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ABSTRACT

This paper analyzes optimal risk sharing among agents that are endowed with
either expected utility preferences or with dual utility preferences. We find
that Pareto optimal risk redistributions and the competitive equilibria can be
obtained via bargaining with a hypothetical representative agent of expected
utility maximizers and a hypothetical representative agent of dual utility max-
imizers. The representative agent of expected utility maximizers resembles an
average risk-averse agent, whereas representative agent of dual utility maximiz-
ers resembles an agent that has lowest aversion tomean-preserving spreads. This
bargaining leads to an allocation of the aggregate risk to both groups of agents.
The optimal contract for the expected utility maximizers is proportional to their
allocated risk, and the optimal contract for the dual utility maximizing agents is
given by “tranching” of their allocated risk. We show a method to derive equi-
librium prices. We identify a condition under which prices are locally indepen-
dent of the expected utility functions, and given in closed form. Moreover, we
characterize uniqueness of the competitive equilibrium.
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1. INTRODUCTION

This paper studies risk sharing in markets with expected utility maximizers and
with dual utility maximizers. Expected utility is often applied as preference re-
lation for individuals, whereas dual utility is often applied to model the pref-
erences of firms. Expected utility is characterized in the seminal work of Von
Neumann and Morgenstern (1944) and is well studied in the economic litera-
ture. Dual utility is characterized by Yaari (1987) by a modification of the inde-
pendence axiom in expected utility theory. For expected utility theory, the inde-
pendence axiom requires independence with respect to probability mixtures of
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risks. For dual theory, the modified independence axiom requires independence
with respect to direct mixing the realizations of the risks. The preferences to-
wards risk are linear in the pay-offs but non-linear in the probabilities. Its main
property is cash invariance. This means that cash payments do not affect risk
preferences. Dual theory has applications in both actuarial science and finance,
as it is related to the concept of coherent risk measures (Artzner et al., 1999).
It includes the expected shortfall that gained interest after the introduction of
Basel III and Swiss Solvency Test regulations.

Risk sharing is a classical topic in actuarial science. There is a stream of
papers that analyze optimal risk sharing in settings where all agents maxi-
mize expected utilities (Borch, 1962; Wilson, 1968; Bühlmann and Jewell, 1979;
Raviv, 1979; Bühlmann, 1980, 1984; Aase, 1993, 2010). More recently, risk shar-
ing in settings with dual utility maximizing agents is studied in the literature as
well (Filipović and Kupper, 2008; Jouini et al., 2008; Ludkovski and Young,
2009; Dana and Le Van, 2010; Boonen, 2015, 2017). To the best of our knowl-
edge, we are the first to analyze markets in which both types of agents coexist.
We do not argue that either expected utility or dual utility is better, and we
do not find any clear arguments why not both types of agents might coexist
in the market. In economic experiments, there is no clear consensus for one of
these two preference relations as well (see, e.g., Hey and Orme, 1994). Heteroge-
neous agents models gained substantial interest in economics and finance (see
Hommes, 2006, for an overview).

Our approach in this paper is twofold. First, we characterize all Pareto op-
timal risk redistributions. In this way, we generalize in this way the results of
Borch (1962) for expected utilities and the results of Jouini et al. (2008) and Lud-
kovski and Young (2009) for dual utilities. Second, we select a specific Pareto
optimal risk redistribution using the concept of competitive equilibria in a mar-
ket where agents act as price-takers. We determine the equilibrium prices and
corresponding risk redistributions and characterize uniqueness of the competi-
tive equilibrium. Moreover, we illustrate the construction of the equilibrium in
some special cases.

This paper is related to the equilibrium model of Chateauneuf et al. (2000)
and Tsanakas and Christofides (2006). They all use rank-dependent utility
(RDU) preferences in order to derive the Pareto optimal risk sharing contracts
and the competitive equilibrium. RDU preferences are originally character-
ized by Quiggin (1982, 1993) and Schmeidler (1989) and generalize both ex-
pected and dual utility. In order to derive a solution, Chateauneuf et al. (2000)
and Tsanakas and Christofides (2006) need all agents to have strictly concave
expected utility and distortion functions. Pareto optimal risk redistributions
are similar to the solution with regular expected utilities, but with heteroge-
neous distorted probability measures. This is in line with Wilson (1968), who
studies markets with expected utility maximizers using subjective probabilities.
Moreover, Tsanakas and Christofides (2006) obtain the competitive equilib-
rium by solving the first-order conditions where the comonotonicity conditions
are slack. Strzalecki and Werner (2011) analyze the comonotonicity of Pareto
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optimal risk redistributions in the context of ambiguity. They show that all
Pareto optimal risk redistributions are comonotone if agents use strictly convex
preferences. Dual utility preferences are not strictly convex. In our model,
either the utility function or the distorted probabilities are linear for ev-
ery agent. Then, the comonotonicity of equilibrium risk redistributions is
used as constraint in order to solve the solution numerically. We find that
the corresponding equilibrium prices and risk redistributions are substan-
tially different compared to Chateauneuf et al. (2000) and Tsanakas and
Christofides (2006). Chateauneuf et al. (2000) and Tsanakas and Christofides
(2006) find that the prices depend also on expected utility functions, whereas
we find that prices may be locally independent of the expected utility
functions.

This paper also contributes to the literature that study uniqueness of the
competitive equilibrium. This is analyzed by Aase (1993, 2010) for expected
utility preferences and by Boonen (2015, 2017) for dual utility maximizers. We
derive a condition that characterizes uniqueness of the equilibrium. This condi-
tion is identical to one property of Boonen (2015), who states the condition for a
market with only dual utility maximizers. Uniqueness of the equilibrium is rele-
vant as it allows us to formalize the Capital Asset PricingModel (CAPM) based
on the unique prices. The prices follow from specific dual utility preferences
in the market. Testing the equilibrium prices that we derive is mathematically
equivalent to the test of De Giorgi and Post (2008) on the U.S. stock returns.
They show a better fit than the classical CAPM model with mean-variance in-
vestors. Therefore, De Giorgi and Post (2008) provide an empirical motivation
for the results in this paper as well.

This paper is set out as follows. Section 2 introduces the model. Section 3
analyzes the Pareto optimality. Section 4 characterizes the competitive equi-
librium prices, as well as a characterization of uniqueness of the corresponding
equilibrium risk redistribution. Section 5 illustrates the competitive equilibrium
in case all expected utility maximizers use exponential utility functions. Finally,
Section 6 concludes this paper.

2. MODEL OUTLINE

We consider a one-period model with a pre-determined future time. All ran-
dom variables discussed in this paper are on a probability space (�,F, P) such
that:

• the state space � is finite. Let F the power set on �, and the cardinality of �

equals p > 1;
• P({ω}) > 0 for all ω ∈ �. The probability measure is common knowledge.

We denote IR� as the set of all random variables on the state space �.
Dual utility is introduced by Yaari (1987). Moreover, it is characterized as

a premium principle by Wang et al. (1997), which is called a distortion risk
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measure ρ. Dual utility is given by

V(X) = −ρ(X) = −
∫ 0

−∞
g(FX(x)) dx−

∫ ∞

0
(g(FX(x))−1) dx, for all X ∈ IR�,

(1)
for a continuous, concave and increasing distortion function g : [0, 1] → [0, 1]
with g(0) = 0 and g(1) = 1, where FX is the cumulative distribution function of
random variable X. Here, X is interpreted as a future gain. We explicitly assume
concavity of the distortion function g, which is equivalent to aversion to mean-
preserving spreads (Yaari, 1987). Every distortion risk measure is coherent (see
Wang et al., 1997), which is later defined by Artzner et al. (1999). For a random
variable X ∈ IR� such that X(ω1) ≤ · · · ≤ X(ωp), it holds that

V(X) = EQ[X], for all X ∈ IR�, (2)

where Q : F → (0, 1] is the additive mapping such that

Q({ω�}) = g(P({ω1, . . . , ω�})) − g(P({ω1, . . . , ω�−1})), for all � ∈ {1, . . . , p}.
(3)

Throughout this paper, we assume that there exists:

• a finite collection of Von Neumann–Morgenstern expected utility maximiz-
ing agents that is given by N1 = {1, . . . , n1}; the corresponding utility func-
tions are given by ui , i ∈ N1. Moreover, we assume that u′

i (·) > 0, u′′
i (·) < 0,

and that the Inada conditions limx→−∞ u′
i (x) = ∞ and limx→∞ u′

i (x) = 0
are satisfied for all i ∈ N1;

• a finite collection of dual utilitymaximizing agents that is given by N2 = {n1+
1, . . . , n1 + n2}; the corresponding distortion functions are strictly concave,
and given by gi , i ∈ N2.

