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In this paper, we consider the nonlinear Choquard equation

−Δu + V (x)u =

(∫
RN

G(u)

|x − y|μ dy

)
g(u) in R

N ,

where 0 < μ < N , N � 3, g(u) is of critical growth due to the
Hardy–Littlewood–Sobolev inequality and G(u) =

∫ u
0 g(s) ds. Firstly, by assuming

that the potential V (x) might be sign-changing, we study the existence of
Mountain-Pass solution via a nonlocal version of the second concentration-
compactness principle. Secondly, under the conditions introduced by Benci and
Cerami , we also study the existence of high energy solution by using a nonlocal
version of global compactness lemma.
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1. Introduction and main results

The nonlinear Choquard equation

− Δu+ V (x)u =
(|x|−μ ∗ |u|q) |u|q−2u, in R

N (1.1)

arises in various fields of mathematical physics, such as the description of the quan-
tum theory of a polaron at rest by S. Pekar in 1954 [33] and the modelling of
an electron trapped in its own hole in 1976 in the work of P. Choquard. It was
also treated as a certain approximation to Hartree-Fock theory of one-component
plasma [21]. Sometimes equation (1.1) was also known as the Schrödinger-Newton
equation [34], since the convolution part might be treated as a coupling with a
Newton equation.

Mathematically, for (1.1) with μ = 1, q = 2 and V is a positive constant, Lieb
[21] proved the existence and uniqueness, up to translations, of the ground state by
using rearrangements technique. Later Lions [23] showed the existence of a sequence
of radially symmetric solutions by variational methods. In the last decades, a great
deal of mathematical efforts has been devoted to the study of existence, multi-
plicity and properties of the solutions of the nonlinear Choquard equation (1.1).
In [15,28,29], the authors showed the regularity, positivity and radial symme-
try of the ground states and derived decay property at infinity as well. For the
Choquard equation with constant potential, Moroz and Van Schaftingen [30] con-
sidered the existence of ground states under the assumption of Berestycki-Lions
type. If the periodic potential V (x) changes sign and 0 lies in the gap of the spec-
trum of −Δ + V , then the energy functional associated with the problem is strongly
indefinite indeed. For this case, the existence of solution for p = 2 was considered
in [11] there the authors developed reduction argument to obtain the existence
of weak solution. Still, for the strongly indefinite case, Ackermann [1] established
the splitting lemma for the nonlocal nonlinearities and proved the existence of
infinitely many geometrically distinct weak solutions. If the nonlinear Choquard
equation is equipped with deepening potential well V (x) = λa(x) + 1 where a(x)
is a nonnegative continuous function such that Ω = int (a−1(0)) is a nonempty
bounded open set with smooth boundary, Alves et al. [5] studied the existence
and multiplicity of multi-bump shaped solutions. In quantum physics, to describe
the transition from quantum mechanics to classical mechanics, people are lead to
consider the existence and concentration behaviour of solutions for the singularly
perturbed subcritical Choquard equation which was called semiclassical Problems,
see for example [2–4,6,14,32,37]. Among these references, Wei and Winter [37]
constructed families of solutions by a Lyapunov-Schmidt type reduction. Cingolani
et al. [14] showed that there exists a family of solutions having multiple concentra-
tion regions which are located around the minimum points of the potential. Moroz
and Van Schaftingen [32] developed a nonlocal penalization technique and showed
the existence of a family of solutions concentrating around the local minimum
of V . In [2,3], Alves and Yang proved the existence, multiplicity and concentration
of solutions for the equation by penalization method and Lusternik-Schnirelmann
theory.

To consider the nonlocal elliptic equation with Riesz type potential, it is necessary
to recall the well–known Hardy–Littlewood–Sobolev inequality.
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Proposition 1.1. (Hardy–Littlewood–Sobolev inequality). (See [22].) Let t, r > 1
and 0 < μ < N with 1/t+ μ/N + 1/r = 2, f ∈ Lt(RN ) and h ∈ Lr(RN ). There
exists a sharp constant C(t, N, μ, r), independent of f, h, such that∫

RN

∫
RN

f(x)h(y)
|x− y|μ dxdy � C(t,N, μ, r)|f |t|h|r, (1.2)

where | · |q for the Lq(RN )-norm for q ∈ [1, ∞]. If t = r = 2N/(2N − μ), then

C(t,N, μ, r) = C(N,μ) = πμ/2 Γ (N/2 − μ/2)
Γ (N − (μ/2))

{
Γ (N/2)
Γ(N)

}−1+(μ/N)

.

In this case, there is equality in (1.2) if and only if f ≡ Ch and

h(x) = A(γ2 + |x− a|2)−(2N−μ)/2

for some A ∈ C, 0 �= γ ∈ R and a ∈ R
N .

Let H1(RN ) be the usual Sobolev spaces with norm

‖u‖H1 :=
(∫

RN

(|∇u|2 + |u|2) dx
)1/2

,

D1,2(RN ) be equipped with norm

‖u‖ :=
(∫

RN

|∇u|2 dx
)1/2

and Ls(RN ), 1 � s � ∞, denotes the Lebesgue space with norms

|u|s :=
(∫

RN

|u|s dx
)1/s

.

By the Hardy–Littlewood–Sobolev inequality, for every u ∈ H1(RN ), the integral∫
RN

∫
RN

|u(x)|q|u(y)|q
|x− y|μ dxdy

is well defined if

2N − μ

N
� q � 2N − μ

N − 2
.

Due to the Sobolev imbedding, (2N − μ)/N will be called the Hardy–Littlewood–
Sobolev lower critical exponent and 2∗μ = (2N − μ)/(N − 2) the Hardy–Littlewood–
Sobolev upper critical exponent. In [12,31], the authors considered the nonlinear
Choquard equation (1.1) in R

N with lower critical exponent (2N − μ)/N and
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obtained some existence and nonexistence results. In order to study the critical non-
local equation with upper critical exponent 2∗μ, let S be the best Sobolev constant
defined by:

S|u|22∗ �
∫

RN

|∇u|2 dx for all u ∈ D1,2(RN ),

we will use SH,L to denote the best constant defined by

SH,L := inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2 dx(∫

RN

∫
RN [(|u(x)|2∗

μ |u(y)|2∗
μ)/(|x− y|μ)] dxdy

)(N−2)/(2N−μ)
.

(1.3)

In [18] it was observed that

Proposition 1.2 (See [18]). The constant SH,L defined in (1.3) is achieved if and
only if

u(x) = C

(
b

b2 + |x− a|2
)(N−2)/2

,

where C > 0 is a fixed constant, a ∈ R
N and b ∈ (0, ∞) are parameters. What’s

more,

SH,L =
S

C(N,μ)(N−2)/(2N−μ)
,

where S is the best Sobolev constant and C(N, μ) is given in proposition 1.1.

Let Ũδ,z(x) := [N(N − 2)δ](N−2)/4/((δ + |x− z|2)(N−2)/2, δ > 0, z ∈ R
N . We know

that Ũδ,z is a minimizer for S [38] and

Uδ,z(x) := C(N,μ)(2−N)/(2(N−μ+2))S((N−μ)(2−N))/(4(N−μ+2))Ũδ,z(x) (1.4)

is the unique minimizer for SH,L that satisfies

− Δu =

(∫
RN

|u(y)|2∗
μ

|x− y|μ dy

)
|u|2∗

μ−2u in R
N (1.5)

and∫
RN

|∇Uδ,z|2 dx =
∫

RN

∫
RN

|Uδ,z(x)|2∗
μ |Uδ,z(y)|2∗

μ

|x− y|μ dxdy = S
(2N−μ)/(N−μ+2)
H,L .

In [18,19] the authors considered the Brézis-Nirenberg type problem

− Δu =

(∫
Ω

|u(y)|2∗
μ

|x− y|μ dy

)
|u|2∗

μ−2u+ λf(u) in Ω (1.6)

and established the existence, multiplicity and nonexistence of solutions for the non-
linear Choquard equation in bounded domain. It is observed in [35] that equation
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(1.6) can be regarded as a limit problem for a critical Choquard equation with
deepening potential well, there the existence and asymptotic behaviour of the solu-
tions were investigated. In [6], by investigating the ground states of the critical
Choquard equation with constant coefficients, the authors studied the semiclassical
limit problem for the singularly perturbed Choquard equation in R

3 and charac-
terized the concentration behaviour by variational methods. The planar case was
considered in [4], there the authors established the existence of ground state for the
limit problem with critical exponential growth which complemented those results
for local case, and then they also studied the concentration around the global min-
imum set. Gao and Yang in [20] investigated the existence result for the strongly
indefinite Choquard equation with upper critical exponent in the whole space.

