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We discuss a family of Vlasov–Maxwell equilibrium distribution functions for current
sheet equilibria that are intermediate cases between the Harris sheet and the force-free
(or modified) Harris sheet. These equilibrium distribution functions have potential
applications to space and astrophysical plasmas. The existence of these distribution
functions had been briefly discussed by Harrison & Neukirch (Phys. Rev. Lett.,
vol. 102, (2009a), 135003), but here it is shown that their approach runs into problems
in the limit where the guide field goes to zero. The nature of this problem will be
discussed and an alternative approach will be suggested that avoids the problem. This
is achieved by considering a slight variation of the magnetic field profile, which
allows a smooth transition between the Harris and force-free Harris sheet cases.
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1. Introduction

Current sheets are important for the structure and dynamical behaviour of many
plasma systems. In space and astrophysical plasmas current sheets play a crucial role
in magnetic activity processes by, for example, aiding the release of magnetic energy
by magnetic reconnection. Current sheet equilibria are often used as starting points
for studying the dynamic behaviour of plasmas in, e.g. the solar atmosphere, the solar
wind and planetary magnetospheres.

Many astrophysical plasmas can be described as collisionless and in this case the
relevant equilibria are solutions of the steady-state Vlasov–Maxwell (VM) equations
(e.g. Schindler 2007). Since current sheets are strongly localised in space, they
can often be well approximated by one-dimensional (1-D) models (see, e.g. Roth,
de Keyser & Kuznetsova 1996; Zelenyi et al. 2011; Kocharovsky et al. 2016;
Neukirch, Wilson & Allanson 2018). An often used example of a 1-D current
sheet model is the Harris sheet (Harris 1962), which is a neutral sheet model that
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has been used extensively in studies of, e.g. magnetic reconnection (e.g. Kuznetsova,
Hesse & Winske 1998; Shay et al. 1998; Hesse et al. 1999; Kuznetsova, Hesse &
Winske 2000, 2001; Hesse, Birn & Kuznetsova 2001; Pritchett 2001; Rogers, Denton
& Drake 2003; Hesse, Kuznetsova & Birn 2004; Pritchett & Coroniti 2004; Ricci
et al. 2004; Hesse et al. 2005; Pritchett 2005; Hesse 2006; Daughton & Karimabadi
2007; Wan et al. 2008; Daughton et al. 2011; Hesse et al. 2011).

In some plasma systems, it can be more appropriate to use a current sheet model
for which the pressure gradient is negligible. Such models are termed force free, and
satisfy the condition j × B = 0, i.e. the current density j and magnetic field B are
aligned with each other.

The Harris sheet magnetic field is kept in force balance by a pressure gradient, but
one can also keep the system in a macroscopic force balance by adding a non-uniform
guide field to the system while the plasma pressure is constant. The resulting
configuration is often called the force-free Harris sheet. Equilibrium distribution
functions (DFs) for this configuration have been found, for example, by Harrison &
Neukirch (2009a), Neukirch, Wilson & Harrison (2009), Wilson & Neukirch (2011),
Abraham-Shrauner (2013), Kolotkov, Vasko & Nakariakov (2015), Dorville et al.
(2015), Allanson et al. (2015, 2016), Wilson, Neukirch & Allanson (2017, 2018) and
Neukirch et al. (2020) (for further references on force-free Vlasov–Maxwell equilibria,
see e.g. Moratz & Richter 1966; Sestero 1967; Channell 1976; Correa-Restrepo &
Pfirsch 1993; Attico & Pegoraro 1999; Bobrova et al. 2001; Harrison & Neukirch
2009b; Vasko et al. 2014).

Similarly to the Harris sheet, collisionless force-free configurations have been used
as initial conditions for particle-in-cell simulations of collisionless reconnection, using
for example the exact equilibrium by Harrison & Neukirch (2009a) (e.g. Wilson et al.
2016), linear force-free equilibria (e.g. Bobrova et al. 2001; Nishimura et al. 2003;
Bowers & Li 2007) or approximate force-free equilibria (e.g. Hesse et al. 2005; Liu
et al. 2013; Guo et al. 2014, 2015; Zhou et al. 2015; Fan et al. 2016; Guo et al.
2016a,b).