Later in this paper (Proposition 4.6), we will discuss results in case the distortion
functions are concave instead of strictly concave. We define N = N1∪N2. Agent
i ∈ N holds a random variable Xi ∈ IR� that we denote as risk. Generally, we
define the utility of agent i ∈ N as follows:

Vi (X) =
{
EP[ui (X)] if i ∈ N1,

−ρi (X) if i ∈ N2,
(4)

for all X ∈ IR�.
For an overview of the differences between expected utility and dual utility,

we refer to Wang and Young (1998). Dual utilities can be represented as Von
Neumann–Morgenstern expected utilities if and only if the distortion function is
given by g(x) = x for all x ∈ [0, 1], i.e., if the agent is risk neutral:V(X) = EP[X]
for all X ∈ IR�. This follows directly from the fact that the only class of expected
utility functions satisfying positive homogeneity1 is the class of linear utility
functions.
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3. PARETO OPTIMALITY

In Section 2, we defined the preferences (expected and dual utilities) that are
present in the market that we consider in this paper. In this section, we provide
a full characterization of Pareto optimality in such markets. Moreover, we pro-
vide an algorithm to compute the Pareto optimal risk redistributions. In order
to define the Pareto optimality properly, we first define the set of feasible risk
redistributions as follows:

X =
{

(X̃i )i∈N ∈ (IR�)N :
∑
i∈N

X̃i =
∑
i∈N

Xi

}
. (5)

A risk redistribution is called the Pareto optimal if there does not exist an-
other feasible redistribution that is weakly better for all agents, and strictly bet-
ter for at least one agent. The set of Pareto optimal risk redistributions is given
by

PO = {
(X̃i )i∈N ∈ X : �(X̂i )i∈N ∈ X s.t. (Vi (X̂i ))i∈N � (Vi (X̃i ))i∈N

}
, (6)

where for every a, b ∈ IRN, a � b means ai ≥ bi for every i ∈ N and a 
= b.
Here, the preferences Vi , i ∈ N, are given in (4).

From Kiesel and Rüschendorf (2007, Theorem 3.3 therein), we get that the
Pareto optimal risk redistributions are obtained by maximizing∑

i∈N
kiVi (X̃i ), (7)

over all (X̃i )i∈N ∈ X , where k ∈ IRN
++.

2 We impose the normalization
kn1+n2 = 1. Denote ρ∗

N2
as the distortion risk measure generated by the strictly

concave distortion function g∗
N2

(x) = min{gi (x) : i ∈ N2} for all x ∈ [0, 1].
It follows essentially from Jouini et al. (2008, Theorem 3.1 and Proposition 3.1
therein)3 that for all X ∈ IR�, we have

min
∑
i∈N2

ρi (X̃i ) = ρ∗
N2

(X),

where the minimum is taken over all (X̃i )i∈N2 such that
∑

i∈N2
X̃i = X. Anal-

ogous to Jouini et al. (2008, Theorem 3.1 therein) for k not equal to the unit
vector, we get that min

∑
i∈N2

kiρi (X̃i ) does not exist for non-degenerate for all
i ∈ N2, where the minimum is taken over all (X̃i )i∈N2 such that

∑
i∈N2

X̃i = X.
Therefore, we set ki = 1 for all i ∈ N2, and the objective function in (7) can be
written as ∑

i∈N1

ki EP[ui (X̃i )] − ρ∗
N2

(∑
i∈N2

X̃i

)
. (8)
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A risk redistribution (X̃i )i∈N ∈ X is called comonotone with each other
if there exists an ordering (ω1, . . . , ωp) of the state space � such that X̃i (ω1)

≤ · · · ≤ X̃i (ωp) for all i ∈ N. The existence of a Pareto optimal comonotone
risk redistribution is shown by Landsberger and Meilijson (1994). They show
that any allocation of an aggregate risk

∑
i∈N Xi is dominated by a comono-

tone allocation in the sense of second-order stochastic dominance. Carlier et al.
(2012, Theorem 3.1 therein) extend this result by showing that every strictly con-
cave order preserving preference relation is such that for every non-comonotone
risk redistribution, there exists a comonotone risk redistribution that Pareto
dominates it. Moreover, Chew et al. (1987, Corollary 2 therein) show that dual
utilities generated by a strictly concave distortion function strictly preserve the
concave order. For strictly concave expected utility functions, this holds by def-
inition (Rothschild and Stiglitz, 1970). From this follows directly the following
lemma.

Lemma 3.1. Every (X̃i )i∈N ∈ PO is comonotone with each other, where the set
PO is defined in (6).

From Lemma 3.1, we get that all Pareto optimal risk redistributions are
comonotone with the aggregate risk

∑
i∈N Xi . So, there exists an ordering of

the finite probability space � such that for all (X̃i )i∈N ∈ PO we have X̃i (ω1)

≤ · · · ≤ X̃i (ωp) for all i ∈ N. Without loss of generality, we define the state
space � = {ω1, . . . , ωp} such that∑

i∈N
Xi (ω1) ≤ · · · ≤

∑
i∈N

Xi (ωp).

Moreover, we write �� = {ω1, . . . , ω�} for all � ∈ {1, . . . , p}, and �0 = ∅. We
will refer to the comonotonicity constraints as X̃i (ω1) ≤ · · · ≤ X̃i (ωp) for all
i ∈ N. From Lemma 3.1, (2), (3) and (8), we immediately derive that Pareto
optimal risk redistributions (X̃i )i∈N are characterized as the ones that satisfy
the following optimization problem:

max
∑
i∈N1

ki EP[ui (X̃i )] + EQ

[∑
i∈N2

X̃i

]
, (9)

which is maximized over all (X̃i )i∈N ∈ X such that the comonotonicity con-
straints are satisfied and

∑
i∈N2

ρi (X̃i ) = ρ∗
N2

(∑
i∈N2

X̃i

)
, (10)

where Q({ω�}) = g∗
N2

(P(��)) − g∗
N2

(P(��−1)) for all � ∈ {1, . . . , p}. Since the
objective function in (9) is concave, it follows from the Inada conditions that the
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objective in (9) is bounded from above. In this section, we solve this optimization
problem using variational calculus.

From Lemma 3.1, we directly get the following corollary.

Corollary 3.2. If
∑

i∈N Xi (ω) = ∑
i∈N Xi (ω

′) for some ω, ω′ ∈ �, then X̃i (ω) =
X̃i (ω

′) for all i ∈ N and for all Pareto optimal risk redistributions X̃i , i ∈ N.

So, if
∑

i∈N Xi (ω) = ∑
i∈N Xi (ω

′), we tread the set {ω, ω′} as one state.
If N = N1, we get from Borch (1962) that a risk redistribution (X̃i )i∈N1 ∈ X

is Pareto optimal if and only if there exists a k ∈ IRN1++ such that

k1u′
1(X̃1(ω)) = · · · = kn1u

′
n1(X̃n1(ω)), (11)

for allω ∈ �.Moreover, if N = N2, Jouini et al. (2008) show that a necessary and
sufficient condition for a risk redistribution (X̃i )i∈N ∈ X to be Pareto optimal is
given by

∑
i∈N2

Vi (X̃i ) = −ρ∗
N2

(∑
i∈N2

Xi
)
. The following theorem extends these

results for the case that there are some agents in the market maximizing utility
and some agents that maximize dual utility. Since the objective function in (9) is
concave and the constraints are all affine, we can use the Karush–Kuhn–Tucker
(KKT) conditions to get that the Pareto optimal risk redistributions.

