o be the bounded nonnegative measures in
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lemmas 2.3 and 2.4. Assume that

()P *
</ Ty ) (@)~ v

weakly in the sense of measure where v is a bounded positive measure on RN and

define
2, .
Voo i= lim limsup/ / Mdy |t ()] da.
R—00 n—oo Jizj>r \JrRV |7 —yl*

Then, there exists a countable sequence of points {z}ier CRY and families of
positive numbers {v; 11 € I}, {¢; 14 €1} and {w; : i € I} such that

2% X .
Y= / [wo@)™ 4, o ()% + Sicrvids,,  Sievs! P < oo, (2.2)
gy T — Yyl

w > |Vuol? + Zwiézi, (2.3)

iel
¢ fuol® +) G, (24)

el

and

Suovy’ B <w, VNN < O(N, )N NG, (2.5)

where &, is the Dirac-mass of mass 1 concentrated at x € RV,
For the energy at infinity, we have

2, 2,
limsup/ / [un @)1 Jun ()] dydz = vy +/ dv, (2.6)
RN JRN

n—o0 |z —y|* RN

and

CN, )20/ N =), 2N)/@N=) ¢ - ( / act goo> ’
R

S?{’Lyzo/@;) < Weo </ dw+woo) . (2.7)
RN

Moreover, if u =0 and fRN dw = SH,L (f]RN du) 1/(2“), then v is concentrated at a
single point.

Proof. Since {u,} is a bounded sequence in D'?(R¥) converging weakly to u,
denote by v, := wu, — ug, we have v,(z) — 0 a.e. in RY and v, converges weakly
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to 0 in DY2(RY). Applying lemma 2.2, in the sense of measure, we have

Vo |*> = @ :=w— |Vug|?,

(4JWMWW)ﬂx—y“MMWM@2LAN
- (/RN(WO(Z/)'Q;) /(J& = y|*) dy)|uo(x)

and  |un|? — ¢ i=C — |uol* .

To prove the possible concentration at finite points, we first show that

| /RN(M*“ * |gvn (2) )| gvn (2) P+ de

- /RN(LTI_“ * [on (2) %) $() [P | o () P+ dz| — 0, (2.8)
where ¢ € C5°(RY). In fact, we denote
(@) = (a7 |gvn (@) P [gon ()P = (Ja] 7 % Jon (2) P) [ () | | dom () .

Since ¢ € C5°(RY), we have for every § > 0 there exists M > 0 such that
/’ @ (@)|de <5 (V0 > 1), (2.9)
2| > M

Since the Riesz potential defines a linear operator, from the fact that v,(x) — 0
a.e. in RY we know that

2,
RN |7 —yl#

a.e. in RY and so we have ®,,(z) — 0 a.e. in R". Notice that

20 o) 12 [ ()2
o) = [ 160 = @I D)

|z — yl~

: .
dy|dvn ()|

*
2,

— /  L(@y) o)l dyléva(a)

For almost all z, there exists R > 0 large enough such that

2" _ 2* 2* |vn(y)\2; d
Lz, y)|vn(y)|™ dy = Lz, y)|vn(y)|* dy — ()] - dy
RN ly|<R =R 17—l
As observed in [27] that L(z, y) € L"(Bg) for each , where r < N/(p — 1) if p > 1,
r < o0 if 0 < p < 1. By the Young inequality, there exists s > (2N)/(u) such that

(/BM </BR L(z, y)|vn(y)

5
2 "

s 1/s
2:zdy> da:) < CylL(x,y) v llom

an/(eN—p) < Cy,

https://doi.org/10.1017/prm.2018.131 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.131

932 F. Gao, E. D. da Silva, M. Yang, J. Zhou
where M is given in (2.9). It is easy to see that for R > 0 large enough

. s /s
/ |¢(x>|27”/ kI 4)  d 1 <c
Bu iR 1T —yl*

and so, we have

([ ([ teontmia) a) Tea

Denote 7 = (us —2N) /(2N + 2Ns — us), we can get

[ owaarrars ([ (] seilompia) )

i (2N—p)(t+1)/2N
X </ |pv, |2 da:) < Cf.
B

Combining this and ®,,(z) — 0 a.e. in RY, we can get

(147)/s

/ @, (2)]dz — 0 (n— o0).
By

Together with (2.9), we have

/ 1@, (2)]dz — 0.
RN

For all ¢ € C5°(RY), by the Hardy-Littlewood-Sobolev inequality, we have

v (y) | . 2.2%
[ 2t 4y ) )P e < o8, o3
ry \Jrv [T — Y
By (2.8), we have
2.2* ‘Un(y”zz 2" 2-2;
[ pop ([ O ) @ ae < o0 mlon + o).
RN RN [T —yl#
Passing to the limit as n — +o0o we obtain
. . (2N—p)/N
[ ot an < oo ([ 1o ac) (2.10)
RN RN

Applying lemma 1.2 in [26] we know (2.4) holds.

https://doi.org/10.1017/prm.2018.131 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.131

Critical Choquard equation 933
Taking ¢ = x(.,}, 7 € I, in (2.10), we get

I/iN/(QN_M) < C(N, ,LL)N/(QN*”)Q', Viel.