In their paper, Harrison & Neukirch (2009a) also discussed the case of collisionless
current sheets that are intermediate cases between the Harris sheet and the force-free
Harris sheet, i.e. cases for which the macroscopic force balance is provided by a
combination of the plasma pressure gradient and the gradient of the magnetic pressure
component provided by the non-uniform guide field. These equilibria and their DFs
self-consistently describe the transition from the Harris sheet to the force-free Harris
sheet (or vice versa), but have so far not been studied in any detail. Hence, in
this paper we present an investigation of these collisionless current sheet equilibria.
As this investigation will show, there are actually some problems with the DFs
presented in Harrison & Neukirch (2009a), which limit their usefulness in practice.
To circumvent these issues, we present a family of slightly modified magnetic field
profiles and corresponding DFs which avoid these problems, but still describe a
transition between the Harris sheet and force-free Harris sheet as limiting cases.

We remark that in this paper we focus on a case in which the plasma temperature
is uniform across the current sheet (i.e. an isothermal case). Distribution functions
for non-isothermal force-free current sheets have been found by, e.g. Kolotkov et al.
(2015), Wilson et al. (2017) and Neukirch et al. (2020). In principle the analysis
carried out here could be generalised to these non-isothermal cases.

The paper is structured as follows; in § 2, we briefly discuss the macroscopic
equilibria of the Harris sheet, the force-free Harris sheet and the intermediate cases.
We then discuss the corresponding VM equilibrium distribution functions as given by
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Harrison & Neukirch (2009a) in § 3 and illustrate the problem associated with the
intermediate cases in the limit when the guide field amplitude tends to zero. In § 4,
we present a modified magnetic field model, which allows us to avoid these problems
with the distribution function. We close with our summary and conclusions in § 5.

2. The macroscopic picture: Harris sheet, force-free Harris sheet and intermediate
cases
The macroscopic force balance for 1-D collisionless current sheet equilibria, with

spatial variation only in the z-direction, is determined by (e.g. Mynick, Sharp &
Kaufman 1979; Neukirch et al. 2018)

d
dz

[
Bx(z)2 + By(z)2

2µ0
+ Pzz(z)

]
= 0. (2.1)

For collisionless equilibria, we are usually dealing with a pressure tensor and Pzz is the
only component of the pressure tensor which contributes to the force balance equation.

In this paper we focus on the family of equilibria defined by

B(z)= B0

(
tanh(z/L),

By0

B0 cosh(z/L)
, 0
)
, (2.2)

Pzz(z)=
B2

0 − B2
y0

2µ0 cosh2(z/L)
+ Pb, (2.3)

where L represents the half-thickness of the current sheet, and Pb > 0 is a constant
background pressure. For completeness, we mention that the current density is given
by

j(z)=
B0

µ0L

(
By0 sinh(z/L)
B0 cosh2(z/L)

,
1

cosh2(z/L)
, 0
)
. (2.4)

The case By0= 0 gives the Harris sheet (Harris 1962), which is a widely used 1-D
VM equilibrium in, e.g. reconnection studies, Often a constant guide field component
is added to the Harris sheet field, which is not included in our magnetic field
model here. When By0=B0, we obtain the force-free Harris sheet, for which both the
pressure Pzz=Pb and the magnetic pressure (B2

x +B2
y)/2µ0=B2

0/2µ0 are constant. For
0 < By0 < B0 we get intermediate cases between the Harris sheet and the force-free
Harris sheet. Figure 1 shows the magnetic field, pressure, and current density profiles
for the Harris sheet, two intermediate cases, and force-free Harris sheet. Note that in
the figure we have set the background pressure Pb (measured in units of B2

0/(2µ0))
to B2

y0/B
2
0 + 0.1.

At the macroscopic level discussed so far, there is no problem with varying By0/B0
and in particular with letting this ratio go to 0. This changes, however, when we
consider the microscopic picture.