Theorem 3.3. If N2 
= ∅, it holds that (X̃i )i∈N ∈ PO if and only if there exists a
k ∈ IRN1++ such that

k1P({ω�})u′
1(X̃1(ω�)) = · · · = kn1P({ω�})u′

n1(X̃n1(ω�))

= g∗
N2

(P(��)) − g∗
N2

(P(��−1)) +
⎧⎨⎩−γ̂1 if � = 1,

+γ̂�−1 − γ̂� if � = 2, . . . , p − 1,
γ̂p−1 if � = p,

(12)

for all � ∈ {1, . . . , p}, and
∑
i∈N2

ρi (X̃i ) = ρ∗
N2

(∑
i∈N2

X̃i

)
, (13)

where
∑

i∈N2
X̃i = ∑

i∈N Xi − ∑
i∈N1

X̃i and γ̂� is the Lagrangian multiplier of
the constraint

∑
i∈N2

X̃i (ω�+1) ≥ ∑
i∈N2

X̃i (ω�).

Proof. The objective function in (9) can be written as

∑
i∈N1

ki

p∑
�=1

P({ω�})ui (X̃i (ω�)) +
p∑

�=1

[g∗
N2

(P(��)) − g∗
N2

(P(��−1))]
∑
i∈N2

X̃i (ω�).

(14)
This function is maximized over all X̃i ∈ IR�, i ∈ N such that

∑
i∈N X̃i =∑

i∈N Xi , X̃i (ω1) ≤ · · · ≤ X̃i (ωp) for all i ∈ N1, and
∑

i∈N2
X̃i (ω1) ≤ · · · ≤
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i∈N2

X̃i (ωp), where (13) holds.We first leave out the conditions X̃i (ω1) ≤ · · · ≤
X̃i (ωp) for i ∈ N1; we will later verify that these conditions are satisfied.

Since the objective function in (14) is concave and the constraints are all
affine, we get that the Pareto optimal risk redistributions (X̃i )i∈N are charac-
terized by the KKT conditions. The KKT conditions are obtained by the first-
order conditions of (14) with respect to X̃i (ω�):

kiP({ω�})u′
i (X̃i (ω�)) − λ̂� = 0, (15)

if i ∈ N1, and, otherwise, we get

g∗
N2

(P(ω1)) − λ̂1 − γ̂1 = 0, (16)

g∗
N2

(P(��)) − g∗
N2

(P(��−1)) − λ̂� − γ̂� + γ̂�−1 = 0, if � = 2, . . . , p − 1, (17)

1 − g∗
N2

(P(�p−1)) − λ̂p + γ̂p−1 = 0, (18)

and γ̂�

[∑
i∈N2

X̃i (ω�+1) − ∑
i∈N2

X̃i (ω�)
] = 0 for all � ∈ {1, . . . , p − 1} and i ∈

N, where λ̂� ∈ IR and γ̂� ≥ 0 are the Lagrangian multipliers of the constraints∑
i∈N X̃i (ω�) = ∑

i∈N Xi (ω�) and
∑

i∈N2
X̃i (ω�) ≤ ∑

i∈N2
X̃i (ω�+1), respectively.

For a given λ̂� > 0, the Equation (15) has a solution since u′
i (·) > 0, u′′

i (·) < 0
and the Inada conditions are satisfied for every i ∈ N1. This follows directly from
the Intermediate Value Theorem. Hence, the result follows directly.

Next, we verify that X̃i (ω1) ≤ · · · ≤ X̃i (ωp) for i ∈ N1. If
∑

i∈N2
X̃i (ω�) =∑

i∈N2
X̃i (ω�+1), then

∑
i∈N1

X̃i (ω�) ≤ ∑
i∈N1

X̃i (ω�+1). So, X̃i (ω�) ≤ X̃i (ω�+1)

for i ∈ N1 follows directly from (15) and strict concavity of ui , i ∈ N1. Suppose∑
i∈N2

X̃i (ω�) <
∑

i∈N2
X̃i (ω�+1). This leads to γ̂� = 0. Because the distortion

functions gi , i ∈ N are strictly concave, it holds that the function g∗
N2

is strictly
concave as well. From this and P({ω�}), P({ω�+1}) > 0, it follows that

g∗
N2

(P(��)) − g∗
N2

(P(��−1)) + γ̂�−1

P({ω�}) >
g∗
N2

(P(��+1)) − g∗
N2

(P(��)) − γ̂�+1

P({ω�+1}) ,

for any γ̂�−1, γ̂�+1 ≥ 0. Hence, the solution in (12) satisfies X̃i (ω1) ≤ · · · ≤
X̃i (ωp) for i ∈ N1 due to strict concavity of the utility functions ui , i ∈ N1. This
concludes the proof of Theorem 3.3.

We proceed with characterizing uniqueness of the Pareto optimal risk redis-
tributions. We know from Jouini et al. (2008) that there are multiple solutions
to (13). For the agents in N1, we next show that the system (12) in Theorem 3.3
yields the same risks for a given value of k.

Proposition 3.4. For a given k ∈ IRN1++, all (X̃i )i∈N, (X̂i )i∈N ∈ PO solving (9) are
such that X̃i = X̂i for all i ∈ N1.

Proof. Let k ∈ IRN1++. Given a positive value of (12), there is a unique so-
lution of X̃i , i ∈ N1 due to u′

i (·) > 0, u′′
i (·) < 0 and that ui satisfies the Inada
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conditions for all i ∈ N1 (Intermediate Value Theorem). We tread the set N2 as
one representative agent with preferences V(X) = −ρ∗

N2
(X), which will bear the

risk
∑

i∈N2
X̃i . Next, we show that there is a unique value of (12) that satisfies

theKKT conditions. Existence of a solution follows from existence of a solution
of (9). Suppose there are two solutions (X̂i )i∈N, (Xi )i∈N ∈ X solving the system
in Theorem 3.3, and are not equal to each other for an agent i ∈ N1. So, (X̂i )i∈N
and (Xi )i∈N both solve (9). Then, we see that 1

2 X̂i + 1
2Xi is a strict improvement

for agent i due to strict concavity of the utility function ui . Moreover, we have
for all i ∈ N1 that

EP

[
ui

(
1
2
X̂i + 1

2
Xi

)]
≥ 1

2
EP[ui (X̂i )] + 1

2
EP[ui (Xi )],

due to concavity of ui . Hence, we get from this and the fact that an expectation
is additive that∑

i∈N1

ki EP

[
ui

(
1
2
X̂i + 1

2
Xi

)]
+ EQ

[∑
i∈N2

1
2
X̂i + 1

2
Xi

]

>
1
2

(∑
i∈N1

ki EP[ui (X̂i )] + EQ

[∑
i∈N2

X̂i

])

+ 1
2

(∑
i∈N1

ki EP[ui (Xi )] + EQ

[∑
i∈N2

Xi

])
.

So, not both (X̂i )i∈N, (Xi )i∈N ∈ X solve (9). This is a contradiction, which con-
cludes the proof.

Proposition 3.5. For a given k ∈ IRN1++, there is a unique vector γ̂ ∈ IRp−1
+ that

solves the system in Theorem 3.3.

Proof. Suppose γ̂ 1 and γ̂ 2 both solve the system in Theorem 3.3 and
γ̂ 1 
= γ̂ 2. Then, the right-hand side of (12) is different for some state in-
dex � ∈ {1, . . . , p}. Due to strict concavity of the expected utility functions
ui , i ∈ N1, this leads to different solutions of X̃i , i ∈ N1 for the choices of γ̂ 1

and γ̂ 2. Hence, these solutions do not both solve the system in Theorem 3.3 due
to Proposition 3.4. This concludes the proof.

Suppose N2 
= ∅, and define

M =
{
m : {1, . . . , p − 1} → N2

∣∣∣∣∣m(k) ∈ argmin
j∈N2

{
g j (P(�k))

}
for all k ∈ {1, . . . , p − 1}

}
.