In works [4,6,20], the method developed by Brezis and Nirenberg has been suc-
cessfully adopt to study the Choquard equation with Hardy–Littlewood–Sobolev
upper critical exponents. There the authors are able to prove the existence results
by showing that the minimax value was below some critical criteria where the (PS)
condition still holds. In the present paper, we continue to study the Choquard
equation with upper critical exponents, but with different types of potential func-
tions. We will see that the arguments in [4,6,20] does not apply for these new
situations any longer.

On one hand, we are going to study the critical Choquard equation with
subcritical perturbation and potential functions that might change sign

−Δu+ V (x)u =

(∫
RN

|u(y)|2∗
μ + |u(y)|p

|x− y|μ dy

)(
|u|2∗

μ−2u+
p

2∗μ
|u|p−2u

)
in R

N ,

(1.7)

where N � 3, 0 < μ < N , (2N − μ)/N < p < (2N − μ)/(N − 2) and 2∗μ = (2N −
μ)/(N − 2) is the upper critical exponent in the sense of the Hardy–Littlewood–
Sobolev inequality. To obtain the existence result we are going to prove that the
lack of compactness is recovered by using the second concentration compactness
principle. As in [39], we assume that the functions V (x) satisfies the following
condition:

(V ) There exists τ0 > 0 such that the set Ωτ0 = {x ∈ R
N : V (x) � τ0} has finite

Lebesgue measure. Moreover, V ∈ L∞
loc(R

N ) ∩ LN/2(RN ) and there holds

V0 := |V−(x)|N/2 < S,

where S is the best Sobolev constant and V− = max{−V (x), 0}.
We can draw the following conclusion.

Theorem 1.3. Suppose that assumption (V ) holds, N � 3, 0 < μ < N and
(2N − μ)/N < p < (2N − μ)/(N − 2). Then (1.7) admits a nontrivial solution.

On the other hand, we are concerned with the existence of high energy solu-
tion for the critical Choquard equation. In [7], Benci and Cerami considered the
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following problem

− Δu+ V (x)u = |u|2∗−2u, in R
N , (1.8)

where the potential V (x) satisfies (V1), (V2) below and (V ′
3)

|V (x)|N/2 < S(22/N − 1).

They developed some global compactness lemma and proved that problem (1.8)
has at least one positive high energy solution. Here we are quite interested if the
same result still holds for the nonlocal Choquard equation⎧⎨⎩−Δu+ V (x)u =

(∫
RN

|u(y)|2∗μ
|x−y|μ dy

)
|u|2∗

μ−2u in R
N ,

u ∈ D1,2(RN ),
(1.9)

here 0 < μ < N , N � 3, 2∗μ = (2N − μ)/(N − 2) and the potential V satisfies the
assumptions

(V1) V ∈ C(RN , R), V � ν > 0 in a neighbourhood of 0.
(V2) ∃p1 < N/2, p2 > N/2 and for N = 3, p2 < 3, such that

V (x) ∈ Lp, ∀ p ∈ [p1, p2].

(V3)

|V (x)|N/2 < C(N,μ)(N−2)/(2N−μ)SH,L(2(N+2−μ)/(2N−μ) − 1),

where SH,L is defined in (1.3) and C(N, μ) is given in proposition 1.1. Under these
assumptions, we have

Theorem 1.4. Suppose that assumptions (V1), (V2) and (V3) hold, 0 < μ <
min{4, N} and N � 3. Then equation (1.9) has at least one nontrivial solution u.

An outline of this paper is as follows: In §2, we prove a version of Concentration-
Compactness principle for the nonlocal type problem which complements the results
in [8,9,26]. After that, we can use the compactness lemma to prove that the (PS)
condition still holds below some criteria level and obtain the existence of solutions
by Mountain-Pass Theorem. In §3, we prove a version of global compactness lemma
for the nonlocal Choquard equation and then we show the existence of high energy
solution for (1.9) following the linking arguments in [7].

2. Mountain-pass solution

In this section, we will study the existence of solutions for equation (1.7) under
assumption (V ). To prove the existence of solutions by variational methods, we
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introduce the Hilbert spaces

E :=
{
u ∈ H1(RN ) :

∫
RN

V+(x)u2 dx <∞
}

with inner products

(u, v) :=
∫

RN

(∇u∇v + V+(x)uv
)
dx

and the associated norms

‖u‖2
V = (u, u).

Obviously, E embeds continuously in H1(RN ) (see [17]). Moreover,

Lemma 2.1 ([39], lemma 2.3). There exist C1, C2 > 0 depending only on the
structural constants such that

C1‖u‖2
H1 � C2‖u‖2

V �
∫

RN

(|∇u|2 + V (x)|u|2) dx � ‖u‖2
V , u ∈ E. (2.1)

Denote

‖u‖NL :=

(∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x− y|μ dxdy

)1/(2·2∗
μ)

,

the following splitting Lemma was proved in lemma 2.2 of [18].

Lemma 2.2. Let N � 3 and 0 < μ < N . If {un} is a bounded sequence in
L(2N)/(N−2)(RN ) such that un → u almost everywhere in R

N as n→ ∞, then the
following hold,

‖un‖2·2∗
μ

NL − ‖un − u‖2·2∗
μ

NL → ‖u‖2·2∗
μ

NL

as n→ ∞.

To study the problem variationally, we introduce the energy functional associated
with equation (1.7) by

J(u) =
1
2

∫
RN

(|∇u|2 + V (x)|u|2) dx

− 1
2 · 2∗μ

∫
RN

∫
RN

(|u(x)|2∗
μ + |u(x)|p)(|u(y)|2∗

μ + |u(y)|p)
|x− y|μ dxdy.

The Hardy–Littlewood–Sobolev inequality implies that J is well defined on E and
belongs to C1 with

〈J ′(u), ϕ〉 =

∫
RN

(∇u∇ϕ + V (x)uϕ) dx −
∫

RN

∫
RN

×
(|u(x)|2∗μ + |u(x)|p)

(
|u(y)|2∗μ−2u(y)ϕ(y) + (p/(2∗μ))|u(y)|p−2u(y)ϕ(y)

)
|x − y|μ dx dy.

So u is a weak solution of (1.7) if and only if u is a critical point of the functional J .
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2.1. Concentration-compactness principle

To describe the lack of compactness of the injection from D1,2(RN ) to L2∗
(RN ),

P.L. Lions established the well-known Concentration-compactness principles [24–
27]. Here we would like to recall the second concentration-compactness principle
[26] for the convenience of the readers.

Lemma 2.3. Let {un} be a bounded sequence in D1,2(RN ) converging weakly and
a.e. to some u0 ∈ D1,2(RN ). |∇un|2 ⇀ ω, |un|2∗

⇀ ζ weakly in the sense of mea-
sures where ω and ζ are bounded nonnegative measures on R

N . Then we have:

(1) there exists some at most countable set I, a family {zi : i ∈ I} of distinct
points in R

N , and a family {ζi : i ∈ I} of positive numbers such that

ζ = |u0|2∗
+
∑
i∈I

ζiδzi
,

where δx is the Dirac-mass of mass 1 concentrated at x ∈ R
N .

(2) In addition, we have

ω � |∇u0|2 +
∑
i∈I

ωiδzi

for some family {ωi : i ∈ I}, ωi > 0 satisfying

Sζ
2/2∗

i � ωi, for all i ∈ I.

In particular,
∑

i∈I ζ
2/(2∗)
i <∞.

The second concentration-compactness principle, roughly speaking, is only con-
cerned with a possible concentration of a weakly convergent sequence at finite points
and it does not provide any information about the loss of mass of a sequence at infin-
ity. The following concentration-compactness principle at infinity was developed
by Chabrowski [13], J. Bianchi, Chabrowski, Szulkin [9], Ben-Naoum, Troestler,
Willem [8] which provided some quantitative information about the loss of mass of
a sequence at infinity.

Lemma 2.4. Let {un} ⊂ D1,2(RN ) be a sequence in lemma 2.3 and define

ω∞ := lim
R→∞

lim sup
n→∞

∫
|x|�R

|∇un|2 dx, ζ∞ := lim
R→∞

lim sup
n→∞

∫
|x|�R

|un|2∗
dx.