3. The microscopic picture
3.1. One-dimensional Vlasov–Maxwell equilibria

We assume a 1-D Cartesian set-up, in which all quantities depend only on the
z-coordinate, and consider magnetic field profiles of the form B = (Bx, By, 0), for
which B=∇× A (for vector potential A= (Ax, Ay, 0)). In this paper we will always
impose conditions on the microscopic parameters of the DFs such that the electric
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(a) (b)

(c) (d)

FIGURE 1. Magnetic field, pressure and current density profiles for (a) the Harris sheet,
(b,c) intermediate cases with By0/B0≈ 0.25 and ≈ 0.75, respectively, and (d) the force-free
Harris sheet. The background pressure Pb (measured in units of B2

0/(2µ0)) has been set
to B2

y0/B
2
0 + 0.1 in each case.

potential φ (and hence the electric field) vanishes (this can always be achieved for
the cases we discuss here, see e.g. Neukirch et al. 2018). On the microscopic level,
we assume that the distributions functions, fs, are functions of the particle energy,
Hs = ms(v

2
x + v

2
y + v

2
z )/2, and the x- and y-components of the canonical momentum,

ps =msv + qs A (for ms the mass and qs the charge of species s, respectively), since
these are known constants of motion for a time-independent system with spatial
invariance in the x- and y-directions.

Under the assumptions described above, the VM equations reduce to Ampère’s law
in the form

d2Ax

dz2
=−µ0

∂Pzz

∂Ax
, (3.1)

d2Ay

dz2
=−µ0

∂Pzz

∂Ay
, (3.2)

where Pzz is the only component of the pressure tensor that plays a role in the force
balance of the 1-D equilibrium, defined by

Pzz(Ax, Ay)=
∑

s

ms

∫
v2

z fs(Hs, pxs, pys) d3v. (3.3)
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For a specified magnetic field profile, therefore, one needs to determine Pzz(Ax, Ay)

such that the vector potential associated with the given magnetic field is a solution
of Ampère’s law. Regarding (3.3) as an integral equation for fs and solving it, will
give DFs that self-consistently reproduce this macroscopic field profile (e.g. Alpers
1969; Channell 1976; Mottez 2003). For some examples of the application of this
approach, see Harrison & Neukirch (2009a,b), Neukirch et al. (2009), Wilson &
Neukirch (2011), Abraham-Shrauner (2013), Kolotkov et al. (2015), Allanson et al.
(2015, 2016), Wilson et al. (2017) and Wilson et al. (2018).

3.2. The distribution functions
Harrison & Neukirch (2009a) used Channell’s method (Channell 1976) to find the
following DF for the force-free Harris sheet

fs(Hs, pxs, pys)=
n0s

(
√

2πvth,s)3
e−βsHs[eβsuyspys + as cos(βsuxspxs)+ bs], (3.4)

where n0s is a typical particle density for species s, βs = (kbTs)
−1 is the usual

inverse temperature parameter and v2
th,s = kbTs/ms = (msβs)

−1 is the square of the
thermal velocity of species s. As discussed in detail in, for example, Neukirch et al.
(2009), the additional parameters as, bs, uxs and uys have to satisfy further constraints
to (i) have a positive DF (bs > as > 0), (ii) guarantee that the electric potential
vanishes and (iii) ensure that the magnetic vector potential associated with the given
macroscopic magnetic field is a solution of Ampère’s law.

The DF (3.4) is the sum of the Harris sheet DF (Harris 1962) and an additional
part, depending on Hs and px,s

fs(Hs, pxs, pys)= fs,Harris(Hs, pys)+
n0s

(
√

2πvth,s)3
e−βsHs(as cos(βsuxspxs)+ bs), (3.5)

where the Harris sheet DF is given by

fs,Harris(Hs, pys)=
n0s

(
√

2πvth,s)3
e−βs(Hs−uyspys). (3.6)

Harrison & Neukirch (2009a) pointed out that by varying as the DF (3.4) can in
principle describe all the intermediate cases between the force-free and Harris cases
and it looks as if in the limit as→ 0 one should recover the Harris sheet DF.

However, if one looks more carefully one finds that the parameter as has to satisfy
the relation (similarly to e.g. Neukirch et al. 2009)

as =
B2

y0

2B2
0

exp
(

u2
xs

2v2
th,s

)
exp

(
u2

ys

2v2
th,s

)
, (3.7)

where

u2
xs =

4
B2

y0β
2
s q2

s L2
. (3.8)

This particular form for as results from the consistency relations that the distribution
functions have to satisfy for the electric potential calculated from the quasi-neutrality
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(a) (b)

(c) (d)

FIGURE 2. Variation of the DF with vx/vth,s for four different values of By0/B0: panel (a)
By0/B0= 1.0, panel (b) By0/B0= 0.7, panel (c) By0/B0= 0.4, panel (d) By0/B0= 0.1. Here,
each DF has been normalised by its maximum value and we have chosen z/L= 0.5 and
vy = vz = 0.

condition to vanish identically (this is a pre-requisite for being able to apply the
method by Channell (1976)). Hence, in the limit By0→ 0 as does not go to zero, but
to ∞, which is unacceptable for the distribution function. For finite By0, as is finite
but it increases rapidly as a function of By0.