By the definition of Sy 1, we also have

Gon()% .
SH,L (/RN (/RN o= ylF dy) |pvn (z)]7 d

Using (2.8) and the fact that v,, — 0 in L? _(R”), we have

2 .
S ( |, et ( Lo dy> [0a (@) da

< [ ¢*Vualtde+o(1).
]RN

(N=2)/(2N—p)
) < / 1V (fvn) 2 da.
RN

)(N—2)/(2N—H)

Passing to the limit as n — +o00 we obtain

o\ (N-2)/@N-p)
SHJ/</‘|¢QQF2udm) < $? dew. (2.11)
RN

RN
Applying lemma 1.2 in [26] again we know (2.6) holds. Now by taking ¢ = x¢.,1,
ie€l,in (2.11), we get

SHLVI/@“) <w;, Viel.

) 3

Thus we have (2.2) and (2.5).

Next we are going to prove the possible loss of mass at infinity. For R > 1, let
Yr € C®(RY) be such that ¥gr(x) =1 for |z| > R+ 1, ¥g(z) =0 for |z| < R and
0 < Ygr(z) <1 on RY. For every R > 1, we have

o
limsup/ / [ (y un (@) dy dx
n—oo JrN JRN |a:—y\“

2* 27,
= lim sup / / [uny Un (@) () dydx
n—oo RN JRN ‘x -y~

()25 (1 — Pr(2)) dydx>

-
Un

+/ / un(y) z

RN JRN |z —

2) 2%
:hmsup/RN /RN a2 e el) dydx"’/RN(l —1r)dv

n—o0 |z —yl#

When R — oo, we obtain, by Lebesgue’s theorem,

n— 00

2,
limsup/ / [uny |u"( )™ dyder = ve + duv.
RN JRN |3c - RN

https://doi.org/10.1017/prm.2018.131 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.131

934 F. Gao, E. D. da Silva, M. Yang, J. Zhou
By the Hardy-Littlewood—Sobolev inequality, we have

[un (y)[* 2"
Voo = lim limsu —d U (2)|“» da
Jim_ timsup [ (/ ) dy ) o )

(2N—p)/2N
< C(N, p) hm lim sup </ |, |2 d:c/ [V R, |2 dx)
RN RN

—X0 n—oo

(2N—p)/2N
ot (e ([ acee))

which means
CN, )20/ N =), 2N)/@N=) ¢ ( / dc+ C@@) .
]RN

Similarly, by the definition of Sy 1 and v, we have

2, .
Voo = hm hmsup/ / Mdy YR, (2)* da
R—oo nooo RN RN ‘1: - y‘,u

(2N—p)/2N
< C(N,p) hm lim sup </ [t | dx/ [V R |2 dx)
RN RN

X0 n—oo

2% /2
< S;Qi hm lim sup (/RN |V, |? dz /RN V(wRun)de)

—X0 n—oo

g 2;/2
_SHL <woc (/ dw—|—woo>) ,
RN

which implies
SHL 2/(2) < Weo (/ dw+woo>.
RN

Moreover, if u = 0 then k = v and w = w. Then the Hélder inequality and (2.11)
imply that, for ¢ € C5°(RY),

L\ (N-2)/C@N-p)
S,z (/ () |*% dV)
RN

(N—p+2)/(2N—p) ) (N=2)/(2N—p)
< ( / dw) < / %2 dw) .
RN RN

Thus we can deduce that v = S;QE (fan dw)N=r+2/(N=2), Tt follows from (2.11)
that, for ¢ € C°(RY),

3 (N=2)/(2N—p) (N—=p+2)/(2N —p)
(/ |p(z)|* 20 d1/> (/ du) < / |p]? dv.
RN RN RN
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And so, for each open set 2,

V(Q)(N*Q)/(QN*M)V(RN)(N*#JFQ)/(QN*M) < ().
It follows that v is concentrated at a single point. O

2.2. Convergence of (PS) sequences

Let {u,} be a (PS) sequence of J at level ¢, it is easy to see that {u, } is bounded
in E. Hence, without loss of generality, we may assume that {u,} converges weakly
and a.e. to some ug € E. Then we are able to recover the lack of compactness by
applying the second concentration-compactness principle to the nonlocal Choquard
equation. In fact, we have the following proposition which was inspired by [39].