Then it follows that

Sζ2/2∗
∞ � ω∞,

lim sup
n→∞

|∇un|22 =
∫

RN

dω + ω∞,

lim sup
n→∞

|un|2∗
2∗ =

∫
RN

dζ + ζ∞.
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The concentration-compactness principles [24–27] help not only to investigate
the behaviour of the weakly convergent sequences in Sobolev spaces where the lack
of compactness occurs either due to the appearance of a critical Sobolev exponent
or due to the unboundedness of a domain, but also to find level sets of a given
variational functional for which the Palais-Smale condition holds. It was mentioned
in the famous paper by P.L. Lions [26] that the limit embeddings

(∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x− y|μ dxdy

)1/(2∗
μ)

� C0

∫
RN

|∇u|2 dx

also cause the concentration of a weakly convergent sequence at finite points and
the results in lemma 2.3 holds with |un|2∗

replaced by

|un|2∗
μ

∫
RN

|un(y)|2∗
μ

|x− y|μ dy.

Moreover, a version of concentration-compactness principle corresponding to
lemma 2.3 was established in [27] to study the minimizing problem associated with
the attainability of the best constant in the Hardy-Littlewood-Sobolev inequality
of the form ∣∣∣∣ 1

|x|μ ∗ u
∣∣∣∣
q

� C0|u|p

for some C0 depending on N, μ, q, p, where 0 < μ < N and p, q satisfy

1
p

+
μ

n
= 1 +

1
q
.

In the present paper, we are interested in the existence of solutions for the criti-
cal Choquard equation due to the Hardy–Littlewood–Sobolev inequality. Since the
lack of compactness also occurs when researchers consider the critical Choquard
equation in unbounded domain, it is quite natural for people to turn to a possi-
ble use of the second concentration-compactness principle for the convolution type
nonlinearities. However, to the best knowledge of the authors, there seems no such
existing lemmas that describe the possible concentration of a weakly convergent
sequence both at finite points and at infinity. And there also seems no applica-
tion of such a second concentration-compactness principle in studying the critical
Choquard equation. By taking some ideas from [26,27], we prove a concentration-
compactness principle involving the convolution nonlinearities to study the critical
Choquard equation.

Lemma 2.5. Let {un} be a bounded sequence in D1,2(RN ) converging weakly
and a.e. to some u0 and ω, ω∞, ζ, ζ∞ be the bounded nonnegative measures in
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lemmas 2.3 and 2.4. Assume that(∫
RN

|un(y)|2∗
μ

|x− y|μ dy

)
|un(x)|2∗

μ ⇀ ν

weakly in the sense of measure where ν is a bounded positive measure on R
N and

define

ν∞ := lim
R→∞

lim sup
n→∞

∫
|x|�R

(∫
RN

|un(y)|2∗
μ

|x− y|μ dy

)
|un(x)|2∗

μ dx.

Then, there exists a countable sequence of points {zi}i∈I ⊂ R
N and families of

positive numbers {νi : i ∈ I}, {ζi : i ∈ I} and {ωi : i ∈ I} such that

ν =

(∫
RN

|u0(y)|2∗
μ

|x− y|μ dy

)
|u0(x)|2∗

μ + Σi∈Iνiδzi
, Σi∈Iν

1/(2∗
μ)

i <∞, (2.2)

ω � |∇u0|2 +
∑
i∈I

ωiδzi
, (2.3)

ζ � |u0|2∗
+
∑
i∈I

ζiδzi
, (2.4)

and

SH,Lν
1/(2∗

μ)

i � ωi, ν
N/(2N−μ)
i � C(N,μ)N/(2N−μ)ζi, (2.5)

where δx is the Dirac-mass of mass 1 concentrated at x ∈ R
N .

For the energy at infinity, we have

lim sup
n→∞

∫
RN

∫
RN

|un(y)|2∗
μ |un(x)|2∗

μ

|x− y|μ dy dx = ν∞ +
∫

RN

dν, (2.6)

and

C(N,μ)(−2N)/(2N−μ)ν(2N)/(2N−μ)
∞ � ζ∞

(∫
RN

dζ + ζ∞

)
,

S2
H,Lν

2/(2∗
μ)

∞ � ω∞

(∫
RN

dω + ω∞

)
. (2.7)

Moreover, if u = 0 and
∫

RN dω = SH,L

(∫
RN dν

)1/(2∗
μ), then ν is concentrated at a

single point.

Proof. Since {un} is a bounded sequence in D1,2(RN ) converging weakly to u,
denote by vn := un − u0, we have vn(x) → 0 a.e. in R

N and vn converges weakly
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to 0 in D1,2(RN ). Applying lemma 2.2, in the sense of measure, we have

|∇vn|2 ⇀ � := ω − |∇u0|2,(∫
RN

(|vn(y)|2∗
μ

)
/(|x− y|μ) dy)|vn(x)|2∗

μ ⇀ κ

:= ν −
(∫

RN

(|u0(y)|2∗
μ

)
/(|x− y|μ) dy)|u0(x)|2∗

μ

and |vn|2∗
⇀ ς := ζ − |u0|2∗

.

To prove the possible concentration at finite points, we first show that∣∣∣∣∣
∫

RN

(|x|−μ ∗ |φvn(x)|2∗
μ)|φvn(x)|2∗

μ dx

−
∫

RN

(|x|−μ ∗ |vn(x)|2∗
μ)|φ(x)|2∗

μ |φvn(x)|2∗
μ dx

∣∣∣∣∣→ 0, (2.8)

where φ ∈ C∞
0 (RN ). In fact, we denote

Φn(x) := (|x|−μ ∗ |φvn(x)|2∗
μ)|φvn(x)|2∗

μ − (|x|−μ ∗ |vn(x)|2∗
μ)|φ(x)|2∗

μ |φvn(x)|2∗
μ .

Since φ ∈ C∞
0 (RN ), we have for every δ > 0 there exists M > 0 such that∫

|x|�M

|Φn(x)|dx < δ (∀n � 1). (2.9)

Since the Riesz potential defines a linear operator, from the fact that vn(x) → 0
a.e. in R

N we know that ∫
RN

|vn(y)|2∗
μ

|x− y|μ dy → 0

a.e. in R
N and so we have Φn(x) → 0 a.e. in R

N . Notice that

Φn(x) =
∫

RN

(|φ(y)|2∗
μ − |φ(x)|2∗

μ)|vn(y)|2∗
μ

|x− y|μ dy|φvn(x)|2∗
μ

:=
∫

RN

L(x, y)|vn(y)|2∗
μ dy|φvn(x)|2∗

μ .

For almost all x, there exists R > 0 large enough such that∫
RN

L(x, y)|vn(y)|2∗
μ dy =

∫
|y|�R

L(x, y)|vn(y)|2∗
μ dy − |φ(x)|2∗

μ

∫
|y|�R

|vn(y)|2∗
μ

|x− y|μ dy.

As observed in [27] that L(x, y) ∈ Lr(BR) for each x, where r < N/(μ− 1) if μ > 1,
r � +∞ if 0 < μ � 1. By the Young inequality, there exists s > (2N)/(μ) such that(∫

BM

(∫
BR

L(x, y)|vn(y)|2∗
μ dy

)s

dx
)1/s

� Cφ|L(x, y)|r||vn|2∗
μ |2N/(2N−μ) � C ′

φ,
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where M is given in (2.9). It is easy to see that for R > 0 large enough

(∫
BM

(
|φ(x)|2∗

μ

∫
|y|�R

|vn(y)|2∗
μ

|x− y|μ dy

)s

dx

)1/s

� C

and so, we have

(∫
BM

(∫
RN

L(x, y)|vn(y)|2∗
μ dy

)s

dx
)1/s

� C ′′
φ .

Denote τ = (μs− 2N)/(2N + 2Ns− μs), we can get

∫
BM

|Φn(x)|1+τ dx �
(∫

BM

(∫
RN

L(x, y)|vn(y)|2∗
μ dy

)s

dx
)(1+τ)/s

×
(∫

BM

|φvn|2∗
dx
)(2N−μ)(τ+1)/2N

� C ′′
φ .

Combining this and Φn(x) → 0 a.e. in R
N , we can get∫

BM

|Φn(x)|dx→ 0 (n→ ∞).

Together with (2.9), we have ∫
RN

|Φn(x)|dx→ 0.

For all φ ∈ C∞
0 (RN ), by the Hardy–Littlewood–Sobolev inequality, we have

∫
RN

(∫
RN

|φvn(y)|2∗
μ

|x− y|μ dy

)
|φvn(x)|2∗

μ dx � C(N,μ)|φvn|2·2
∗
μ

2∗ .

By (2.8), we have

∫
RN

|φ(x)|2·2∗
μ

(∫
RN

|vn(y)|2∗
μ

|x− y|μ dy

)
|vn(x)|2∗

μ dx � C(N,μ)|φvn|2·2
∗
μ

2∗ + o(1).