This leads to further unwanted properties of the DF, which we illustrate in figures 2
and 3. Figure 2 shows the DF as a function of vx/vth,s, for z/L= 0.5 and vy= vz= 0,
and how it changes as By0/B0 decreases from 1.0 to 0.1. The maximum values of
the DFs in figure 2 are normalised to unity (i.e. we have divided the DFs by their
maximum value for a given ratio By0/B0). As one can clearly see in figure 2 the
DF develops more and more maxima and minima in the vx-direction, due to the
dominance of the cosine term in the distribution function caused by the increase
in as. It must be suspected that this filamentation in velocity space might lead to
instabilities. We also point out that the parameter bs has to increase as well so that
bs > as to keep the DF positive (in the plots we have used bs = 1.5 as). Figure 3
shows on a logarithmic scale how the maximum value of the DF (for the fixed values
of z, vy and vz) increases dramatically as By0/B0 decreases.

Taken together his clearly shows not only that the limit By0/B0→ 0 does not exist
and that hence there is no smooth transition to the Harris sheet DF, but that the family
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FIGURE 3. Variation of the DF maximum with By0/B0.

of DFs will not be very useful even for finite, but small values of the ratio By0/B0. The
question that arises is: can one find a family of VM equilibrium DFs which provides
a smooth transition from the force-free Harris sheet to the Harris sheet?

4. Alternative intermediate cases

In this section, we will consider an alternative magnetic field profile to that in (2.2),
of the form

B(z)= B0

(
tanh(z/L),

λ

cosh(λz/L)
, 0
)
, (4.1)

where we have defined the abbreviation

λ=
By0

B0
. (4.2)

A similar, albeit not totally identical magnetic field profile has previously been used by
Huang et al. (2017) to study instabilities using this type of collisionless current sheet.
We will show that this magnetic field profile can be used to consistently describe a
transition from the Harris sheet to the force-free Harris sheet.

For completeness we here also state the current density and zz-component if the
pressure tensor associated with this field, which are given by

j(z)=
B0

µ0L

(
λ2 sinh(λz/L)
cosh2(λz/L)

,
1

cosh2(z/L)
, 0
)
, (4.3)

Pzz(z)=
B2

0

2µ0

[
1

cosh2(z/L)
+ λ2

(
1−

1
cosh2(λz/L)

)]
+ Pb2, (4.4)

respectively, where Pb2 > 0 is a constant background pressure. We remark that we
have written the non-background part of the pressure in such a way that it is always
positive, regardless of the value of the positive constant Pb2.
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(a) (b)

(c) (d)

FIGURE 4. Magnetic field, pressure and current density for the alternative intermediate
cases with (a) λ= 0.0, (b) λ= 0.253, (c) λ= 0.747 and (d) λ= 1.0. The only noticeable
change compared to the profiles shown in figure 1 are the slight dips (minima) in the
pressure profile at the edge of the current sheet. The changes in the By and jx profiles are
not immediately obvious without direct comparison.

For λ = 0, the magnetic field (4.1) becomes the Harris sheet field, and for λ = 1
it becomes the force-free Harris sheet field. Setting Pb = Pb2 + B2

0/2µ0 in (2.3) for
λ= 1 (By0 = B0) will make the two pressure functions equal in that case. The range
0< λ< 1 can be thought of as describing intermediate fields between the Harris and
force-free Harris sheets, although the guide field and pressure profile deviates from
the previous intermediate cases. Figure 4 shows magnetic field, pressure and current
density profiles for the Harris sheet (λ= 0.0), two intermediate cases with λ= 0.253
and λ= 0.747 and the force-free Harris sheet (λ= 1.0). The background pressure has
been chosen in the same way as for figure 1. The only obvious difference to the plots
shown in figure 1 are the slight dips in the pressure profile (local minima) at the
edges of the current sheet. On comparison with figure 1, we also see that decreasing
λ results in a widening of the By profile, due to the λ factor inside the [cosh(λz/L)]−1

in the y-component of (4.1). The amplitude of By decreases in the same way as in the
other case as λ decreases, and eventually heads to zero as λ→ 0.