PROPOSITION 2.6. There exists a positive number co > 0 such that every (PS).
sequence {u,} of J with ¢ < cq satisfies

— 2| (upy — 2
i [ [ Lo 0@ o w0 g,
RN JRN

n—00 |z — y[»

where ug € E is the weak limit of {u,}.
Proof. Let n € C3°(]0, 00)) be a standard cut-off function on [0, 1], that is,
nt)=1 tel01]; ) =0, t>2 [n(#)|<C, 0<nt)<1

for some C' > 0. Fix i € I. For € > 0, put

e :77(1«621)’ B = By(2). (2.12)

It follows from the Holder inequality and the Sobolev inequality that for all o €

[0, 2%),
(0)/(27)
/\un|ffdx<|3\1*<“/2*> (/ |2 dx)
B B

o/2
< C|B|F =@/ (/ |Vun|2dx) =o(1), ase—0".
B

Hence, by the Hardy-Littlewood—Sobolev inequality, as ¢ — 01, there holds

/ / [un (@) )P0 W) 4 g0 — o), (2.13)
RN JRN |x—y|“

/ / |t ()P [un (y)[P1: (y) dz dy = o(1) (2.14)
RN JRN

|z — yl~

and

/ / |t ()P |un () P77 (1) drdy = o(1). (2.15)
RN JRN

|z — yl|~
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Using proposition 2.5, and passing to the limit by first letting n — oo and then
letting e — 07, we have

2 2},
lim/ / [n @) @1 W) 4 g e (2.16)
RN JRN |z — y[»

n—oo

For R > 0, put

me=n () (2.17)

||

and denote

Ve = lim limsup/ Vun|*ng dz,

— 00 n—oo

hm lim sup / / |un (2 % un(y)[Pnr(y) da dy
R—o0 nooo RN JRN |$_y|u
P 27
/ / [un (@) lun @ 12() 4 o0
o Jer eyl
p P
/ / [t ()P [un (y) PR (Y) dxdy),
RN JRN |x—y|#

Multiplying J'(u,) with the test function u,ng, we obtain by the definition of wese,
Voo that

F :

Weo + Vo = Voo + Fie. (2.18)
It follows that

e 0(1) = J(un) — 3 (7 (un), un)

;1.

+2*_2 n n p
_p+2,-2 / / |un ()% [un (y))| dardy
2-25 RN JRN |33—2/|“
)P P
= R
2 2% Jry JRrA |ff—y|“
un (y) [

L N2 o ;
Nh2op / / [un (@ dx dy
AN =24 Jgn Jry |33 - y\“

4 p
2* RN JRN |33 —yl~

)P p
/ / |un () [Pun(y) [ dxdy}
v ey Jr—ylr y|“

N 2 — y)|%

AN —2p 2# RN JRN |95 - y\”
N+2-— 2,

> o/ Foo + ot “/ / [wo (@) fuo (y)]* d dy

AN = 2p Jry Jry |$ —y|~
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NA+2—-pn
+m <V00+Zyi> +0(1)

iel

N+2—-p
WZ%—I—Q VOO+F )+ (1)

il

N+2—u

for some 0 < o’ < p—1/2p, where we have used lemma 2.5,

-
lim/ / [un @) fun W)™ g =0
n—oo JpN JRN |37—y‘“

*
}‘ 2

luo () [+ [uo (y) [+
+ v; + dx dy
2 / /RN Iw—yl”

el

and the fact Voo + Foo = Woo + Voo = w

Now we want to show that there exists ¢y > 0 such that if ¢ < ¢y then the singular
part and escaping part of the energy of the (PS). sequence {u,} are trivial. First,
we claim that

1=0. (2.20)
On the contrary, assume that I # (), then there holds
v = ST/ e (2.21)

In particular, the set I is finite. In fact, let 7. be the cut-off function defined in
(2.12). By definition, a direct computation yields

1/2
el = ( [ ¥+ | v+|unng|2dx) < Cllun]ly = O(1).
RN RN

Multiplying J'(u,) with the test function w,n., we obtain
o(1) = (J'(un), unne)

:/ \Vun\Qr]g dx+/ Un, VU VNe d:L‘Jr/NVuinE dx
R

/ / (Jun (@)% + [un (2)[P) (un ()] %47 () + (0/(20))|un ()P () dedy, (2.22)
RN JRN |z — y|#
since {u,} is a (PS) sequence. By lemma 2.5, we know
/ |V, |?n. doe — w) > w;. (2.23)
RN
By lemma 3.1 in [39], we have as € — 0T
/ un Vu, V. de = o(1) (2.24)
RN
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and
‘/ Vuln. dx‘ =o(1). (2.25)
RN
From (2.13) to (2.15) and (2.23)—(2.25), we infer that for each fixed i € T
Ww; — V; < 0.
Utilizing (2.5), we finally arrive at

1/(25)