Passing to the limit as n→ +∞ we obtain

∫
RN

|φ(x)|2·2∗
μ dκ � C(N,μ)

(∫
RN

|φ|2∗
dς
)(2N−μ)/N

. (2.10)

Applying lemma 1.2 in [26] we know (2.4) holds.
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Taking φ = χ{zi}, i ∈ I, in (2.10), we get

ν
N/(2N−μ)
i � C(N,μ)N/(2N−μ)ζi, ∀ i ∈ I.

By the definition of SH,L, we also have

SH,L

(∫
RN

(∫
RN

|φvn(y)|2∗
μ

|x− y|μ dy

)
|φvn(x)|2∗

μ dx

)(N−2)/(2N−μ)

�
∫

RN

|∇(φvn)|2 dx.

Using (2.8) and the fact that vn → 0 in L2
loc(R

N ), we have

SH,L

(∫
RN

|φ(x)|2·2∗
μ

(∫
RN

|vn(y)|2∗
μ

|x− y|μ dy

)
|vn(x)|2∗

μ dx

)(N−2)/(2N−μ)

�
∫

RN

φ2|∇vn|2 dx+ o(1).

Passing to the limit as n→ +∞ we obtain

SH,L

(∫
RN

|φ(x)|2·2∗
μ dκ

)(N−2)/(2N−μ)

�
∫

RN

φ2 d�. (2.11)

Applying lemma 1.2 in [26] again we know (2.6) holds. Now by taking φ = χ{zi},
i ∈ I, in (2.11), we get

SH,Lν
1/(2∗

μ)

i � ωi, ∀ i ∈ I.

Thus we have (2.2) and (2.5).
Next we are going to prove the possible loss of mass at infinity. For R > 1, let

ψR ∈ C∞(RN ) be such that ψR(x) = 1 for |x| > R+ 1, ψR(x) = 0 for |x| < R and
0 � ψR(x) � 1 on R

N . For every R > 1, we have

lim sup
n→∞

∫
RN

∫
RN

|un(y)|2∗
μ |un(x)|2∗

μ

|x− y|μ dy dx

= lim sup
n→∞

(∫
RN

∫
RN

|un(y)|2∗
μ |un(x)|2∗

μψR(x)
|x− y|μ dy dx

+
∫

RN

∫
RN

|un(y)|2∗
μ |un(x)|2∗

μ(1 − ψR(x))
|x− y|μ dy dx

)

= lim sup
n→∞

∫
RN

∫
RN

|un(y)|2∗
μ |un(x)|2∗

μψR(x)
|x− y|μ dy dx+

∫
RN

(1 − ψR) dν.

When R→ ∞, we obtain, by Lebesgue’s theorem,

lim sup
n→∞

∫
RN

∫
RN

|un(y)|2∗
μ |un(x)|2∗

μ

|x− y|μ dy dx = ν∞ +
∫

RN

dν.
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By the Hardy–Littlewood–Sobolev inequality, we have

ν∞ = lim
R→∞

lim sup
n→∞

∫
RN

(∫
RN

|un(y)|2∗
μ

|x− y|μ dy

)
|ψRun(x)|2∗

μ dx

� C(N,μ) lim
R→∞

lim sup
n→∞

(∫
RN

|un|2∗
dx
∫

RN

|ψRun|2∗
dx
)(2N−μ)/2N

= C(N,μ)
(
ζ∞

(∫
RN

dζ + ζ∞

))(2N−μ)/2N

,

which means

C(N,μ)(−2N)/(2N−μ)ν(2N)/(2N−μ)
∞ � ζ∞

(∫
RN

dζ + ζ∞

)
.

Similarly, by the definition of SH,L and ν∞, we have

ν∞ = lim
R→∞

lim sup
n→∞

∫
RN

(∫
RN

|un(y)|2∗
μ

|x− y|μ dy

)
|ψRun(x)|2∗

μ dx

� C(N,μ) lim
R→∞

lim sup
n→∞

(∫
RN

|un|2∗
dx
∫

RN

|ψRun|2∗
dx
)(2N−μ)/2N

� S
−2∗

μ

H,L lim
R→∞

lim sup
n→∞

(∫
RN

|∇un|2 dx
∫

RN

|∇(ψRun)|2 dx
)2∗

μ/2

= S
−2∗

μ

H,L

(
ω∞

(∫
RN

dω + ω∞

))2∗
μ/2

,

which implies

S2
H,Lν

2/(2∗
μ)

∞ � ω∞

(∫
RN

dω + ω∞

)
.

Moreover, if u = 0 then κ = ν and � = ω. Then the Hölder inequality and (2.11)
imply that, for φ ∈ C∞

0 (RN ),

SH,L

(∫
RN

|φ(x)|2·2∗
μ dν

)(N−2)/(2N−μ)

�
(∫

RN

dω
)(N−μ+2)/(2N−μ)(∫

RN

φ2·2∗
μ dω

)(N−2)/(2N−μ)

.

Thus we can deduce that ν = S
−2∗

μ

H,L (
∫

RN dω)(N−μ+2)/(N−2)ω. It follows from (2.11)
that, for φ ∈ C∞

0 (RN ),(∫
RN

|φ(x)|2·2∗
μ dν

)(N−2)/(2N−μ)(∫
RN

dν
)(N−μ+2)/(2N−μ)

�
∫

RN

|φ|2 dν.

https://doi.org/10.1017/prm.2018.131 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.131


Critical Choquard equation 935

And so, for each open set Ω,

ν(Ω)(N−2)/(2N−μ)ν(RN )(N−μ+2)/(2N−μ) � ν(Ω).

It follows that ν is concentrated at a single point. �

2.2. Convergence of (PS) sequences

Let {un} be a (PS) sequence of J at level c, it is easy to see that {un} is bounded
in E. Hence, without loss of generality, we may assume that {un} converges weakly
and a.e. to some u0 ∈ E. Then we are able to recover the lack of compactness by
applying the second concentration-compactness principle to the nonlocal Choquard
equation. In fact, we have the following proposition which was inspired by [39].

Proposition 2.6. There exists a positive number c0 > 0 such that every (PS)c

sequence {un} of J with c < c0 satisfies

lim
n→∞

∫
RN

∫
RN

|(un − u0)(x)|2∗
μ |(un − u0)(y)|2∗

μ

|x− y|μ dxdy = 0,

where u0 ∈ E is the weak limit of {un}.

Proof. Let η ∈ C∞
0 ([0, ∞)) be a standard cut-off function on [0, 1], that is,

η(t) ≡ 1, t ∈ [0, 1]; η(t) ≡ 0, t > 2; |η′(t)| � C, 0 � η(t) � 1

for some C > 0. Fix i ∈ I. For ε > 0, put

ηε = η

(
x− zi

ε

)
, B = B2ε(zi). (2.12)

It follows from the Hölder inequality and the Sobolev inequality that for all σ ∈
[0, 2∗),∫

B

|un|σ dx � |B|1−(σ/2∗)

(∫
B

|un|2∗
dx
)(σ)/(2∗)

� C|B|1−(σ/2∗)

(∫
B

|∇un|2 dx
)σ/2

= o(1), as ε→ 0+.

Hence, by the Hardy–Littlewood–Sobolev inequality, as ε→ 0+, there holds∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|pηε(y)
|x− y|μ dxdy = o(1), (2.13)∫

RN

∫
RN

|un(x)|p|un(y)|pηε(y)
|x− y|μ dxdy = o(1) (2.14)

and ∫
RN

∫
RN

|un(x)|p|un(y)|2∗
μηε(y)

|x− y|μ dxdy = o(1). (2.15)
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Using proposition 2.5, and passing to the limit by first letting n→ ∞ and then
letting ε→ 0+, we have

lim
n→∞

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μηε(y)
|x− y|μ dxdy = νi. (2.16)

For R > 0, put

ηR = η

(
2R
|x|
)

(2.17)

and denote

V∞ := lim
R→∞

lim sup
n→∞

∫
RN

V |un|2ηR dx,

F∞ := lim
R→∞

lim sup
n→∞

(
p

2∗μ

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|pηR(y)
|x− y|μ dxdy

+
∫

RN

∫
RN

|un(x)|p|un(y)|2∗
μηR(y)

|x− y|μ dxdy

+
p

2∗μ

∫
RN

∫
RN

|un(x)|p|un(y)|pηR(y)
|x− y|μ dxdy

)
.