It is straightforward to show that this macroscopic magnetic field profile is
consistent with the DF in (3.4). One could suspect that this leads to the same
problem with the limit By0→ 0 as before, but when checking the constraints on the
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(a) (b)

(c) (d)

FIGURE 5. Variation of the DF with vx/vth,s for different values of λ = By0/B0. Here,
the DF has been normalised by its maximum value and we have chosen z/L = 0.5 and
vy = vz = 0. As one can see there is very little change as λ decreases.

parameters of the DF one finds that while one still has

as = λ
2 exp

(
u2

xs

2v2
th,s

)
exp

(
u2

ys

2v2
th,s

)
, (4.5)

as before, the condition for uxs has changed to

u2
xs =

4λ2

B2
y0β

2
s q2

s L2
=

4
B2

0β
2
s q2

s L2
, (4.6)

which no longer varies with By0. Therefore, in this case we indeed find that λ→ 0
implies as→ 0, as desired.

It is, however, prudent to also have a look at the DFs and their maximum value as
λ→0. We show plots of the variation of the DF with vx (for z/L=0.5 and vy=vz=0)
in figure 5, for decreasing values of λ. For this case we can actually take the limit
λ→ 0 without any problem (see panel d). As in figure 2, we have normalised each
DF to its maximum value. The variation of this maximum value with decreasing λ
is shown in figure 6. For this case the maximum of the DF actually decreases as λ
and hence By0 decreases. With a relatively simple modification of the magnetic field
profile we have managed to eliminate the singular limit.
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FIGURE 6. Variation of the maximum of the DF with By0/B0 for the alternative magnetic
field profile. As one can see the maximum decreases with decreasing λ and it does not
diverge in the limit λ→ 0. In contrast to figure 3 here a linear scale can be used for the
plot.

5. Summary and conclusions
In this paper, we have discussed collisionless current sheet equilibria that are

intermediate cases between the Harris sheet (current density perpendicular to magnetic
field direction) and the force-free Harris sheet (current density exactly parallel to the
magnetic field direction). Such a family of Vlasov–Maxwell equilibrium DF had
already been briefly mentioned in Harrison & Neukirch (2009a). However, as the
more detailed investigation presented in this paper shows, this family of DFs is
of limited usefulness due to the fact that first of all the limit of the guide field
amplitude By0 → 0 is singular in the sense that the maximum of the DF tends to
∞ and that with decreasing By0 the velocity space structure of the DF in the vx
direction becomes more and more filamentary. We proposed an alternative family of
intermediate collisionless current sheet equilibria with a magnetic guide field that has
a slightly modified spatial structure. Formally, the DFs associated with this magnetic
field remain the same, but the constraints imposed on the DF parameters by the
self-consistency condition now allow the maximum value of the DFs to remain not
only finite, but at a reasonable level as By0→ 0.

We consider it important both from a theoretical and from a modelling and
observational point of view that reasonable self-consistent equilibria of collisionless
current sheets are available not only for the two limiting cases of force-free Harris
sheet and normal Harris sheet. While some observations can be explained by,
for example, force-free current sheet models (e.g. Panov et al. 2011; Artemyev,
Angelopoulos & Vasko 2019a; Artemyev et al. 2019b; Neukirch et al. 2020), it is to
be expected that versions of the intermediate current sheet models are encountered
with a greater likelihood than the limiting cases.

Acknowledgements
The authors acknowledge the support of the Science and Technology Facilities

Council (STFC) via the consolidated grants ST/K000950/1, ST/N000609/1 and

https://doi.org/10.1017/S0022377820000604 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000604


Intermediate VM equilibria 11

ST/S000402/1 (T.N. and F.W.) and the Natural Environment Research Council (NERC)
Highlight Topic grant no. NE/P017274/1 (Rad-Sat) (O.A.). T.N. and F.W. would also
like to thank the University of St Andrews for general financial support.

Editor Francesco Califano thanks the referees for their advice in evaluating this
article.

REFERENCES

ABRAHAM-SHRAUNER, B. 2013 Force-free Jacobian equilibria for Vlasov–Maxwell plasmas. Phys.
Plasmas 20, 102117.