Su,Lv; - <0

and thus (2.21) follows. Now (2.19) leads to a contradiction if ¢ < (N +2 —

w)/ (4N — 2u)S(Hz7JZ_”)/(N+2_“) and thus the singular part is empty.
Next, we prove that

Voo = Woo = Foo = Vo = 0. (2.26)
To prove that the escaping part is trivial, let

2* — (2Np/(2N —
ap = ( 29?/_(2 1) and b, :=

(2Np/(2N — ) — 2
2 —2 ’

then a,, b, € (0, 1) and a, + b, = 1. By lemma 3.2 in [39] we know that

Voo = hm lim V{un|*nr dz > 1o hm lim [ PR da. (2.27)
RN

R—oon—oo RN — 00 N—00

With this fact, applying the Hardy-Littlewood—Sobolev inequality and the Holder
inequality, we have

hm hmbup/ / [un (@ Un () "nr(y) dz dy
R—oo pooo RN JRN |l’—y|p’

< C(N, p) RliﬁmoO lim sup |u,,

25«” unPNR|2N /(2N —p)

ap by
<O hm lim sup </ lun|*nr d:r) (/ lunl? nR dx)
—00 n—o00 RN RN
Voo \ 7
<a(=) e (2.29)

P o
hm hmsup/ / [un (@) Pl (9) * 1) dx dy
RN JRN

R—00 n—oo |z — gy~

< C(N,p) I%EHOO lim sup |Un|2Np/(2N7#)

(e
RN

< Co2N—m/2N (2.29)

|G/ CN=p) gy

)(2N—u)/2N
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and

p
hm hmsup/ / [t ()P Jtn () P15 () dz dy
RN JRN

R—00 oo |z —yl*

< C(Na H) ngnoo lim sup ‘un‘sz/(gN_M)||Un|p77R|2N/(2N—M) (2-30)

ap bp
< Cs hm lim sup </ |un|2anx) (/ |y, | anm>
R—oo pooo RN RN
V P
g CS (00) ng7
70

where C, Cy, C3 depend only on the embedding constant and the best constant
SH,L, since lemma 2.1 holds and

11
(2 a 2P> /RN<‘VUTL|2 + V<x)‘un|2) dz < c<co
N+2— pgen—p/(N+2-p)
SOAN —2p THL

Now, by the definition of F, from (2.28) to (2.30) we know

+ o,(1).

Fu <C (Z"’) Clr + CCEN /2N, (2.31)
0

Similarly, we have

o
Voo = hm hmsup/ / Mdy | () P
R—> p—oo RN RN |fL' - y|“

rngr dx
. (2N—p)/2N (2.32)
2, 2%
9k |un|® ngda
RN

Substituting (2.31) and (2.32) into (2.18) we obtain that

< C(N,p) lim

— C4C£N7“)/2N.

Woo + Voo < Cs (‘f") ¢l Cg¢N—W/2N, (2.33)
0

Now, if (s = 0 then it is easy to see the conclusion
Voo = Woo = Fioo = Vo = 0.

Otherwise, if (s > 0 then applying the Young inequality to (2.33) we know that
there exists Ag > 0 such that

(oo 2

Thus applying lemma 2.4, we know that

> SN
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Thus we know this is a contradiction if
c< O/SAS/ 2
From the arguments above, let

. NA+2—pu (anN— N+2— 2/(2*
cozmm{MS}“ W/NF210 1 g02/(7)

if ¢ < ¢ then we have

Voo =Woo = Foo = Voo =0, [T

Il
=

(2.34)

By using lemma 2.5 to derive

IL l/' 2 F

lim/ / [un (@) [un (y) dxd / / uo@)rfuo()I™ 4 4,
n—oo Jpn JrN |x—y\“ RN JRN |x—y\“

which together with lemma 2.2 imply

— 2; — 2,
iy [ [ o= 0,
R R

n—oo |q; —y‘ﬂ

2.3. Proof of theorem 1.3

We can verify that the functional J satisfies the Mountain-Pass geometry. By
lemma 2.1 we have

T =5 [ (0 + V@) ds

2
v Ju(@)P) (Ju(y) P+ [uly)?)

1 2 P
B / / (Ju(z) z Y D) 4 ay
22 Jry JRrA |z —y|»

2.2% 2
> Cllull = Cillully™ = Callulli?