Multiplying J ′(un) with the test function unηR, we obtain by the definition of ω∞,
ν∞ that

ω∞ + V∞ = ν∞ + F∞. (2.18)

It follows that

c+ o(1) = J(un) − 1
2
〈J ′(un), un〉

=
p+ 2∗μ − 2

2 · 2∗μ

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|p

|x− y|μ dxdy

+
p− 1
2 · 2∗μ

∫
RN

∫
RN

|un(x)|p|un(y)|p
|x− y|μ dxdy

+
N + 2 − μ

4N − 2μ

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x− y|μ dxdy

� α′
[(

p

2∗μ
+ 1
)∫

RN

∫
RN

|un(x)|2∗
μ |un(y)|p

|x− y|μ dxdy

+
p

2∗μ

∫
RN

∫
RN

|un(x)|p|un(y)|p
|x− y|μ dxdy

]

+
N + 2 − μ

4N − 2μ

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x− y|μ dxdy

� α′F∞ +
N + 2 − μ

4N − 2μ

∫
RN

∫
RN

|u0(x)|2∗
μ |u0(y)|2∗

μ

|x− y|μ dxdy
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+
N + 2 − μ

4N − 2μ

(
ν∞ +

∑
i∈I

νi

)
+ o(1)

� N + 2 − μ

4N − 2μ

∑
i∈I

νi + α′(ν∞ + F∞) + o(1)

� N + 2 − μ

4N − 2μ

∑
i∈I

νi + α′ω∞ + o(1) (2.19)

for some 0 < α′ < p− 1/2p, where we have used lemma 2.5,

lim
n→∞

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x− y|μ dxdy = ν∞

+
∑
i∈I

νi +
∫

RN

∫
RN

|u0(x)|2∗
μ |u0(y)|2∗

μ

|x− y|μ dxdy

and the fact ν∞ + F∞ = ω∞ + V∞ � ω∞.
Now we want to show that there exists c0 > 0 such that if c < c0 then the singular

part and escaping part of the energy of the (PS)c sequence {un} are trivial. First,
we claim that

I = ∅. (2.20)

On the contrary, assume that I �= ∅, then there holds

νi � S
(2N−μ)/(N+2−μ)
H,L , i ∈ I. (2.21)

In particular, the set I is finite. In fact, let ηε be the cut-off function defined in
(2.12). By definition, a direct computation yields

‖unηε‖V =
(∫

RN

|∇(unηε)|2 dx+
∫

RN

V+|unηε|2 dx
)1/2

� C‖un‖V = O(1).

Multiplying J ′(un) with the test function unηε, we obtain

o(1) = 〈J ′(un), unηε〉

=

∫
RN

|∇un|2ηε dx +

∫
RN

un∇un∇ηε dx +

∫
RN

V u2
nηε dx

−
∫

RN

∫
RN

(|un(x)|2∗μ + |un(x)|p)(|un(y)|2∗μηε(y) + (p/(2∗μ))|un(y)|pηε(y))

|x − y|μ dx dy, (2.22)

since {un} is a (PS) sequence. By lemma 2.5, we know∫
RN

|∇un|2ηε dx→ ω′
i � ωi. (2.23)

By lemma 3.1 in [39], we have as ε→ 0+∫
RN

un∇un∇ηε dx = o(1) (2.24)
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and ∣∣∣ ∫
RN

V u2
nηε dx

∣∣∣ = o(1). (2.25)

From (2.13) to (2.15) and (2.23)–(2.25), we infer that for each fixed i ∈ I

ωi − νi � 0.

Utilizing (2.5), we finally arrive at

SH,Lν
1/(2∗

μ)

i − νi � 0

and thus (2.21) follows. Now (2.19) leads to a contradiction if c0 � (N + 2 −
μ)/(4N − 2μ)S(2N−μ)/(N+2−μ)

H,L and thus the singular part is empty.
Next, we prove that

ν∞ = ω∞ = F∞ = V∞ = 0. (2.26)

To prove that the escaping part is trivial, let

ap :=
2∗ − (2Np/(2N − μ))

2∗ − 2
and bp :=

(2Np/(2N − μ)) − 2
2∗ − 2

,

then ap, bp ∈ (0, 1) and ap + bp = 1. By lemma 3.2 in [39] we know that

V∞ = lim
R→∞

lim
n→∞

∫
RN

V |un|2ηR dx � τ0 lim
R→∞

lim
n→∞

∫
RN

|un|2ηR dx. (2.27)

With this fact, applying the Hardy–Littlewood–Sobolev inequality and the Hölder
inequality, we have

lim
R→∞

lim sup
n→∞

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|pηR(y)
|x− y|μ dxdy

� C(N,μ) lim
R→∞

lim sup
n→∞

|un|2
∗
μ

2∗ ||un|pηR|2N/(2N−μ)

� C1 lim
R→∞

lim sup
n→∞

(∫
RN

|un|2ηR dx
)ap

(∫
RN

|un|2∗
ηR dx

)bp

� C1

(
V∞
τ0

)ap

ζbp∞ , (2.28)

lim
R→∞

lim sup
n→∞

∫
RN

∫
RN

|un(x)|p|un(y)|2∗
μηR(y)

|x− y|μ dxdy

� C(N,μ) lim
R→∞

lim sup
n→∞

|un|p2Np/(2N−μ)

×
(∫

RN

|un|2∗ |ηR|(2N)/(2N−μ) dx
)(2N−μ)/2N

� C2ζ
(2N−μ)/2N
∞ (2.29)
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and

lim
R→∞

lim sup
n→∞

∫
RN

∫
RN

|un(x)|p|un(y)|pηR(y)
|x− y|μ dxdy

� C(N,μ) lim
R→∞

lim sup
n→∞

|un|p2Np/(2N−μ)||un|pηR|2N/(2N−μ) (2.30)

� C3 lim
R→∞

lim sup
n→∞

(∫
RN

|un|2ηR dx
)ap

(∫
RN

|un|2∗
ηR dx

)bp

� C3

(
V∞
τ0

)ap

ζbp∞ ,

where C1, C2, C3 depend only on the embedding constant and the best constant
SH,L, since lemma 2.1 holds and(

1
2
− 1

2p

)∫
RN

(|∇un|2 + V (x)|un|2) dx � c < c0

� N + 2 − μ

4N − 2μ
S

(2N−μ)/(N+2−μ)
H,L + on(1).

Now, by the definition of F∞, from (2.28) to (2.30) we know

F∞ � C

(
V∞
τ0

)ap

ζbp∞ + Cζ(2N−μ)/2N
∞ . (2.31)

Similarly, we have

ν∞ = lim
R→∞

lim sup
n→∞

∫
RN

(∫
RN

|un(y)|2∗
μ

|x− y|μ dy

)
|un(x)|2∗

μηR dx

� C(N,μ) lim
R→∞

lim sup
n→∞

|un|2
∗
μ

2∗

(∫
RN

|un|2∗
ηR dx

)(2N−μ)/2N

= C4ζ
(2N−μ)/2N
∞ .

(2.32)

Substituting (2.31) and (2.32) into (2.18) we obtain that

ω∞ + V∞ � C5

(
V∞
τ0

)ap

ζbp∞ + C6ζ
(2N−μ)/2N
∞ . (2.33)

Now, if ζ∞ = 0 then it is easy to see the conclusion

ν∞ = ω∞ = F∞ = V∞ = 0.

Otherwise, if ζ∞ > 0 then applying the Young inequality to (2.33) we know that
there exists Λ0 > 0 such that

ζ∞ � Λ0.

Thus applying lemma 2.4, we know that

ω∞ � SΛ2/2∗

0 .
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Thus we know this is a contradiction if

c < α′SΛ2/2∗

0 .

From the arguments above, let

c0 = min
{
N + 2 − μ

4N − 2μ
S

(2N−μ)/(N+2−μ)
H,L , α′SΛ2/(2∗)

0

}
,

if c < c0 then we have

ν∞ = ω∞ = F∞ = V∞ = 0, I = ∅. (2.34)

By using lemma 2.5 to derive

lim
n→∞

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x− y|μ dxdy =
∫

RN

∫
RN

|u0(x)|2∗
μ |u0(y)|2∗

μ

|x− y|μ dxdy,

which together with lemma 2.2 imply

lim
n→∞

∫
RN

∫
RN

|(un − u0)(x)|2∗
μ |(un − u0)(y)|2∗

μ

|x− y|μ dxdy = 0.