ALLANSON, O., NEUKIRCH, T., TROSCHEIT, S. & WILSON, F. 2016 From one-dimensional fields
to Vlasov equilibria: theory and application of Hermite polynomials. J. Plasma Phys. 82,
905820306.

ALLANSON, O., NEUKIRCH, T., WILSON, F. & TROSCHEIT, S. 2015 An exact collisionless equilibrium
for the force-free Harris sheet with low plasma beta. Phys. Plasmas 22, 102116.

ALPERS, W. 1969 Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5,
425–437.

ARTEMYEV, A. V., ANGELOPOULOS, V. & VASKO, I. Y. 2019a Kinetic properties of solar wind
discontinuities at 1 AU observed by ARTEMIS. J. Geophys. Res. 124, 3858–3870.

ARTEMYEV, A. V., ANGELOPOULOS, V., VASKO, I. Y., RUNOV, A., AVANOV, L. A., GILES, B. L.,
RUSSELL, C. T. & STRANGEWAY, R. J. 2019b On the kinetic nature of solar wind
discontinuities. Geophys. Res. Lett. 46, 1185–1194.

ATTICO, N. & PEGORARO, F. 1999 Periodic equilibria of the Vlasov–Maxwell system. Phys. Plasmas
6, 767–770.

BOBROVA, N. A., BULANOV, S. V., SAKAI, J. I. & SUGIYAMA, D. 2001 Force-free equilibria and
reconnection of the magnetic field lines in collisionless plasma configurations. Phys. Plasmas
8, 759–768.

BOWERS, K. & LI, H. 2007 Spectral energy transfer and dissipation of magnetic energy from fluid
to kinetic scales. Phys. Rev. Lett. 98, 035002.

CHANNELL, P. J. 1976 Exact Vlasov–Maxwell equilibria with sheared magnetic fields. Phys. Fluids
19, 1541–1545.

CORREA-RESTREPO, D. & PFIRSCH, D. 1993 Negative-energy waves in an inhomogeneous force-free
Vlasov plasma with sheared magnetic field. Phys. Rev. E 47, 545–563.

DAUGHTON, W. & KARIMABADI, H. 2007 Collisionless magnetic reconnection in large-scale electron–
positron plasmas. Phys. Plasmas 14, 072303.

DAUGHTON, W., ROYTERSHTEYN, V., KARIMABADI, H., YIN, L., ALBRIGHT, B. J., BERGEN, B.
& BOWERS, K. J. 2011 Role of electron physics in the development of turbulent magnetic
reconnection in collisionless plasmas. Nat. Phys. 7, 539–542.

DORVILLE, N., BELMONT, G., AUNAI, N., DARGENT, J. & REZEAU, L. 2015 Asymmetric kinetic
equilibria: generalization of the BAS model for rotating magnetic profile and non-zero electric
field. Phys. Plasmas 22, 092904.

FAN, F., HUANG, C., LU, Q., XIE, J. & WANG, S. 2016 The structures of magnetic islands formed
during collisionless magnetic reconnections in a force-free current sheet. Phys. Plasmas 23,
112106.

GUO, F., LI, H., DAUGHTON, W., LI, X. & LIU, Y.-H. 2016a Particle acceleration during magnetic
reconnection in a low-beta pair plasma. Phys. Plasmas 23, 055708.

GUO, F., LI, H., DAUGHTON, W. & LIU, Y.-H. 2014 Formation of hard power laws in the energetic
particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113, 155005.

GUO, F., LI, X., LI, H., DAUGHTON, W., ZHANG, B., LLOYD-RONNING, N., LIU, Y.-H., ZHANG, H.
& DENG, W. 2016b Efficient Production of high-energy nonthermal particles during magnetic
reconnection in a magnetically dominated ion–electron plasma. Astrophys. J. Lett. 818, L9.

https://doi.org/10.1017/S0022377820000604 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000604


12 T. Neukirch, F. Wilson and O. Allanson

GUO, F., LIU, Y.-H., DAUGHTON, W. & LI, H. 2015 Particle acceleration and plasma dynamics
during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806, 167.

HARRIS, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field.
Nuovo Cimento 23, 115.

HARRISON, M. G. & NEUKIRCH, T. 2009a One-dimensional Vlasov–Maxwell equilibrium for the
force-free Harris sheet. Phys. Rev. Lett. 102, 135003.