(19)
Given

∑
i∈N2

X̃i , all Pareto optimal risk redistributions for agents in N2 follow
from (13). From Jouini et al. (2008, Proposition 3.1 therein), we get that for all
m ∈ M and d ∈ IRN2 with

∑
i∈N2

di = ∑
i∈N2

X̃i (ωp), it holds that (X̂i )i∈N2 is
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Pareto optimal, where

X̂i =
p−1∑
k=1

[∑
i∈N2

X̃i (ωk) −
∑
i∈N2

X̃i (ωk+1)

]
1m(k)=i e�k +di e�, for all i ∈ N2, (20)

1m(k)=i = 1 if m(k) = i and zero otherwise, and where the risk eA ∈ IR� for
A ∈ F is given by

eA(ω) =
{
1 if ω ∈ A,

0 if ω ∈ �\A.
(21)

We refer to the structure of risk redistributions in (20) as tranching.
If the sets N1 and N2 are both non-empty, one can use for a given k ∈

IRN1++ the following two-step procedure to solve for the Pareto optimal risk
redistributions:

• solve the system in Theorem 3.3; we get the Pareto optimal risk pro-
files X̃i , i ∈ N1. By Proposition 3.4, these risk profiles are unique given
vector k;

• we compute ∑
i∈N2

X̃i =
∑
i∈N

Xi −
∑
i∈N1

X̃i ,

and determine non-unique Pareto optimal risk redistributions X̃i , i ∈ N2
from (20).

For every risk redistribution problem, there is an allocation of the aggre-
gate risk

∑
i∈N Xi to group N1 and group N2. Given

∑
i∈N1

X̃i for group N1, the
Pareto optimal risk redistribution follows from (11). If the agents in N1 all use
an equi-cautious Hyperbolic Absolute Risk Aversion expected utility function,
the Pareto optimal risk redistribution is an affine contract on

∑
i∈N1

X̃i (Wil-
son, 1968). Given

∑
i∈N2

X̃i , the Pareto optimal risk redistribution is given by
tranching of this risk

∑
i∈N2

X̃i .
We next show an algorithm to solve the Pareto optimal risk redistributions

via Theorem 3.3 for any given k ∈ IRN1++. Corresponding to vector k, we aim
to find the unique Pareto optimal X̃i , i ∈ N1, as all Pareto optimal X̃i , i ∈ N2,
given

∑
i∈N2

X̃i , are given in (20).

1. Set γ̂� = 0 for all � ∈ {1, . . . , p − 1}. Solve the system (12) for given γ̂ to
obtain (X̃i )i∈N.

2. If
∑

i∈N2
X̃i (ω1) ≤ · · · ≤ ∑

i∈N2
X̃i (ωp), then it holds that X̃i (ω1) ≤ · · · ≤

X̃i (ωp) for all i ∈ N (see Theorem 3.3); stop here. Otherwise, go to the next
step.

3. Find the first � ∈ {1, . . . , p − 1} for which there exists an z ∈ {0, 1, . . .}
such that

∑
i∈N2

X̃i (ω�) ≥ · · · ≥ ∑
i∈N2

X̃i (ω�+z+1) with one strict in-
equality. Take this largest z for which this series of inequalities hold. Then,
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determine γ̂a ≥ 0, a ∈ {�, . . . , � + z} such that
∑

i∈N2
X̃i (ω�) = · · · =∑

i∈N2
X̃i (ω�+z+1) for solutions of (12) with given γ̂ . Then, go back to

Step 2.

In this algorithm, it may be tedious to solve Step 3 when the size z is large. At
least, we know from Theorem 3.3 that it yields a Pareto optimal risk redistribu-
tion. From Proposition 3.4, we get for every Pareto optimal risk redistribution
(X̃i )i∈N that the risks X̃i , i ∈ N1 are the same for given k ∈ IRN1++. So, the algo-
rithm selects this unique risks X̃i , i ∈ N1 corresponding to Pareto optimal risk
redistributions (X̃i )i∈N.

We proceed this paper with characterizing specific Pareto optimal risk redis-
tributions, namely the competitive equilibria. We discuss this topic in the next
section.

4. COMPETITIVE EQUILIBRIA

4.1. Definition and characterization

Let the pricing function be linear, i.e., we have π( p̂, X) = ∑
ω∈� p̂ωX(ω) for all

X ∈ IR�. To avoid arbitrage, we assume that the price vector p̂ is strictly positive,
i.e., p̂ ∈ IR�

++. The risk-free rate is set equal to zero, i.e., π( p̂, e�) = 1. This
assumption will serve as a normalization, as the equilibrium risk redistributions
do not depend on it. The economy is in equilibrium when every agent i ∈ N
solves

max
X̃i∈IR�

Vi (X̃i ) (22)

s.t. π( p̂, X̃i ) ≤ π( p̂, Xi ), (23)

where the price vector p̂ induces market clearing, i.e.,

(X̃i )i∈N ∈ X . (24)

Existence of competitive equilibria follows from Arrow and Debreu (1954) and
Werner (1987). The First Fundamental Welfare Theorem states that any equi-
librium is Pareto optimal. This theorem applies to our setting as the preferences
are non-satiated (Arrow, 1963). If N = N1 or N = N2, competitive equilibria are
studied by, e.g., Borch (1962), Aase (1993, 2010), Filipović and Kupper (2008)
and Dana and Le Van (2010).

Theorem 4.1. Let N1, N2 
= ∅, and recall the definition of a competitive equi-
librium in (22)–(24). Then, ( p̂, (X̃i )i∈N) is an equilibrium if and only if we have
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(X̃i )i∈N ∈ X ,

P({ω�})u′
i (X̃i (ω�)) = λi p̂�, for all i ∈ N1, � ∈ {1, . . . , p}, (25)

π( p̂, X̃i ) = π( p̂, Xi ), for all i ∈ N1, (26)

−ρi (X̃i ) = π( p̂, Xi ), for all i ∈ N2, (27)

with λ ∈ IRN
++, and the price vector p̂ is given by

p̂� = g∗
N2

(P(��)) − g∗
N2

(P(��−1)) +
⎧⎨⎩−γ� if � = 1,

+γ�−1 − γ� if � = 2, . . . , p − 1,
+γ�−1 if � = p.

(28)

Here, γ� ≥ 0, � ∈ {1, . . . , p − 1} are the Lagrangian parameters of
∑
i∈N

Xi (ω�+1) −
∑
i∈N1

X̃i (ω�+1) ≥
∑
i∈N

Xi (ω�) −
∑
i∈N1

X̃i (ω�),

where X̃i , i ∈ N1 follow from (25), (26).

Proof. From the First Fundamental Welfare Theorem (Arrow, 1963), we
get that any competitive equilibrium is Pareto optimal. Therefore, according
to Lemma 3.1, all equilibrium risk redistributions must be comonotone with
each other.

Then, if we explicitly impose that X̃i is comonotone with each other, we can
write Vi (X̃i ) = −EQ[Xi ] for all X̃i , whereQ({ω�}) = g∗

N2
(P(��))−g∗

N2
(P(��−1))

for all � ∈ {1, . . . , p}. Since the objective function is concave and the constraints
are all affine, we get that the equilibrium risk redistributions (X̃i )i∈N are charac-
terized by the KKT conditions one-to-one. The KKT conditions are obtained
by the first-order conditions of the following function with respect to X̃i (ω�):

Vi (X̃i ) + λi

(∑
ω∈�

p̂ωXi (ω) −
∑
ω∈�

p̂ω X̃i (ω)

)
+

p−1∑
�̂=1

γi,�̂(X̃i (ω�̂+1) − X̃i (ω�̂)),

where λi ∈ IR, i ∈ N are the Lagrangian parameters of the price constraint
and γi,� ≥ 0, i ∈ N, � ∈ {1, . . . , p − 1} are the Lagrangian parameters of the
comonotonicity constraints. For agents in N1, we now assume that X̃i , i ∈ N1
are such that γi,� = 0 for all i ∈ N1, � ∈ {1, . . . , p − 1}. We check at the end of
this proof that the risks X̃i , i ∈ N1 are indeed comonotone with

∑
i∈N Xi . Then,
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for � ∈ {1, . . . , p}, the KKT conditions are given by

P({ω�})u′
i (X̃i (ω�)) = λi p̂�, for all i ∈ N1, (29)

gi (P(��)) − gi (P(��−1)) = λi p̂� +
⎧⎨⎩−γi,� if � = 1,

−γi,� + γi,�−1 if � = 2, . . . , p − 1,
γi,�−1 if � = p,

(30)

for all i ∈ N2. Since gi (0) = 0 and gi (1) = 1, it holds that

p∑
�=1

[gi (P(��)) − gi (P(��−1))] = 1, (31)

and, moreover, it holds that ∑
ω∈�

p̂ω = 1, (32)

since π( p̂, e�) = 1, and

γi,1 +
p−1∑
�=2

(
γi,� − γi,�−1

) − γi,p−1 = 0. (33)