Since 2 < 2p < 2% +p < 2- 2}, we can choose some a, p > 0 such that J(u) > « for
[ullv = p. For any u € E\ {0}, we have

2

u(y)
5 [ (0P + Vit do - o 5 (@) )

RN |z — y|»

J(tu) <

dzdy <0

RN

for t > 0 large enough. Hence, we can apply the mountain pass theorem without
(PS) condition (cf. [38]) to get a bounded (PS) sequence {uy,} such that J(u,) —
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¢* and J'(u,) — 0 in E~! at the minimax level

*

= inf J 0
R

where

[:={yeC([0,1],E) : v(0) = 0, J((1)) < 0}.
We claim that

)P
inf {/ |Vl da : goGCgo(RN),/ / le@Ple)l” dz dyzl}:O.
RN Ry Jry o T —ylt

(2.35)
In fact, for all fixed ¢ satisfying

)P
[ [ s,
gy Jry T —y|m

o = tENTW/2Pp(tr) >0,

let us define
then we have

//th z) [Pl (y ddy_// \leddyzl
RN JRN |z — y|» RV JRY T —ylH

/ ‘V(ﬂt‘z dx = t((2N—#)/p)_N+2/ |V<p|2 de.
RN RN

Since ((2N —pu)/p) > N — 2, we know

and

/ Vi |>dz — 0
RN

ast — 0, the claim is thus proved. Now, for any § > 0 one can choose ;5 € C5°(RY)

such that
/ / les@)Ples(@)” dy — 1
v Jey o lz—ylr

Vsl < 6.
Since @5 € C°(RN) and V(x) € LN/?(RY), we have

2/N (N—2)/N
[ v@leas < ([ va@rza) ([ el a)

< CS/ Ves| da,
RN

and
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where S is the best Sobolev constant. And so,

1+CS 2 les (@) P[5 (y) [P
J(ps) < Ves| d dzd
(15) 5 /RN| @s| A e ey TR
Denote
14+CS 2 )|P
U(ps) = — / [Ves|”d les@IPles@I” g g,
RN ey Jry lz—ylr
Then, we know
Wt
max ¥ (ts)
1+CS P
= max { 2 / IVes|*d les@Ples@I” 4, 4,
teR+ 2 RN RN JRN |l'— |[L

9. 9%\ /(-1 1 1 p/(p—1)
_ (22 oL +OS/ Vs |2 da
p p 2

9. 9%\ 1/(p—-1) p/(p—1)
< ( “) (1 — 1) (1 +205) 6P/ (=1, (2.36)
p p

Thus, for ¢y > 0 be the number given in proposition 2.6, there exists dy > 0 such
that, for any 0 < § < dg

max U(tys) < co

teR+
that is,

max J(tps) < co,
and so

¢ < cp.

Assume that {u,} converges weakly and a.e. to some weak solution ug € E of
(1.7). In particular,

./ (IVuol? + V(x)ud) da

(o () % + o (2)/#) (fuo () P + v/ (25D o w)")
/RN /RN dedy. (2.37)

|z —y[»

Since ¢* < ¢y, by proposition 2.6, we have

B o B o
lim /N /N uo) ()% (un — uo) (y)* drdy =0
RN JR

n—oo |.’L‘ — y|l¢

and

Voo = Woo = Fog = Voo =0, I=0.
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So, we have

lim V|, —uo|* dz = 0,
n—oo JpN

Jim / / [un@Pe s g
n—oo RN JRN |33_ ‘“
p
2* RN JRN |$— |“
; p
_ <11+ )/ / [ug (x 2 uo(y)| dz dy
25, RN JRN |~”C =y~

P p
+£/ / |uo (@) [Puo(y)] dz dy.
2 RN |z — yl~

0= lim (J' (un),un)

n—00

and

It follows that

~ lim (/ (Vunl? + Va2 ) da
RN

n—00

(lun (@)% + [ @)1P) (I () 5 + 0/ (2l ()P
— /]RN /]RN dz dy

|z —y|»

= lim |V, |? dx—i—/ Vuddx

n—oo [pN

(o) % + o () ) (Juo ()% + o/ (25) o) ?)
/ / dz dy.
RN JRN |z —yl~

Combining this with (2.37), we have

lim |Vun|2dx:/ |Vug|? da.
RN RN

Thus,
J(ug) = lim J(u,) =c* 2 a >0,

which leads to the conclusion ug # 0.

3. High energy solution

In this section, we assume that conditions (V1), (V2) and (Vi) hold, 0 < u <
min{4, N} and N > 3. We introduce the energy functional associated with equation
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(1.9) by

Ty (u) = / (IVul® + V(2)|uf? )dx—2 7 /RN /RNMff)“dxdy.

The Hardy-Littlewood—Sobolev inequality implies that Jy is well defined on
DY2(RY) and belongs to C!. And so u is a weak solution of (1.9) if and only
if v is a critical point of the functional .Jy,. To continue the proof, we need to
consider the energy functional associated with equation (1.5) defined by

() e fuly) [P

2.

dz dy.

1
Jo(u) = 3 /RN [Vul*d

RN JRN |17*3/\”

3.1. A nonlocal global compactness lemma

Let u — .z, = 7V =2/2y(rz 4 20) be the rescaling, where r € Rt and 2o € RV.