HARRISON, M. G. & NEUKIRCH, T. 2009b Some remarks on one-dimensional force-free Vlasov–
Maxwell equilibria. Phys. Plasmas 16, 022106.

HESSE, M. 2006 Dissipation in magnetic reconnection with a guide magnetic field. Phys. Plasmas
13, 122107.

HESSE, M., BIRN, J. & KUZNETSOVA, M. 2001 Collisionless magnetic reconnection: electron
processes and transport modeling. J. Geophys. Res. 106, 3721–3736.

HESSE, M., KUZNETSOVA, M. & BIRN, J. 2004 The role of electron heat flux in guide-field magnetic
reconnection. Phys. Plasmas 11, 5387–5397.

HESSE, M., KUZNETSOVA, M., SCHINDLER, K. & BIRN, J. 2005 Three-dimensional modeling of
electron quasiviscous dissipation in guide-field magnetic reconnection. Phys. Plasmas 12,
100704.

HESSE, M., NEUKIRCH, T., SCHINDLER, K., KUZNETSOVA, M. & ZENITANI, S. 2011 The diffusion
region in collisionless magnetic reconnection. Space Sci. Rev. 160, 3–23.

HESSE, M., SCHINDLER, K., BIRN, J. & KUZNETSOVA, M. 1999 The diffusion region in collisionless
magnetic reconnection. Phys. Plasmas 6, 1781–1795.

HUANG, F., XU, J., YAN, F., ZHANG, M. & YU, M. Y. 2017 Instabilities of current-sheet with a
nonuniform guide field. Phys. Plasmas 24, 092104.

KOCHAROVSKY, V. V., KOCHAROVSKY, V. V., MARTYANOV, V. Y. & TARASOV, S. V. 2016
Analytical theory of self-consistent current structures in a collisionless plasma. Phys. Uspekhi
59, 1165–1210.

KOLOTKOV, D. Y., VASKO, I. Y. & NAKARIAKOV, V. M. 2015 Kinetic model of force-free current
sheets with non-uniform temperature. Phys. Plasmas 22, 112902.

KUZNETSOVA, M. M., HESSE, M. & WINSKE, D. 1998 Kinetic quasi-viscous and bulk flow inertia
effects in collisionless magnetotail reconnection. J. Geophys. Res. 103, 199–214.

KUZNETSOVA, M. M., HESSE, M. & WINSKE, D. 2000 Toward a transport model of collisionless
magnetic reconnection. J. Geophys. Res. 105, 7601–7616.

KUZNETSOVA, M. M., HESSE, M. & WINSKE, D. 2001 Collisionless reconnection supported by
nongyrotropic pressure effects in hybrid and particle simulations. J. Geophys. Res. 106,
3799–3810.

LIU, Y.-H., DAUGHTON, W., KARIMABADI, H., LI, H. & ROYTERSHTEYN, V. 2013 Bifurcated
structure of the electron diffusion region in three-dimensional magnetic reconnection. Phys.
Rev. Lett. 110, 265004.

MORATZ, E. & RICHTER, E. W. 1966 Elektronen-Geschwindigkeitsverteilungsfunktionen für kraftfreie
bzw. teilweise kraftfreie Magnetfelder. Z. Naturforsch. A 21, 1963.

MOTTEZ, F. 2003 Exact nonlinear analytic Vlasov–Maxwell tangential equilibria with arbitrary density
and temperature profiles. Phys. Plasmas 10, 2501–2508.

MYNICK, H. E., SHARP, W. M. & KAUFMAN, A. N. 1979 Realistic Vlasov slab equilibria with
magnetic shear. Phys. Fluids 22, 1478–1484.

NEUKIRCH, T., VASKO, I. Y., ARTEMYEV, A. V. & ALLANSON, O. 2020 Kinetic models of tangential
discontinuities in the solar wind. Astrophys. J. 891, 86.

NEUKIRCH, T., WILSON, F. & ALLANSON, O. 2018 Collisionless current sheet equilibria. Plasma
Phys. Control. Fusion 60, 014008.

NEUKIRCH, T., WILSON, F. & HARRISON, M. G. 2009 A detailed investigation of the properties of
a Vlasov–Maxwell equilibrium for the force-free Harris sheet. Phys. Plasmas 16, 122102.