From (30)–(33), it follows that λi = 1 for all i ∈ N2. Note that due to
Pareto optimality of the equilibrium (First Fundamental Welfare Theorem),
the price constraint in (23) is binding. This leads to constraint (26). From the
equilibrium risks X̃i , i ∈ N1 in equilibrium, we derive a value of

∑
i∈N2

X̃i =∑
i∈N Xi − ∑

i∈N1
X̃i . The equilibrium risk redistributions are Pareto optimal

and, so, comonotone. Then, for a given total risk
∑

i∈N2
X̃i and equilibrium

prices, the equilibrium risk redistributions are characterized one-to-one by (27)
due to Filipović and Kupper (2008, Theorem 3.2 therein). Hence, ( p̂, (X̃i )i∈N)

is an equilibrium if and only if we have (X̃i )i∈N ∈ X and the system (25)–(27)
holds for some λ ∈ IRN

++ and price vector p̂.
We proceed with showing the equilibrium price vector p̂. The risk redis-

tribution (X̃i )i∈N1 in equilibrium follows directly from (25). From this, we get∑
i∈N2

X̃i = ∑
i∈N Xi − ∑

i∈N1
X̃i . Suppose

∑
i∈N2

X̃i (ω1) <
∑

i∈N2
X̃i (ω2), so

that γ1 = 0. Then, it follows that there exists at least one i0 ∈ N2 such that
X̃i0(ω1) < X̃i0(ω2), and so γi0,1 = 0. From this and γ j,1 ≥ 0 for all j ∈ N2 it
follows from (30), with λi = 1, that

p̂1=gi0(P(�1))=g∗
N2

(P(�1)) and γi,1=gi (P(�1)) − g∗
N2

(P(�1)), for all i ∈ N2.

(34)
If the equilibrium prices yield

∑
i∈N2

X̃i (ω1) = ∑
i∈N2

X̃i (ω2), it follows from
comonotonicity of Pareto optimal risk redistributions that X̃i (ω1) = X̃i (ω2)

for all i ∈ N2. Therefore, it holds that γi,1 ≥ 0 for all i ∈ N2. From this, the fact
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that gi (x) ≥ g∗
N2

(x) for all x ∈ [0, 1] and all i ∈ N2 and from the fact that for all
x ∈ [0, 1] there exists a j ∈ N2 such that g j (x) = g∗

N2
(x), we get for γ1 ≥ 0 that

p̂1 = g∗
N2

(P(�1)) − γ1, and γi,1 = gi (P(�1)) − g∗
N2

(P(�1)) + γ1. (35)

If p > 2 and if
∑

i∈N2
X̃i (ω2) <

∑
i∈N2

X̃i (ω3), it follows from (30), with λi = 1,
and (35) that:

gi (P(�2)) − g∗
N2

(P(�1)) = p̂2 − γ1 + γi,2, for all i ∈ N2, (36)

and, in line with (35), we get

p̂2 = g∗
N2

(P(�2)) − g∗
N2

(P(�1)) + γ1 and γi,2 = gi (P(�2)) − g∗
N2

(P(�2)), (37)

for all i ∈ N2. If the equilibrium prices yield
∑

i∈N2
X̃i (ω2) = ∑

i∈N2
X̃i (ω3), we

get for γ2 ≥ 0 that

p̂2 = g∗
N2

(P(�2))−g∗
N2

(P(�1))+γ1−γ2, and γi,1 = gi (P(�1))−g∗
N2

(P(�1))+γ2.

(38)
Continuing this procedure for all states � ∈ {1, . . . , p} leads to equilibrium price
vectors expressed as the function of γ1, . . . , γp−1 as in (28).

Finally, we show that for solutions of (25) that the risks X̃i , i ∈ N1 are in-
deed comonotone with

∑
i∈N Xi . Random variables X and Y are called anti-

comonotone when X and −Y are comonotone. Then, we show that any equi-
librium price vector p̂ is such that the random variable p̂�

P({ω�}) , � ∈ {1, . . . , p}
is anti-comonotone with

∑
i∈N Xi . Suppose this is not true, and there exists

a state ω� such that p̂�

P({ω�}) <
p̂�+1

P({ω�+1}) . Then, it follows from (29) and the fact

that the function u′
i (·) is continuous and strictly decreasing that X̃i (ω�) >

X̃i (ω�+1) for all i ∈ N1. From this and
∑

i∈N Xi (ω�) ≤ ∑
i∈N Xi (ω�+1), it

follows that
∑

i∈N2
X̃i (ω�) <

∑
i∈N2

X̃i (ω�+1). This is a contradiction with
Lemma 3.1. Hence, it holds that p̂�

P({ω�}) ≥ p̂�+1
P({ω�+1}) . This concludes the proof

that the random variable p̂�

P({ω�}) , � ∈ {1, . . . , p} is anti-comonotone with the
risk

∑
i∈N Xi .

From the result that p̂�

P({ω�}) , � ∈ {1, . . . , p} is anti-comonotone with the risk∑
i∈N Xi and the fact that the functions u

′
i (·), i ∈ N1, are continuous and strictly

decreasing, we get for the solution of (25) that the risks X̃i , i ∈ N1 are indeed
comonotone with

∑
i∈N Xi .

Theorem 4.1 characterizes the competitive equilibrium. For all i ∈ N2 and
for equilibrium price vector p̂, we readily get that ρi (X) ≥ ρ∗

N2
(X) ≥ −π( p̂, X)

for all X ∈ IR�, and ρi (X̃i ) = ρ∗
N2

(X̃i ) = −π( p̂, X̃i ) if ( p̂, (X̃i )i∈N) is a compet-
itive equilibrium.

We proceed with providing some characteristics of the competitive equilib-
rium. To do so, we first define the following condition:
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Condition [C]: the solution (X̃i )i∈N ∈ X of (25)–(27) with

p̂∗
� = g∗

N2
(P(��)) − g∗

N2
(P(��−1)), for all � ∈ {1, . . . , p}, (39)

is such that ∑
i∈N2

X̃i (ω1) ≤ · · · ≤
∑
i∈N2

X̃i (ωp).

The next corollary follows directly from Theorem 4.1.

Corollary 4.2. If condition [C] holds, equilibrium prices are given by (39).

Condition [C] has no direct interpretation, but allows us to compute the equi-
librium prices directly from the preferences of the agents in N2, and in closed
form (Corollary 4.2).

Proposition 4.3. Condition [C] implies that
∑

i∈N Xi (ω1) < · · · <
∑

i∈N Xi (ωp).

Proof. Let condition [C] hold, and suppose that
∑

i∈N Xi (ω1) < · · · <∑
i∈N Xi (ωp) does not hold. Then, there exists � ∈ {1, . . . , p − 1} such that∑
i∈N Xi (ω�) = ∑

i∈N Xi (ω�+1). Let (25)–(27) hold. For price vector p̂ as in
(39), it holds that p̂�

P({ω�}) is strictly decreasing in � due to Theorem 4.1. Since

the functions ui , i ∈ N1 are strictly concave, we get X̃i (ω�) < X̃i (ω�+1)

for all i ∈ N1, and so
∑

i∈N1
X̃i (ω�) <

∑
i∈N1

X̃i (ω�+1). This implies that∑
i∈N Xi (ω�) − ∑

i∈N1
X̃i (ω�) >

∑
i∈N Xi (ω�+1) − ∑

i∈N1
X̃i (ω�+1), which is a

contradiction due to Lemma 3.1. Hence, condition [C] does not hold. This con-
cludes the proof.