�

2.3. Proof of theorem 1.3

We can verify that the functional J satisfies the Mountain-Pass geometry. By
lemma 2.1 we have

J(u) =
1
2

∫
RN

(|∇u|2 + V (x)|u|2) dx

− 1
2 · 2∗μ

∫
RN

∫
RN

(|u(x)|2∗
μ + |u(x)|p)(|u(y)|2∗

μ + |u(y)|p)
|x− y|μ dxdy

� C‖u‖2
V − C1‖u‖2·2∗

μ

V − C2‖u‖2p
V .

Since 2 < 2p < 2∗μ + p < 2 · 2∗μ, we can choose some α, ρ > 0 such that J(u) � α for
‖u‖V = ρ. For any u ∈ E\ {0}, we have

J(tu) � t2

2

∫
RN

(|∇u|2 + V (x)u2 dx− t2·2
∗
μ

2 · 2∗μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x− y|μ dxdy < 0

for t > 0 large enough. Hence, we can apply the mountain pass theorem without
(PS) condition (cf. [38]) to get a bounded (PS) sequence {un} such that J(un) →
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c� and J ′(un) → 0 in E−1 at the minimax level

c� = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) > 0,

where

Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, J(γ(1)) < 0}.
We claim that

inf
{∫

RN

|∇ϕ|2 dx : ϕ ∈ C∞
0 (RN ),

∫
RN

∫
RN

|ϕ(x)|p|ϕ(y)|p
|x− y|μ dxdy = 1

}
= 0.

(2.35)
In fact, for all fixed ϕ satisfying∫

RN

∫
RN

|ϕ(x)|p|ϕ(y)|p
|x− y|μ dxdy = 1,

let us define

ϕt = t(2N−μ)/2pϕ(tx), t > 0,

then we have∫
RN

∫
RN

|ϕt(x)|p|ϕt(y)|p
|x− y|μ dxdy =

∫
RN

∫
RN

|ϕ(x)|p|ϕ(y)|p
|x− y|μ dxdy = 1

and ∫
RN

|∇ϕt|2 dx = t((2N−μ)/p)−N+2

∫
RN

|∇ϕ|2 dx.

Since ((2N − μ)/p) > N − 2, we know∫
RN

|∇ϕt|2 dx→ 0

as t→ 0, the claim is thus proved. Now, for any δ > 0 one can choose ϕδ ∈ C∞
0 (RN )

such that ∫
RN

∫
RN

|ϕδ(x)|p|ϕδ(y)|p
|x− y|μ dxdy = 1

and

|∇ϕδ|22 < δ.

Since ϕδ ∈ C∞
0 (RN ) and V (x) ∈ LN/2(RN ), we have∣∣∣∣∫

RN

V (x)|ϕδ|2 dx
∣∣∣∣ � (∫

RN

|V (x)|N/2 dx
)2/N (∫

RN

|ϕδ|2∗
dx
)(N−2)/N

� CS

∫
RN

∣∣∇ϕδ

∣∣2 dx,
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where S is the best Sobolev constant. And so,

J(ϕδ) � 1 + CS

2

∫
RN

∣∣∇ϕδ

∣∣2 dx− 1
2 · 2∗μ

∫
RN

∫
RN

|ϕδ(x)|p|ϕδ(y)|p
|x− y|μ dxdy.

Denote

Ψ(ϕδ) :=
1 + CS

2

∫
RN

∣∣∇ϕδ

∣∣2 dx− 1
2 · 2∗μ

∫
RN

∫
RN

|ϕδ(x)|p|ϕδ(y)|p
|x− y|μ dxdy.

Then, we know

max
t∈R+

Ψ(tϕδ)

= max
t∈R+

{
t2

1 + CS

2

∫
RN

∣∣∇ϕδ

∣∣2 dx− t2p

2 · 2∗μ

∫
RN

∫
RN

|ϕδ(x)|p|ϕδ(y)|p
|x− y|μ dxdy

}

=
(

2 · 2∗μ
p

)1/(p−1)(
1 − 1

p

)(
1 + CS

2

∫
RN

|∇ϕδ|2 dx
)p/(p−1)

<

(
2 · 2∗μ
p

)1/(p−1)(
1 − 1

p

)(
1 + CS

2

)p/(p−1)

δp/(p−1). (2.36)

Thus, for c0 > 0 be the number given in proposition 2.6, there exists δ0 > 0 such
that, for any 0 < δ < δ0

max
t∈R+

Ψ(tϕδ) < c0

that is,

max
t∈R+

J(tϕδ) < c0,

and so

c� < c0.

Assume that {un} converges weakly and a.e. to some weak solution u0 ∈ E of
(1.7). In particular,∫

RN

(|∇u0|2 + V (x)u2
0) dx

=
∫

RN

∫
RN

(|u0(x)|2∗
μ + |u0(x)|p)

(
|u0(y)|2∗

μ + (p/(2∗μ))|u0(y)|p
)

|x− y|μ dxdy. (2.37)

Since c� < c0, by proposition 2.6, we have

lim
n→∞

∫
RN

∫
RN

|(un − u0)(x)|2∗
μ |(un − u0)(y)|2∗

μ

|x− y|μ dxdy = 0

and

ν∞ = ω∞ = F∞ = V∞ = 0, I = ∅.
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So, we have

lim
n→∞

∫
RN

V |un − u0|2 dx = 0,

and

lim
n→∞

((
p

2∗μ
+ 1
)∫

RN

∫
RN

|un(x)|2∗
μ |un(y)|p

|x− y|μ dxdy

+
p

2∗μ

∫
RN

∫
RN

|un(x)|p|un(y)|p
|x− y|μ dxdy

)

=
(
p

2∗μ
+ 1
)∫

RN

∫
RN

|u0(x)|2∗
μ |u0(y)|p

|x− y|μ dxdy

+
p

2∗μ

∫
RN

∫
RN

|u0(x)|p|u0(y)|p
|x− y|μ dxdy.

It follows that

0 = lim
n→∞〈J ′(un), un〉

= lim
n→∞

(∫
RN

(|∇un|2 + V u2
n) dx

−
∫

RN

∫
RN

(|un(x)|2∗
μ + |un(x)|p)

(
|un(y)|2∗

μ + (p/(2∗μ))|un(y)|p
)

|x− y|μ dxdy

⎞⎠
= lim

n→∞

∫
RN

|∇un|2 dx+
∫

RN

V u2
0 dx

−
∫

RN

∫
RN

(|u0(x)|2∗
μ + |u0(x)|p)

(
|u0(y)|2∗

μ + (p/(2∗μ))|u0(y)|p
)

|x− y|μ dxdy.

Combining this with (2.37), we have

lim
n→∞

∫
RN

|∇un|2 dx =
∫

RN

|∇u0|2 dx.

Thus,

J(u0) = lim
n→∞J(un) = c� � α > 0,

which leads to the conclusion u0 �= 0.

3. High energy solution

In this section, we assume that conditions (V1), (V2) and (V3) hold, 0 < μ <
min{4, N} and N � 3. We introduce the energy functional associated with equation
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(1.9) by

JV (u) =
1
2

∫
RN

(|∇u|2 + V (x)|u|2) dx− 1
2 · 2∗μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x− y|μ dxdy.

The Hardy–Littlewood–Sobolev inequality implies that JV is well defined on
D1,2(RN ) and belongs to C1. And so u is a weak solution of (1.9) if and only
if u is a critical point of the functional JV . To continue the proof, we need to
consider the energy functional associated with equation (1.5) defined by

J0(u) =
1
2

∫
RN

|∇u|2 dx− 1
2 · 2∗μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x− y|μ dxdy.

3.1. A nonlocal global compactness lemma

Let u→ ur,x0 = r(N−2)/2u(rx+ x0) be the rescaling, where r ∈ R
+ and x0 ∈ R

N .
The following lemma is taken from [16] which is inspired by [36,38], we sketch the
proof here for the readers’ convenience.

Lemma 3.1. Suppose that conditions (V1), (V2) and (V3) hold and N � 3, 0 <
μ < min{4, N}. Assume that {un} ⊂ D1,2(RN ) is a (PS) sequence for JV . Then
there exists a number k ∈ N, a solution u0 of (1.9), solutions u1, . . . , uk of (1.5),
sequences of points x1

n, . . . , x
k
n ∈ R

N and radii r1n, . . . , r
k
n > 0 such that for some

subsequence n→ ∞

u0
n ≡ un ⇀ u0 weakly in D1,2(RN ),

uj
n ≡ (uj−1

n − uj−1)rj
n,xj

n
⇀ uj weakly in D1,2(RN ), j = 1, . . . , k.

Moreover, as n→ ∞

‖un‖2 → Σk
j=0‖uj‖2,

JV (un) → JV (u0) + Σk
j=1J0(uj).