The following lemma is taken from [16] which is inspired by [36, 38], we sketch the
proof here for the readers’ convenience.

LEMMA 3.1. Suppose that conditions (V1), (Vo) and (V3) hold and N >3, 0 <
p < min{4, N}. Assume that {u,} C DY?(R") is a (PS) sequence for Jy. Then
there exists a number k € N, a solution u® of (1.9), solutwns ul ,ub of (1.5),
sequences of points xL,... .2k € RN and radii r},..., 7k >0 such that for some
subsequence n — o0

u =u, = u®  weakly in DV*(RY),

ul = (ul 7t — uj_l)rg-“% — ! weakly in DV2(RY), j=1,...,k.
Moreover, as n — oo

fun 2 = S5_q u 2,

Jv(un) — Jy (u®) + E5_ Jo(u).

Proof. Since {u,} is a (PS) sequence for .Ji/, we know easily that it is bounded in
DY2(R™). Hence we may assume that u,, — u® weakly in DV2(R") as n — oo and
that u° is a weak solution of (1.9). So if we put

then v} is a (PS) sequence for Jy satisfying
vl =0 weakly in DV2(RY).

Then, together with the Brézis-Lieb Lemma [10] and (2.16) in [7] that

V(z)|vl|? de — 0, (3.1)
RN
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we have
Jo(vy) = Jv (vg) + o(1) = Jv (un) — Jv (u®) + o(1), (3.2)
Jo(vn) = Ji (vp) + 0(1) = o(1). (3-3)
If v} — 0 strongly in D2(RY) we are done. Now suppose that
vl 50 strongly in DV2(RY)
and there exists v € (0, oo) such that
Jo(wl) =y >0 (3.4)

for n large enough.
Claim: there exist sequences {r,} and {y,} of points in R such that

B = (VL) — h#0 weakly in DV2(RY) (3.5)
as n — oo.
In fact, by (3.3), we obtain
N-—p+2 [ (@) P o (9) [
Jo(v, dzd 1).
o) = 2eN =) /RN /]RN Iw—y\” #dy o)

So, by the Hardy-Littlewood—Sobolev inequality, (3.4) and the boundedness of

o
{un}, we know that 0 < a; < |v}|5% < A; for some aj, Ay > 0. Let us define the
Levy concentration function:

2" da.

zERN

Qn(r) := sup /B ( )|v711(x)

Since @,,(0) = 0 and Q,,(c0) > aEZN)/(2N7“), we may assume there exists sequences
{r,} and {y,} of points in RY such that r,, > 0 and

sup / o () dz = / o} ()2 dz = b
zERN BT"(Z) Brn (yn)

for some
G2N/(4—p)
(2C(N, 1) Ay) @) /=) 4

Let us define A, := (v}),, ,.. We may assume that h, — h weakly in DV3(RY)
and h,, — h a.e. on RV . It is easy to see that

sup / o ()% dz = / o (2)
2€RN J B (2) B1(0)

By invariance of the D%2(R¥) norms under translation and dilation, we get

0<b<min{ (2N)/(2N = “)}

2" dz = b.

lonll = llBnll,  fvp

2% =
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and

21

/ / Un(y) dxdy—/ / fin (1) - dz dy.
RN JRN |9C - y|“ RN JRN |33 - 3/|”

By direct calculation, we have

Jo(hn) = Jo(vy) = Jv (un) = Jv (u®) + o(1) (3.6)
and

Jo(hn) = Jg(vy) = 0(1). (3.7)

If h = 0 then h,, — 0 strongly in L2 (R™). Let ¢ € C5°(RY) be such that Suppy) C
Bi(y) for some y € RY. Then, we have

/ IV (1) |? da
RN

= [ Vh, V(?hy,) dz + o(1)

/ / @P PR @ 4 4+ oy
RN JRN |z — y|~

([ o

n|2*

(2N—p)/2N

C(N, ) 2y g +o(1)

=C(N, )

+o(1)

(2N—p)/2N
X (/ |r¢;hn‘(4N)/(2N7M)|hn|(2N(47u))/((2N—u)(N,2)) dx)
RN

< C(N,p)

(Bl(y S/ V (¢hy)|? dz + o(1)

< cuv,/~L>b<22“f2>/<2*>é / V() da + o(1)
]RN

S
S*/ |V (¢hy,)|? dz + o(1),
2 Jow

thanks to 0 < u < min{4, N}. We obtain Vh, — 0 btrongly in LZOC(RN) and
h,, — 0 strongly in L? (RY), which contradicts with fBl hy(2)]? dz =0 > 0.
So, h # 0. By (3.3) and weakly sequentially continuous Jj, We know h solves (1.5)
weakly. The sequences {h,,}, {r)}, and {y,} are the wanted sequences.