If there exist states ω�, ω�+1 ∈ � such that
∑

i∈N Xi (ω�) = ∑
i∈N Xi (ω�+1), then

we get from Corollary 3.2 that for every Pareto optimal redistribution (and so
for every competitive equilibrium) it holds that X̃i (ω�) = X̃i (ω�+1) for all i ∈ N.
Hence, the probability-weighted equilibrium prices in both states are the same,
i.e., p̂�

P({ω�}) = p̂�+1
P({ω�+1}) . This implies that we can adjust the problem without loss

of generality such that
∑

i∈N Xi (ω1) < · · · <
∑

i∈N Xi (ωp) holds.
Let λ̂ ∈ IRN1++. For every X ∈ IR�, there is a unique (X̃i )i∈N1 such that∑
i∈N1

X̃i = X and λ̂−1
i u′

i (X̃i ) = λ̂−1
j u

′
j (X̃ j ) for all i, j ∈ N1 (Proposition 3.4).

In this way, we define the function u′
λ̂
as u′

λ̂
(X) = λ̂−1

i u′
i (X̃i ) for any i ∈ N1,

where (X̃i )i∈N1 is such that
∑

i∈N1
X̃i = X and λ̂−1

i u′
i (X̃i ) = λ̂−1

j u
′
j (X̃ j ) for all

i, j ∈ N1. The function u′
λ̂
represents the preferences of every agent in N1. Here,

the prime on u′
λ̂
is just a matter of notation. In line with Aase (1993), we have

that u′
λ̂
is a derivative of some utility function for a representative agent of the

set N1.
Let λ ∈ IRN1++ be a vector as in the solution of (25)–(28) in Theorem 4.1. It

follows from the proof of Theorem4.1 that equilibriumprices can be determined
as if there are just two hypothetical agents in the market: one is endowed with

https://doi.org/10.1017/asb.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.5


406 TIM J. BOONEN

marginal expected utility function u′
λ and one is endowed with −ρ∗

N2
. Moreover,

if condition [C] is satisfied, the equilibrium risk redistribution for agents in N1
depends locally not on the aggregate risk

∑
i∈N Xi , but also on the preferences

of the “representative” least risk-averse agent of the set N2. Here, we denote risk
aversion in dual utility as aversion to mean-preserving spreads.

Next, we focus on condition [C]. From (25), we get

u′
λ

(∑
i∈N1

X̃i

)
· P = p̂, (40)

where the probability measure P, random variables and prices are written as
vectors, and · is the is the Hadamard (element-wise) product operator. From
u′′
i (·) < 0 for all i ∈ N1, it follows that u′

λ(·) is continuous and strictly decreasing.
From u′

i (·) > 0, u′′
i (·) < 0 and that ui satisfies the Inada conditions for all i ∈ N1,

it follows that u′
λ(·) has range (0, ∞). Hence, u′ −1

λ exists. We get∑
i∈N1

X̃i = u′ −1
λ

(
p̂
P

)
.

Hence, condition [C] is equivalent to∑
i∈N

Xi (ω�+1) −
∑
i∈N

Xi (ω�) ≥ u′ −1
λ

(
p̂∗

�+1

P({ω�+1})
)

− u′ −1
λ

(
p̂∗

�

P({ω�})
)

, (41)

for all � ∈ {1, . . . , p − 1}, where p̂∗ is given in (39). Since the function u′
λ is

strictly decreasing and g∗
N2

is strictly concave, we find that the right-hand side
of (41) is strictly positive. The more risk averse the representative (average risk
averse) agent in N1 and the representative (least risk averse) agent in N2 are, the
more strong condition [C] is on the aggregate risk.

4.2. Equilibrium prices

In this section, we provide an algorithm that yields an equilibrium price vector.
Equilibrium prices in (28) follow from the following algorithm.

1. Set γ̂� = 0 for all � ∈ {1, . . . , p− 1}. Solve the system (25)–(26) for given γ̂

to obtain (X̃i )i∈N.
2. If

∑
i∈N2

X̃i (ω1) ≤ · · · ≤ ∑
i∈N2

X̃i (ωp), then we found the equilibrium
price vector; stop here. Otherwise, go to the next step.

3. Find the first � ∈ {1, . . . , p − 1} for which there exists z ∈ {0, 1, . . .} such
that

∑
i∈N2

X̃i (ω�) ≥ · · · ≥ ∑
i∈N2

X̃i (ω�+z+1) with one strict inequality.
Take this largest z for which this series of inequalities hold. Then, we need
to determine γ̂a > 0, a ∈ {�, . . . , � + z} such that

∑
i∈N2

X̃i (ω�) = · · · =∑
i∈N2

X̃i (ω�+z+1) for solutions of (25), (26) with given γ̂ . Solve the system
(25), (26) for given γ̂ to obtain (X̃i )i∈N. Then, go back to Step 2.
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This procedure has a finite number of iterations due to a finite state
space.

In the next proposition, we show that the values γ1, . . . , γp−1 solving this
algorithm are unique.

Proposition 4.4. The algorithm above leads to a unique equilibrium price vector p̂.

Proof. We show that Step 3 above has a unique solution for γ̂ . Let
� ∈ {1, . . . , p − 1} be the first index for which there exists z ∈ {0, 1, . . .}
such that the corresponding risk redistribution is such that

∑
i∈N2

X̃i (ω�)

≥ · · · ≥ ∑
i∈N2

X̃i (ω�+z+1) with one strict inequality. Therefore, we have∑
i∈N2

X̃i (ω�−1) <
∑

i∈N2
X̃i (ω�) so that γ̂�−1 = 0. From (25), we get that

X̃i (ω�), . . . , X̃i (ω�+z+1), i ∈ N1 are solutions of

u′
i (X̂i (ω�+s))

u′
i (X̂i (ω�+s+1))

= (g∗
N2

(P(��+s)) + γ̂�+s−1 − γ̂�+s)/P({ω�+s})
(g∗

N2
(P(��+s+1)) + γ̂�+s − γ̂�+s+1)/P({ω�+s+1}) , (42)

s ∈ {0, . . . , z}, where γ̂�−1 = 0, and γ̂�+z+1 is fixed and such that γ̂�+z+1 = 0 if
� + z = p. We solve uniqueness of such Lagrangian parameters by mathemat-
ical induction, where we vary z. We define Event s, with s ∈ {0, . . . , z − 1}, as
follows.

For given γ̂�+s+1 ≥ 0, the values of γ̂�, . . . , γ̂�+s such that
∑

i∈N2
X̂i (ω�)

= · · · = ∑
i∈N2

X̂i (ω�+z+1) are unique, and non-negative. Moreover, γ̂� is con-
tinuous and strictly increasing in the value of γ̂�+s+1.

Step 1: first, we show the result for Event s = 0. Fix γ̂�+1. Then, the right-
hand side of (42) only depends on γ̂�. This equation is continuous and strictly
decreasing in γ̂� ≥ 0. Moreover, if γ̂� = 0, then we get that

∑
i∈N2

X̂i (ω�) ≥∑
i∈N2

X̂i (ω�+1). Moreover, there is a unique γ̂� > 0 for which p̂�/P({ω�})
p̂�+1/P({ω�+1}) = 1,

i.e., u′
i (X̂i (ω�)) = u′

i (X̂i (ω�+1)) for all i ∈ N1, and so, due to u′′
i (·) < 0, we

then have
∑

i∈N2
X̂i (ω�) ≤ ∑

i∈N2
X̂i (ω�+1). Due to u′′

i (·) < 0, i ∈ N1 and the
Intermediate Value Theorem, we get that there is a unique γ̂� ≥ 0 such that∑

i∈N2
X̂i (ω�) = ∑

i∈N�+1
X̂i (ω�=1). This γ̂� is continuous and strictly increasing

in γ̂�+1.