Proof. Since {un} is a (PS) sequence for JV , we know easily that it is bounded in
D1,2(RN ). Hence we may assume that un ⇀ u0 weakly in D1,2(RN ) as n→ ∞ and
that u0 is a weak solution of (1.9). So if we put

v1
n(x) = (un − u0)(x),

then v1
n is a (PS) sequence for JV satisfying

v1
n ⇀ 0 weakly in D1,2(RN ).

Then, together with the Brézis-Lieb Lemma [10] and (2.16) in [7] that∫
RN

V (x)|v1
n|2 dx→ 0, (3.1)
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we have

J0(v1
n) = JV (v1

n) + o(1) = JV (un) − JV (u0) + o(1), (3.2)

J ′
0(v

1
n) = J ′

V (v1
n) + o(1) = o(1). (3.3)

If v1
n → 0 strongly in D1,2(RN ) we are done. Now suppose that

v1
n � 0 strongly in D1,2(RN )

and there exists γ ∈ (0, ∞) such that

J0(v1
n) � γ > 0 (3.4)

for n large enough.
Claim: there exist sequences {rn} and {yn} of points in R

N such that

hn = (v1
n)rn,yn

⇀ h �≡ 0 weakly in D1,2(RN ) (3.5)

as n→ ∞.
In fact, by (3.3), we obtain

J0(v1
n) =

N − μ+ 2
2(2N − μ)

∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x− y|μ dxdy + o(1).

So, by the Hardy–Littlewood–Sobolev inequality, (3.4) and the boundedness of

{un}, we know that 0 < a1 < |v1
n|

2∗
μ

2∗ < A1 for some a1, A1 > 0. Let us define the
Levy concentration function:

Qn(r) := sup
z∈RN

∫
Br(z)

|v1
n(x)|2∗

dx.

Since Qn(0) = 0 and Qn(∞) > a
(2N)/(2N−μ)
1 , we may assume there exists sequences

{rn} and {yn} of points in R
N such that rn > 0 and

sup
z∈RN

∫
Brn (z)

|v1
n(x)|2∗

dx =
∫

Brn (yn)

|v1
n(x)|2∗

dx = b

for some

0 < b < min
{

S2N/(4−μ)

(2C(N,μ)A1)(2N)/(4−μ)
, a

(2N)/(2N−μ)
1

}
.

Let us define hn := (v1
n)rn, yn

. We may assume that hn ⇀ h weakly in D1,2(RN )
and hn → h a.e. on R

N . It is easy to see that

sup
z∈RN

∫
B1(z)

|hn(x)|2∗
dx =

∫
B1(0)

|hn(x)|2∗
dx = b.

By invariance of the D1,2(RN ) norms under translation and dilation, we get

‖v1
n‖ = ‖hn‖, |v1

n|2∗ = |hn|2∗
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and

∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x− y|μ dxdy =
∫

RN

∫
RN

|hn(x)|2∗
μ |hn(y)|2∗

μ

|x− y|μ dxdy.

By direct calculation, we have

J0(hn) = J0(v1
n) = JV (un) − JV (u0) + o(1) (3.6)

and

J ′
0(hn) = J ′

0(v
1
n) = o(1). (3.7)

If h = 0 then hn → 0 strongly in L2
loc(R

N ). Let ψ ∈ C∞
0 (RN ) be such that Suppψ ⊂

B1(y) for some y ∈ R
N . Then, we have

∫
RN

|∇(ψhn)|2 dx

=
∫

RN

∇hn∇(ψ2hn) dx+ o(1)

=
∫

RN

∫
RN

|hn(x)|2∗
μ |ψ(y)|2|hn(y)|2∗

μ

|x− y|μ dxdy + o(1)

� C(N,μ)|hn|2
∗
μ

2∗

(∫
RN

(|ψ|2|hn|2∗
μ)(2N)/(2N−μ) dx

)(2N−μ)/2N

+ o(1)

= C(N,μ)|hn|2
∗
μ

2∗

×
(∫

RN

|ψhn|(4N)/(2N−μ)|hn|(2N(4−μ))/((2N−μ)(N−2)) dx
)(2N−μ)/2N

+ o(1)

� C(N,μ)|hn|2
∗
μ

2∗ |hn|2
∗
μ−2

L2∗ (B1(y))

1
S

∫
RN

|∇(ψhn)|2 dx+ o(1)

� C(N,μ)b(2
∗
μ−2)/(2∗)A1

S

∫
RN

|∇(ψhn)|2 dx+ o(1)

� 1
2

∫
RN

|∇(ψhn)|2 dx+ o(1),

thanks to 0 < μ < min{4, N}. We obtain ∇hn → 0 strongly in L2
loc(R

N ) and
hn → 0 strongly in L2∗

loc(R
N ), which contradicts with

∫
B1(0)

|hn(x)|2∗
dx = b > 0.

So, h �= 0. By (3.3) and weakly sequentially continuous J ′
0, we know h solves (1.5)

weakly. The sequences {hn}, {r1n}, and {y1
n} are the wanted sequences.

By iteration, we obtain sequences vj
n = uj−1

n − uj−1, j � 2, and the rescaled func-
tions uj

n = (vj
n)rj

n, yj
n
⇀ uj weakly in D1,2(RN ), where each uj solves (1.5). By
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induction we know that

‖uj
n‖2 = ‖un‖2 − Σj−1

i=0‖ui‖2 + o(1) (3.8)

and

J0(uj
n) = JV (un) − JV (u0) − Σj−1

i=1J0(ui) + o(1). (3.9)

Furthermore, from the estimate

0 = 〈J ′
0(u

j), uj〉 = ‖uj‖2 −
∫

RN

∫
RN

|uj(x)|2∗
μ |uj(y)|2∗

μ

|x− y|μ dxdy

� ‖uj‖2(1 − S
−2∗

μ

H,L ‖uj‖2·2∗
μ−2),

we see that ‖uj‖2 � S
(2N−μ)/(N−μ+2)
H,L and the iteration must terminate at some

index k � 0 due to (3.8). �

Let

P (u) =
∫

RN

(|∇u|2 + V (x)|u|2) dx

and

M = {u ∈ D1,2(RN ) : ‖u‖NL = 1}.
Proposition 3.2. Suppose that conditions (V1), (V2) and (V3) hold. Then the
minimization problem

inf{P (u) : u ∈ M} (3.10)

has no solution.

Proof. Let us denote by SM the infimum defined by (3.10). Obviously, SM � SH,L.
First, we shall show that actually the equality holds. Let us consider the sequence

ϕ(1/n),0(x) = S
(2−N)/(2(N−μ+2))
H,L U(1/n),0(x)

= S
2−N/4
H,L C(N,μ)(N(2−N))/(4(2N−μ)) [N(N − 2)1/n](N−2)/4

((1/n) + |x|2)(N−2)/2
,

then ∀p ∈ (N/(N − 2), (2N)/(N − 2)), |ϕ1/n,0(x)|p → 0 (see (2.4), [7]), in fact,

|ϕ(1/n),0(x)|pp =
[
N(N − 2)
SH,L

](N−2)p/4

C(N,μ)(N(2−N)p)/(4(2N−μ))

×
∫

RN

(1/n)(N−2)p/4

((1/n) + |x|2)(N−2)p/2
dx

=
[
N(N − 2)
SH,L

](N−2)p/4

C(N,μ)(N(2−N)p)/(4(2N−μ))

×
(

1
n

)(N/2)−(((N−2)p)/4) ∫
RN

1
(1 + |x|2)(N−2)p/2

dx.
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Moreover, using the definition of SH,L and the fact that U1/n,0 solves (1.5) it is
easy to verify that

ϕ(1/n),0 ∈ M, i.e. ‖ϕ(1/n),0‖NL = 1.

Now using the Hölder inequality with p ∈ (N/2, p2) we get

P
(
ϕ(1/n),0

)
=
∫

RN

|∇ϕ(1/n),0|2 dx+
∫

RN

V (x)|ϕ(1/n),0|2 dx

� SH,L + |V (x)|p|ϕ(1/n),0(x)|22p′ .

Since 2p′ ∈ (N/(N − 2), (2N)/(N − 2)), we can obtain SM = SH,L.
Now it is easy to prove the nonexistence result arguing by contradiction. Let

u ∈ M be a function such that

P (u) = SH,L.

If
∫

RN V (x)|u|2 dx > 0, then we have∫
RN

|∇u|2 dx <
∫

RN

|∇u|2 dx+
∫

RN

V (x)|u|2 dx = SH,L

contradicting the definition of SH,L. If
∫

RN V (x)|u|2 dx = 0, then∫
RN

|∇u|2 dx = SH,L.