By iteration, we obtain sequences vi = u/ ! —u/~! j > 2, and the rescaled func-

tions ul = (U{L) iy u! weakly in DlQ(RN), where each u/ solves (1.5). By
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induction we know that
lsd |2 = Ml |* = 2220 [l + o(1) (3-8)
and
Jo(uh) = Ty (un) = Jy (u®) = SI21 o () + o(1). (3.9)
Furthermore, from the estimate

2

I (@)% ud (y) >
0 = (J}(u?),u’) w2 / / [v/ (= dxd
(Jo(u”),w’) = [’ - |$_y‘u y

> [lu? [2(1 = 83 F | [2272),

we see that [|u’|? > Sg’]X*“)/(NjLH) and the iteration must terminate at some
index k > 0 due to (3.8). O

Let
P = [ (VuP+ V@) de
]RN
and
M= {ue DV2RY) : ||lu|xz = 1}.

PROPOSITION 3.2. Suppose that conditions (V1), (Va) and (V3) hold. Then the
minimization problem

inf{P(u) : v e M} (3.10)
has no solution.

Proof. Let us denote by Saq the infimum defined by (3.10). Obviously, Sy > Su 1.
First, we shall show that actually the equality holds. Let us consider the sequence

—N)/(2(N— 2
oaymyo(@) = S CETIENG L o(@)

- _ _u [IN(N = 2)1/n)(N=2)/4
= 2NN, ) (N@-N)/ (42N o L 7
e C ((1/m) + o) Y272
then ¥p € (N/(N = 2), (2N)/(N = 2)), g1 mol@)ly — 0 (see (2.4), [7]),in fact,

N-2 4
N(Nm}( ! C(N, ) NC-Nn) /(42N =)

eamo(@y = | T

(l/n)(N—Q)P/4 .
<, (/) + [af2) 272

(N=2)p/4
_ {N (N~ 2)} CN, ) NC-Nn) /(42N =)
SH,L

(N/2)=((N=2)p)/4)
X ! / ! d
— x.
n e (L4 [P )27
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Moreover, using the definition of Sg,r and the fact that U, o solves (1.5) it is
easy to verify that

P@a/m)0 €M, ie. [oa/myollve =1.

Now using the Holder inequality with p € (N/2, p2) we get

P (¢(1/m)0) = /RN |V@(1/n),0|2dx+/RN V(@) |@(1 /)0l da

< Sur+ |V($)|p|sﬁ(1/n),o($)|§p'~

Since 2p’ € (N/(N —2), (2N)/(N — 2)), we can obtain Sy = Sy 1.
Now it is easy to prove the nonexistence result arguing by contradiction. Let
u € M be a function such that

P(u) = SH,L~

If [on V(x)[u|?dz > 0, then we have

/ |Vu|? dz < / |Vul|? dx +/ V(x)|ul*dz = Sz
RN RN RN
contradicting the definition of Sy 1. If [pn V(2)|ul* dz = 0, then
/ |Vu|>dr = Sw. 1.
RN

Recall that the minimizer of (1.3) is unique, then we know

[N(N— 2)51}(N72)/4
(61 + |z — z1|2)(N—2)/2

u = C(N, p)2~N)/REN=p) g2=N/4

for some ' > 0 and 2' € RY. Since V(z) >0 on RY and V(z) > 0 in a positive
measure set, we have

/ V(x)|u*dz > 0,
RN

which contradicts with [y V(2)|ul*dz = 0.
So in conclusion, we know that Sa4 is not attained. O

COROLLARY 3.3. The functional P|p satisfies the (PS).-condition for ¢ € (S, 1,
QN+2-p)/(2N—p) g1, ).

Proof. Let {u,} C DV2(RY) be a (PS).sequence for Pl with c € (Syr,
o(N+2=1)/CN=1) Sy ). Then, {wy,} is a (PS).-sequence for Jy with

N+2—p @N=—p)/(N+2-p) N+2—p @N—p)/(N+2—p)
S H H S M H
AN — 2 DHL SCS TN, vHL :

where w,, = P(un)<N’2)/(2(N+2*“))un. We know from lemma 3.1 that there exists
a number k € N, a solution w® of (1.9) and solutions w!, ..., w" of (1.5), such that
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for some subsequence n — oo

lwall* = S5_ollw 1%,

Jy(wn) = Jy (w°) + SE_y Jo(w).
By proposition 3.2, if w is a nontrivial solution of (1.9), then

N +2— )t geN—pu)/(N+2-n)

Jy(w) > 20N — ) HL

While for every nontrivial solution v of (1.5)

N 42— p q@N-p)/(N+2-p)
Jow) > === :

Since

N+2—p 2N/ (N+2—
o< M2 SEN /N2,

we have k=0 or k =1 with w® = 0. In conclusion, {w,,} is relatively compact in

DY2(RN).
So, the functional P|y satisfies the (PS).-condition for c¢e€ (S,
Q(N+2-p)/2N=p) . L) O

3.2. Proof of theorem 1.4

We now consider the functions

— UU57(Z()33”) — Si;ljlv/‘lC(N, M)(N(Z_N))/(‘l(?N—u))
5,2\T)|INL '

IV — 2
6+ [z — 22) V272

@6,2(‘23)

§>0, zeRN.