Step 2: suppose that Event s∗ holds with s∗ ∈ {0, . . . , z−2}, i.e., γ̂�, . . . , γ̂�+s∗ are
given functions of γ̂�+s∗+1, and γ̂� is strictly increasing in γ̂�+s∗+1. We show that
Event s∗ + 1 holds, i.e., for every given γ̂�+s∗+2 ≥ 0, γ̂�, . . . , γ̂�+s∗+1 are unique,
and γ̂� is continuous and strictly increasing in γ̂�+s∗+2. Fix γ̂�+s∗+2. From (42),
we get via iterative multiplications that

u′
i (X̂i (ω�))

u′
i (X̂i (ω�+s∗+2))

= (g∗
N2

(P(��)) − γ̂�)/P({ω�})
(g∗

N2
(P(��+s∗+2)) + γ̂�+s∗+1 − γ̂�+s∗+2)/P({ω�+s∗+2}) . (43)
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The right-hand side of this equation is continuous and strictly increasing in
γ̂� ≥ 0. If γ̂� = 0, then we get that

∑
i∈N2

X̃i (ω�) ≥ ∑
i∈N2

X̃i (ω�+s∗+2).
Moreover, there exists unique γ̂� > 0 for which p̂�/P({ω�})

p̂�+s∗+2/P({ω�+s∗+2}) = 1 so that∑
i∈N2

X̃i (ω�) ≤ ∑
i∈N2

X̃i (ω�+s∗+2). Due to u′′
i (·) < 0, i ∈ N1 and the In-

termediate Value Theorem, we get that there is a unique γ̂� ≥ 0 such that∑
i∈N2

X̂i (ω�) = ∑
i∈N2

X̂i (ω�+s∗+2). Then, γ̂�+1, . . . , γ̂�+s∗ follow because we
assumed that Event s∗ holds. From (43), we readily see that the value of γ̂� is
continuous and strictly increasing in γ̂�+s∗+2. Hence, Event s∗ + 1 holds. This
concludes the proof, where we show uniqueness of finding the Lagrangian pa-
rameters γ̂�, . . . , γ̂�+z.

We conjecture that the price vector obtained from the algorithm of this sec-
tion is the only equilibrium price vector that constitutes a competitive equilib-
rium. In the sequel of this paper, we discuss competitive equilibria only with the
equilibrium price vector as in this section.

4.3. Uniqueness of the competitive equilibrium, and its capital asset pricing
model

In this section, we characterize uniqueness of the competitive equilibrium.
From (20), we get that every Pareto optimal risk redistribution for agents
depends on the functionsm ∈ M and the side-payments d. For the competitive
equilibria, the side-payments d are determined. The following condition
specifies whether the set M is small enough to guarantee uniqueness of the
competitive equilibrium:

Condition [U]: for all � ∈ {1, . . . , p − 1} such that
∑

i∈N2
X̃i (ω�) <∑

i∈N2
X̃i (ω�+1), there exists exactly one agent i ∈ N2 such that gi (P(��))

is minimal.

Note that condition [U] is satisfied when the setM in (19) or N2 is single val-
ued. If there exists a globally least risk-averse agent in N2, then this agent bears
the risk

∑
i∈N2

X̃i . If there does not exist a globally least risk-averse agent, then
it is Pareto optimal that a locally least risk-averse agent bears the risk

∑
i∈N2

X̃i
locally (see (20)). Condition [U] holds if there is a unique locally least risk-averse
agent everywhere.

Theorem 4.5. If N1 
= ∅, the competitive equilibrium is unique if and only if con-
dition [U] is satisfied, where the competitive equilibrium is defined in (22)–(24)
with price vector as Section 4.2.

Proof. The price vector as Section 4.2 is unique (see Proposition 4.4). First,
we show that there are unique equilibrium risk profiles (X̃i )i∈N1 and

∑
i∈N2

X̃i .
Let p̂ be the unique equilibrium price vector from (28). From u′

i (·) > 0,
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u′′
i (·) < 0 and that ui satisfies the Inada conditions for all i ∈ N1, it follows

that u′
λ(·) is continuous, strictly decreasing and has range (0, ∞). Therefore, we

get that the inverse function u′ −1
i exists. From (25), we define X̃λi

i = u′ −1
i (λi

p̂
P
).

Due to u′′
i (·) < 0 and that ui satisfies the Inada conditions, it follows that

X̃λi
i (ω) is strictly decreasing and continuous in λi for every ω ∈ �, with

limλi↓0 X̃
λi
i (ω) = ∞ and limλi→∞ X̃λi

i (ω) = −∞ for all ω ∈ �. Since p̂ > 0,
the function π( p̂, ·) in (23) is continuous and strictly increasing. Hence, there
is a unique λi solving the budget constraint in (26). So, the risk redistribution
(X̃i )i∈N1 is the same in every equilibrium. Then, so are the risks

∑
i∈N1

X̃i and∑
i∈N2

X̃i . For a given
∑

i∈N2
X̃i = ∑

i∈N Xi − ∑
i∈N1

X̃i , the equilibrium risk
redistribution for the group N2 is determined by Pareto optimal risk redistri-
butions satisfying the price constraint (27). By Boonen (2015, Theorem 3.8
therein), this is unique if and only if condition [U] holds. This concludes the
proof.

If N = N2, then it follows from Boonen (2015) that condition [U] and X(ω1) <

· · · < X(ωp) are jointly sufficient to have uniqueness of the competitive equi-
librium. If N = N1, Aase (1993, 2010) proposes conditions for uniqueness
of the competitive equilibrium. His conditions are either assumed in the set-
ting of this paper, or are irrelevant since we assume that the state space � is
finite.

If condition [C] is not satisfied, we get from Section 4.2 an algorithm to de-
termine equilibrium prices. After we determine the equilibrium price vector, the
equilibrium risk redistribution follows from (25)–(27). Thismethod is analogous
to the algorithm in Section 3 for Pareto optima, where the vector k is not fixed,
but implicitly given by λ−1 which follows from (25), (26).

If condition [C] holds, the corresponding pricing kernel is given by the fol-
lowing Radon–Nikodym derivative:

dQ
dP

({ω�}) = g∗
N2

(P(��)) − g∗
N2

(P(��−1))

P({ω�}) = dg∗
N2

◦ P

dP
({ω�}), (44)

for all � ∈ {1, . . . , p}. We can test this pricing kernel empirically via the cor-
responding CAPM. This is done by De Giorgi and Post (2008) for the setting
where every agent in the market is endowed with the same distortion risk mea-
sure.4 Using U.S. stock returns, they find a better fit than the classical CAPM
with mean-variance investors. If we would test the equilibrium prices, we would
assume a functional form of the distortion function g∗

N2
, and test (44) empiri-

cally. So, testing ourmodel is analogous to the test of DeGiorgi and Post (2008).
Hence, De Giorgi and Post (2008) show that our model with dual utilities has a
better fit than the CAPM with mean-variance investors.

Even if condition [C] does not hold, we get from Theorem 4.1 the prices
in any competitive equilibrium. However, computing any competitive equilib-
rium may be tedious. It requires to compute equilibrium prices where some
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Lagrangian parameters are strictly positive (see Theorem 3.3), and thus the cor-
responding constraints binding.

4.4. Competitive equilibrium with expected shortfall

As dual utility is related to coherent risk measures, dual utility preferences may
be deduced from regulation. For instance, agents (firms) may aim to minimize
their risk-adjusted value of the liabilities (for more detailed information, see,
e.g., Chi, 2012). Expected shortfall (see, e.g., Acerbi and Tasche, 2002) is a
popular risk measure as it is used in Basel III and Swiss Solvency Test regu-
lations. Expected shortfall is a distortion risk measure, with distortion function
g(x) = min{ x

1−α
, 1} for all x ∈ [0, 1], where α ∈ (0, 1) is the parameter used

(Kusuoka, 2001). This function is concave but not strictly concave. For this rea-
son, we focus competitive equilibria in the setting that only differs from the
setting in Sections 4.1–4.3 by allowing the distortion functions gi , i ∈ N2 to be
concave and non-decreasing.

If we focus on comonotone equilibrium risk redistributions only, we can
use a result of Landsberger and Meilijson (1994). They show that for every
risk redistribution, there exists a comonotone risk redistribution that dominates
it in the sense of second-order stochastic dominance. Since dual utilities with
concave distortion functions are preserving second-order stochastic dominance
(Chew et al., 1987), there exist competitive equilibria with comonotone risk re-
distributions. The following result follows directly from this and the proof of
Theorem 4.1.

Proposition 4.6. Let the set N2 contain dual utility maximizing agents such that
the distortion functions gi , i ∈ N2, are all concave and non-decreasing. Then, every
equilibrium ( p̂, (X̃i )i∈N) such that (X̃i )i∈N2 is comonotone, is a solution of (25)–
(28), where the equilibria are defined in (22)–(24).