Recall that the minimizer of (1.3) is unique, then we know

u = C(N,μ)(2−N)/(2(2N−μ))S2−N/4 [N(N − 2)δ1](N−2)/4

(δ1 + |x− z1|2)(N−2)/2

for some δ1 > 0 and z1 ∈ R
N . Since V (x) � 0 on R

N and V (x) > 0 in a positive
measure set, we have ∫

RN

V (x)|u|2 dx > 0,

which contradicts with
∫

RN V (x)|u|2 dx = 0.
So in conclusion, we know that SM is not attained. �

Corollary 3.3. The functional P |M satisfies the (PS)c-condition for c ∈ (SH,L,
2(N+2−μ)/(2N−μ)SH,L).

Proof. Let {un} ⊂ D1,2(RN ) be a (PS)c-sequence for P |M with c ∈ (SH,L,
2(N+2−μ)/(2N−μ)SH,L). Then, {wn} is a (PS)c-sequence for JV with

N + 2 − μ

4N − 2μ
S

(2N−μ)/(N+2−μ)
H,L < c <

N + 2 − μ

2N − μ
S

(2N−μ)/(N+2−μ)
H,L ,

where wn = P (un)(N−2)/(2(N+2−μ))un. We know from lemma 3.1 that there exists
a number k ∈ N, a solution w0 of (1.9) and solutions w1, . . . , wk of (1.5), such that
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for some subsequence n→ ∞

‖wn‖2 → Σk
j=0‖wj‖2,

JV (wn) → JV (w0) + Σk
j=1J0(wj).

By proposition 3.2, if w is a nontrivial solution of (1.9), then

JV (w) >
N + 2 − μ

2(2N − μ)
S

(2N−μ)/(N+2−μ)
H,L .

While for every nontrivial solution v of (1.5)

J0(v) � N + 2 − μ

2(2N − μ)
S

(2N−μ)/(N+2−μ)
H,L .

Since

c <
N + 2 − μ

2N − μ
S

(2N−μ)/(N+2−μ)
H,L ,

we have k = 0 or k = 1 with w0 = 0. In conclusion, {wn} is relatively compact in
D1,2(RN ).

So, the functional P |M satisfies the (PS)c-condition for c ∈ (SH,L,
2(N+2−μ)/(2N−μ)SH,L). �

3.2. Proof of theorem 1.4

We now consider the functions

ϕδ,z(x) =
Uδ,z(x)

‖Uδ,z(x)‖NL
= S

2−N/4
H,L C(N,μ)(N(2−N))/(4(2N−μ))

× [N(N − 2)δ](N−2)/4

(δ + |x− z|2)(N−2)/2
, δ > 0, z ∈ R

N .

Note that ∀δ > 0, z ∈ R
N

‖ϕδ,z‖2 = SH,L, ‖ϕδ,z‖NL = 1

and so ϕδ,z ∈ M. Moreover, |ϕδ,z|p, p ∈ (N/(N − 2), (2N)/(N − 2)), for any fixed
p depends only on δ because of the invariance by translation of the Lp(RN ) norm.

Lemma 3.4. Suppose that V (x) satisfies (V3). Then

P (ϕδ,z) < 2(N+2−μ)/(2N−μ)SH,L, ∀ δ > 0, ∀ z ∈ R
N .
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Proof. Using (V3), the Hölder inequality and the Hardy–Littlewood–Sobolev
inequality, we get

P (ϕδ,z) =
∫

RN

|∇ϕδ,z|2 dx+
∫

RN

V (x)|ϕδ,z|2 dx

� SH,L + |V (x)|N/2

(∫
RN

|ϕδ,z|(2N)/(N−2) dx
)(N−2)/N

= SH,L + |V (x)|(N/2)
1

C(N,μ)(N−2)/(2N−μ)

×
(∫

RN

∫
RN

|ϕδ,z(x)|2∗
μ |ϕδ,z(y)|2∗

μ

|x− y|μ dxdy

)(N−2)/(2N−μ)

< SH,L + (2(N+2−μ)/(2N−μ) − 1)SH,L = 2(N+2−μ)/(2N−μ)SH,L. �

Now put

φ(x) =
{

0 if |x| < 1,
1 if |x| � 1,

and define

α : D1,2(RN ) → R
N+1

α(u) =
1

SH,L

∫
RN

(
x

|x| , φ(x)
)
|∇u|2 dx = (β(u), γ(u)),

where

β(u) =
1

SH,L

∫
RN

x

|x| |∇u|
2 dx

and

γ(u) =
1

SH,L

∫
RN

φ(x)|∇u|2 dx.

Denote

A :=
{
u ∈ M : α(u) =

(
0,

1
2

)}
,

and

c� = inf
u∈A

P (u).

The following proposition is due to Benci and Cerami [7] with S replaced by
SH,L.

Proposition 3.5.

(1). c� > SH,L;

https://doi.org/10.1017/prm.2018.131 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.131


Critical Choquard equation 951

(2). There is a δ1 : 0 < δ1 < 1/2 such that

P (ϕδ1,z) <
SH,L + c�

2
, ∀z ∈ R

N ,

γ(ϕδ1,z) <
1
2
, ∀z : |z| < 1

2
,∣∣∣∣β(ϕδ1,z) − z

|z|
∣∣∣∣ < 1

4
, ∀z : |z| � 1

2
;

(3). There is a δ2 : δ2 > 1/2 such that

P (ϕδ2,z) <
SH,L + c�

2
, ∀z ∈ R

N ,

γ(ϕδ2,z) >
1
2
, ∀z ∈ R

N ;

(4). There exists R ∈ R
+ such that

P (ϕδ,z) <
SH,L + c�

2
, ∀z : |z| � R and δ ∈ [δ1, δ2],

(β(ϕδ,z)|z)RN > 0, ∀z : |z| � R and δ ∈ [δ1, δ2].

Now let

Z = {(z, δ) ∈ R
N+1 : |z| < R, δ ∈ [δ1, δ2]},

and let Φ be the operator

Φ : [RN × (0,+∞)] → D1,2(RN )

given by

Φ(z, δ) = ϕδ,z(x).

Note that Φ is continuous. Call Σ the subset of M defined by

Σ = {Φ(z, δ) : (z, δ) ∈ Z}.

Consider then the family

A :=
{
h ∈ L(M,M) : h(u) = u,∀u ∈ P−1

((
−∞,

SH,L + c�

2

))}
and define

Γ = {B ⊂ M : B = h(Σ), h ∈ A}.
Similar to the proof of lemma 3.12 [7], we know that

Lemma 3.6. If B ∈ Γ, then B ∩ A �= ∅.
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Now we set

c = inf
B∈Γ

sup
u∈B

P (u) (3.11)

Kc = {u ∈ M : P (u) = c and P ′|M(u) = 0}.
Moreover, for d ∈ R, P d will be

Ph = {u ∈ M : P (u) � d}.
Proof of theorem 1.4. We shall prove the theorem showing that Kc �= ∅, that is,
that c defined by (3.11) is a critical level and there is a critical point u such that
P (u) = c. By Σ ∈ Γ and lemma 3.4, we know

c � sup
u∈Σ

P (u) � sup
z∈RN ,δ∈R+

P (ϕδ,z) < 2(N+2−μ)/(2N−μ)SH,L.

Also by lemma 3.6, B ∩ A �= ∅, ∀B ∈ Γ, so

c � inf
A
P (u) = c� > SH,L.

Hence

SH,L < c� < 2(N+2−μ)/(2N−μ)SH,L.

Suppose now Kc = ∅. By proposition 3.3 the Palais-Smale condition holds in

{u ∈ M : SH,L < P (u) < 2(N+2−μ)/(2N−μ)SH,L},
then using a variant of a well-known deformation Lemma (see [38]) we find a
continuous map

η : [0, 1] ×M → M
and a positive number ε0 such that

P c+ε0\P c−ε0 ⊂ P 2(N+2−μ)/(2N−μ)SH,L\PSH,L+c�/2,

η(0, u) = u,

η(t, u) = u, ∀ u ∈ P c−ε0 ∪ {M\P c+ε0}, ∀ t ∈ (0, 1)

and

η(1, P c+ε0/2) ⊂ P c−ε0/2.

Now let B̃ ∈ Γ be such that

c � sup
B̃

P (u) < c+
ε0
2
.

Then η(1, B̃) ∈ Γ and

sup
u∈η(1,B̃)

P (u) < c− ε0
2

contradicting with the definition of c. �
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