Note that ¥6 >0, =z € RN
s, =* = Su.L, ls:lInve =1

and so @5, € M. Moreover, |¢s 5|, p € (N/(N —2), (2N)/(N — 2)), for any fixed
p depends only on & because of the invariance by translation of the LP(RY) norm.

LEMMA 3.4. Suppose that V(x) satisfies (V). Then

P((p(;,z) < 2(N+27“)/(2N7”)SH,L, V>0, Vze RY.
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Proof. Using (V3), the Holder inequality and the Hardy-Littlewood—Sobolev
inequality, we get

Plgs.) = / Veps..|? da + / V(@)|gs. P da
RN RN

(N-2)/N
< Su,L+ V()N (/ |06,z ] (2N)/(N=2) dx)

1
= Sur + V@)l Gy w—aev—m

2,
/ / 05,2 (@)% |05, ()] dedy
RN JRN |x—y|“

< Sy + QWH2=W/CN=w) _1)g, | = oWN+2=w)/CN=m) g 0O

) (N=2)/(2N—p)

Now put
_fo it x| <1,
"5(3’)_{1 it |z > 1,
and define
a: DV2(RY) — RN
1 T 9
o =g~ | (6@ 19l dz = (30), 1 (w).
where
1
u Vul? dz
8 = 5o [ i
and
1 2
v(u) = ¢(x)|Vul” dz.
Su.r Jrv
Denote
A= {UEM a(u) = (0,;)},
and
¢ = inf P(u).

ucA

The following proposition is due to Benci and Cerami [7] with S replaced by
SH,L-

PROPOSITION 3.5.

(1). c* > SH,L;'
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(2). There is a §1 : 0 < 61 < 1/2 such that

P(ps, ) < %, vz € RY,
en) <50 Veild <y,
o)~ | <3 veelel > g
(3). There is a 09 : 62 > 1/2 such that
P(s, 2) < SH’L;C , VzeRY,

(4). There exists R € RT such that

Sur+c*
2 K

(B(psz)|z)ry >0, Vz:|z| >R and § € [01,02).

P(ps.») < Vz:|z| 2 R and § € [01,02],

Now let
Z ={(2,6) e RN 1 |z < R,§ € [61, 02},
and let ® be the operator
@1 [RY x (0, +00)] — DM2(RY)
given by
P(z,0) = @, ().
Note that ® is continuous. Call ¥ the subset of M defined by

Y ={®(2,6):(2,6) € Z}.

Consider then the family

A= {h € L(M, M) : h(u) =u,Vu € P~ ((_OOSHL;C*))}

and define
I'={BCcM:B=h(X),heA}

Similar to the proof of lemma 3.12 [7], we know that

LEMMA 3.6. If Be T, then BN A# 0.
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Now we set

— inf sup P 3.11
¢ = fuf sup (u) (3.11)

K.={ue M: P(u) =cand P'|p(u) =0}.
Moreover, for d € R, P¢ will be
P"={ue M: P(u) < d}.

Proof of theorem 1.4. We shall prove the theorem showing that K. # (), that is,
that ¢ defined by (3.11) is a critical level and there is a critical point u such that
P(u) =c¢. By ¥ €T and lemma 3.4, we know

c<supP(u) < sup P(ps.) < 20V+H2-w/CN=m g,
ued z€RN feR+

Also by lemma 3.6, BNA#0,VB cT, so
c= ing(u) =c" > Sy
Hence
Sy <c < 2(N+2’”)/(2N’”)SH,L.
Suppose now K, = (). By proposition 3.3 the Palais-Smale condition holds in
{fue M: Sy < Pu) < 2W+H2-m/CN-mg, 1

then using a variant of a well-known deformation Lemma (see [38]) we find a
continuous map

n:[0,1] x M — M
and a positive number gy such that

_ (N+2—-p)/(2N —pn) .
Pc+50\Pc €0 — P2 SH,L\PSH,L+C /27

n(0,u) = u,

n(t,u) =u, Yue P U {/\/l\PCJ“SO}7 Vte(0,1)
and
n(l,Pc+€o/2) c PC*EO/Q.
Now let B € T be such that

c<sup Plu) < c+ 0,

B 2
Then (1, B) € T and
sup P(u) <c— o
uwen(1,B) 2
contradicting with the definition of c. O
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