Remark. Suppose there exists an agent i that uses the preference relation
Vi (X) = EP[X], i.e., it is risk neutral. Note that this is the only expected
utility function that is a dual utility function as well. Then, in every Pareto
optimum, this agent will bear all risk, i.e., every Pareto optimum is such that
X̃ j is deterministic for all j 
= i . This observation is consistent with results
on expected utility (Borch, 1962) and dual utility (Jouini et al., 2008). Since
the distortion function is linear, it is concave. Therefore, we obtain some
competitive equilibria from Proposition 4.6 with i ∈ N2.

Remark. Proposition 4.6 cannot be generalized to non-concave distortion func-
tions. It is possible that every comonotone risk redistribution is not Pareto op-
timal (see, e.g., Theorem 4.3 from Embrechts et al., 2016), and so does not
constitute a competitive equilibrium due to the First Fundamental Welfare
Theorem (see Arrow, 1963). Therefore, we do not discuss this case in more
detail.
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5. SPECIAL CASE WITH EXPONENTIAL UTILITIES

In this section, we restrict the expected utility maximizers in N1 to use exponen-
tial expected utility functions, i.e., agent i ∈ N1 maximizes

Vi (X) = EP[ui (X)] = EP

[
exp

(
X
αi

)]
, for all X ∈ IR�,

where αi > 0. It follows from Aase (1993, equation (4.1) therein) that

u′
λ

(∑
i∈N1

X̃i

)
= exp

{
K − ∑

i∈N1
X̃i∑

i∈N1
αi

}
, where K = −

∑
i∈N1

αi log λi .

From this and (40), we derive

∑
i∈N1

X̃i = −
∑
i∈N1

αi log
(
p̂
P

)
+ K, (45)

where p̂ is defined in (28). Moreover, any Pareto optimal risk redistribution
(X̃i )i∈N with exponential utilities in N1 is such that

X̃i = αi∑
i∈N1

αi

∑
i∈N1

X̃i + Ki (46)

= −αi log
(
p̂
P

)
+ K̂i , (47)

for all i ∈ N1, where Ki , i ∈ N1 are such that
∑

i∈N1
Ki = 0 and K̂i = K +

Ki , i ∈ N1 are constants. Here, (46) follows from (12) and Bühlmann and Jewell
(1979), and (47) follows from substituting (45) in (46). From this, we derive that
condition [C] can be written as

∑
i∈N

Xi (ω�+1) −
∑
i∈N

Xi (ω�) ≥
∑
i∈N1

αi

(
log

(
p̂�

P({ω�})
)

− log
(

p̂�+1

P({ω�+1})
))

,

for all � ∈ {1, . . . , p− 1}. So, the condition [C] is satisfied whenever the average
agent of the set N1 is relatively risk averse (small value of

∑
i∈N1

αi ) and the least
risk-averse agent in N2 is relatively little risk averse (small values of log( p̂�

P({ω�}) )−
log( p̂�+1

P({ω�+1}) )).
If N = N1, the equilibrium prices are given by Bühlmann (1980). When

the risks Xi and
∑

j 
=i Xj are independent, the premium for agent i equals the
Esscher premium principle. Even if there is just one agent in N2 with a small
risk, we get that equilibrium prices may be very different.
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Example 5.1. In this example, we consider a market with four agents, where
N1 = {1, 2} and N2 = {3, 4}. The agents in N1 use an exponential utility
function with α1 = 1 and α2 = 2. Agents 3 and 4 use distortion functions
g3(x) = √

x and g4(x) = 11
4 (1 − 1

5
x
) for all x ∈ [0, 1]. The state space is given

by � = {ω1, ω2, ω3, ω4}, with P({ω}) = 1
4 for all ω ∈ �. Moreover, let Xi = 1

4X
for all i ∈ N, with X(ωk) = 4k for k ∈ {1, 2, 3, 4}. For our convenience, we write
stochastic variables as vectors.

First, we determine the equilibrium risks X̃1, X̃2 and X̃3 + X̃4 via the rep-
resentative agent of the set N2, ρ∗

N2
. We find that conditions [C] and [U] are

satisfied. So, from Corollary 4.2, we get that equilibrium prices follow from (39):
p̂ ≈ (0.5, 0.207, 0.169, 0.124). From this, (25) and (27), we get that ( p̂, (X̃i )i∈N)

is a competitive equilibrium, where

X̃1 ≈ (0.96, 2.31, 2.83, 3.87),

X̃2 ≈ (1.41, 2.19, 2.42, 2.83),

X̃3 + X̃4 ≈ (1.63, 3.50, 6.74, 9.30).

We also find that M is single-valued, and its unique element m ∈ M is such
that m(1) = m(2) = 3 and m(3) = 4, where M is defined in (19). From this,
and equations (20) and (26), we find that X̃3 ≈ (0.03, 1.90, 5.14, 5.14) and X̃4 ≈
(1.60, 1.60, 1.60, 4.16). �

Example 5.2. In this example, we consider the same problem as in Example 5.1,
but we vary the value of X(ω3). We get that condition [C] is not satisfied any-
more when X(ω3) ∈ [8, 8.70). Let X(ω3) = 8.5. We apply the KKT condi-
tions that are derived in the proof of Theorem 4.1. We obtain that the constraint∑

i∈N Xi (ω2) − ∑
i∈N1

X̃i (ω2) ≤ ∑
i∈N Xi (ω3) − ∑

i∈N1
X̃i (ω3) is binding. From

(28) in Theorem 4.1, we derive γ1 = γ3 = 0 and γ2 ≈ 0.0053. This leads
to pricing vector p̂ ≈ (0.5, 0.207, 0.169, 0.124) + (0, −0.0053, 0.0053, 0) ≈
(0.5, 0.202, 0.174, 0.124). Moreover, we derive that the risk redistribution given
by

X̃1 ≈ (0.88, 2.19, 2.54, 3.57),

X̃2 ≈ (1.30, 2.05, 2.20, 2.61),

X̃3 ≈ (0.80, 2.74, 2.74, 2.74),

X̃4 ≈ (1.02, 1.02, 1.02, 7.07),

constitutes a competitive equilibrium. Note that from γ2 > 0 it follows by con-
struction that X̃3(ω2) = X̃3(ω3) and X̃4(ω2) = X̃4(ω3). �
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6. CONCLUSION

This paper studies optimal risk redistributions in markets with expected and
dual theory maximizers. In contrast to the previous literature, we study markets
where both types of agents are present. Pareto optimal contracts are character-
ized in a way that extends both the result of Borch (1962) for expected utilities
and the result of Jouini et al. (2008) for dual utility maximizers. We derive that
under some circumstances, equilibrium prices do not depend on the expected
utility maximizers in the market. Moreover, we characterize uniqueness of the
competitive equilibrium.

The Pareto optimal and equilibrium risk redistributions follow from the
preferences of two hypothetical representative agents. This is an average risk-
averse expected utility maximizing agent and dual utility maximizing agent that
has lowest aversion to mean-preserving spreads. Given a (non-trivial) allocation
of the total risk to both groups, the solution to expected utility maximizers is
in line with the well-known result of Borch (1962) applied to their allocated
risk as if it were to be the aggregate risk. Moreover, the solution to dual utility
maximizing agents is given by a particular tranching of their allocated risk.

An important question that we leave open for future research is what the
Pareto optima and competitive equilibria are in the case of a continuous state
space. This paper characterizes the competitive equilibrium using a finite di-
mensional optimization problem. This approach cannot be used in case the state
space is continuous.Moreover, the equilibriumprices that we characterize in this
paper have no trivial translation to the setting with a continuous state space.

NOTES

1. A preference relation V : IR� → IR is positive homogeneous if V(αX) = αV(X) for all
α > 0 and all X ∈ IR�.

2. This representation is already shown by Borch (1962) for expected utilities. Kiesel and
Rüschendorf (2007) extend this result to cases that include expected and dual utilities.

3. For a precise derivation, see Boonen (2015, Equation (10) and Proposition 3.6 therein).
4. Note that our setting is more general than the setting of De Giorgi and Post (2008) since

we allow for heterogenous distortion risk measures and include expected utility maximizers. How-
ever, the corresponding pricing Radon-Nikodym derivative in (44) has the same structure as in De
Giorgi and Post (2008).
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