NISHIMURA, K., GARY, S. P., LI, H. & COLGATE, S. A. 2003 Magnetic reconnection in a force-free
plasma: simulations of micro- and macroinstabilities. Phys. Plasmas 10, 347–356.

PANOV, E. V., ARTEMYEV, A. V., NAKAMURA, R. & BAUMJOHANN, W. 2011 Two types of
tangential magnetopause current sheets: cluster observations and theory. J. Geophys. Res. 116,
A12204.

https://doi.org/10.1017/S0022377820000604 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000604


Intermediate VM equilibria 13

PRITCHETT, P. L. 2001 Geospace environment modeling magnetic reconnection challenge: simulations
with a full particle electromagnetic code. J. Geophys. Res. 106, 3783–3798.

PRITCHETT, P. L. 2005 Onset and saturation of guide-field magnetic reconnection. Phys. Plasmas
12 (6), 062301.

PRITCHETT, P. L. & CORONITI, F. V. 2004 Three-dimensional collisionless magnetic reconnection in
the presence of a guide field. J. Geophys. Res. 109, 1220.

RICCI, P., BRACKBILL, J. U., DAUGHTON, W. & LAPENTA, G. 2004 Collisionless magnetic
reconnection in the presence of a guide field. Phys. Plasmas 11, 4102–4114.

ROGERS, B. N., DENTON, R. E. & DRAKE, J. F. 2003 Signatures of collisionless magnetic
reconnection. J. Geophys. Res. 108, 1111.

ROTH, M., DE KEYSER, J. & KUZNETSOVA, M. M. 1996 Vlasov theory of the equilibrium structure
of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251–317.

SCHINDLER, K. 2007 Physics of Space Plasma Activity. Cambridge University Press.
SESTERO, A. 1967 Self-consistent description of a warm stationary plasma in a uniformly sheared

magnetic field. Phys. Fluids 10, 193–197.
SHAY, M. A., DRAKE, J. F., DENTON, R. E. & BISKAMP, D. 1998 Structure of the dissipation

region during collisionless magnetic reconnection. J. Geophys. Res. 103, 9165–9176.
VASKO, I. Y., ARTEMYEV, A. V., PETRUKOVICH, A. A. & MALOVA, H. V. 2014 Thin current

sheets with strong bell-shape guide field: cluster observations and models with beams. Ann.
Geophys. 32, 1349–1360.

WAN, W., LAPENTA, G., DELZANNO, G. L. & EGEDAL, J. 2008 Electron acceleration during guide
field magnetic reconnection. Phys. Plasmas 15, 032903.

WILSON, F. & NEUKIRCH, T. 2011 A family of one-dimensional Vlasov–Maxwell equilibria for the
force-free Harris sheet. Phys. Plasmas 18, 082108.

WILSON, F., NEUKIRCH, T. & ALLANSON, O. 2017 Force-free collisionless current sheet models
with non-uniform temperature and density profiles. Phys. Plasmas 24, 092105.

WILSON, F., NEUKIRCH, T. & ALLANSON, O. 2018 Collisionless distribution functions for force-free
current sheets: using a pressure transformation to lower the plasma beta. J. Plasma Phys. 84,
905840309.

WILSON, F., NEUKIRCH, T., HESSE, M., HARRISON, M. G. & STARK, C. R. 2016 Particle-in-
cell simulations of collisionless magnetic reconnection with a non-uniform guide field. Phys.
Plasmas 23, 032302.

ZELENYI, L. M., MALOVA, H. V., ARTEMYEV, A. V., POPOV, V. Y. & PETRUKOVICH, A. A.
2011 Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities,
and particle acceleration. Plasma Phys. Rep. 37, 118–160.

ZHOU, F., HUANG, C., LU, Q., XIE, J. & WANG, S. 2015 The evolution of the ion diffusion region
during collisionless magnetic reconnection in a force-free current sheet. Phys. Plasmas 22,
092110.

https://doi.org/10.1017/S0022377820000604 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000604

	A family of Vlasov–Maxwell equilibrium distribution functions describing atransition from the Harris sheetto the force-free Harris sheet
	Introduction
	The macroscopic picture: Harris sheet, force-free Harris sheet and intermediate cases
	The microscopic picture
	One-dimensional Vlasov–Maxwell equilibria
	The distribution functions

	Alternative intermediate cases
	Summary and conclusions
	Acknowledgements
	References


