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Abstract

Providing optimal strategies for maintaining technical systems in good working con-
dition is an important goal in reliability engineering. The main aim of this paper is to
propose some optimal maintenance policies for coherent systems based on some partial
information about the status of components in the system. For this purpose, in the first
part of the paper, we propose two criteria under which we compute the probability of
the number of failed components in a coherent system with independent and identically
distributed components. The first proposed criterion utilizes partial information about
the status of the components with a single inspection of the system, and the second one
uses partial information about the status of component failure under double monitoring
of the system. In the computation of both criteria, we use the notion of the signature
vector associated with the system. Some stochastic comparisons between two coher-
ent systems have been made based on the proposed concepts. Then, by imposing some
cost functions, we introduce new approaches to the optimal corrective and preventive
maintenance of coherent systems. To illustrate the results, some examples are examined
numerically and graphically.
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1. Introduction

Nowadays, coherent systems are used in many areas of human life, such as industrial man-
ufacturing lines, airplane systems, power supply systems, and telecommunication systems. In
reliability engineering, an n-component system is called coherent if the structure function of
the system is nondecreasing and the system has no irrelevant components (see Barlow and
Proschan [7]). A well-known subclass of the class of coherent systems is that of k-out-of-n
systems. Recall that an n-component system is said to be a k-out-of-n system if it operates
when at least k components out of n operate.

In the last two decades, an extensive number of research works have been reported assess-
ing the reliability and stochastic properties of coherent systems using various approaches.
An approach which has recently received great attention is to use the notion of signa-
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ture. Let X1, X2, . . . , Xn denote the lifetimes of an n-component coherent system and let
T = T(X1, . . . , Xn) be the system lifetime. Under the assumption that the component life-
times are independent and identically distributed (i.i.d.), Samaniego [31] defined the concept
of signature to express the reliability function of the system lifetime as a mixture repre-
sentation of the reliability function of ordered component lifetimes. To be more precise, let
X1:n, X2:n, . . . , Xn:n denote the order statistics corresponding to the lifetimes X1, . . . , Xn. Then
the reliability function of the system’s lifetime, at time t, can be expressed as

P(T > t) =
n∑

i=1

siP(Xi:n> t), (1)

where si = P(T = Xi:n), i = 1, 2, . . . , n. The probability vector s = (s1, s2, ..., sn) is called the
signature vector of the system. The ith element of the vector s is calculated as si = ni/n!, where
ni denotes the number of permutations of components under which the ith component failure
causes the system failure (see Samaniego [31]). It is known that the vector s depends only
on the structure of the system. The representation (1) is valid under the weaker condition that
the component lifetimes are exchangeable (see Navarro and Rychlik [23]). For references on
the signature-based properties of system lifetime, we refer the reader to [5], [11], [17], [20],
[24], [25], [32], [36], [38], and [41]. For a recent work on different methods and algorithms for
computing system signature, see Reed [29] and references therein.

In assessing the reliability and stochastic characteristics of systems, a problem of interest for
engineers and system designers is to maintain the system in optimum working condition and
to determine the number of spares that should be available in the depot for this purpose. The
importance of this problem arises from the fact that the failure and unavailability of the system
may cause high unexpected costs to the users. In many complex coherent systems, such as
k-out-of-n systems, the design of the structure of the system is such that the system oper-
ates even if a number of components have already failed. However, if the number of failed
components passes a certain threshold, then the system does fail. Hence, the computation of
the probability of the number of failed components in the system, under various conditions, is
important for the system operators. These probabilities provide crucial information for prevent-
ing the system’s failure and maintaining the system in optimal operating condition. The aim
of maintenance schedules is mainly to diminish the occurrence of system failure or to change
the status of a failed system to the working state. For this purpose, operators try to restore a
failed component to an operative state. In the literature, this maintenance action is called cor-
rective maintenance (CM). In a CM action, the failed components may undergo repair or may
be replaced. Two other important actions in maintenance theory are (a) minimal repair, which
eliminates the failure but does not change the failure rate, and (b) preventive maintenance
(PM), which means performing a maintenance policy for an operating system (component)
to bring the system (component) back to better working condition. Throughout the paper, we
assume that the PM (CM) is perfect in the sense that an unfailed (failed) component is returned
to ‘as-good-as-new’ condition.

In the literature, many research papers and books have been devoted to various maintenance
schedules. We refer the reader to [4], [6], [9], [12], [13], [14], [18], [21], [27], [34], [39], and
[42]. Recently, some comparisons of policies for minimal repair of systems have been studied
in Belzunce et al. [8] and Arriaza et al. [1].

The main objective of the present research is to propose some maintenance policies for a
coherent system under some partial information on the number of failures in the system. So far,
only a small portion of the literature has considered maintenance of a multi-component system.
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Most of the works on this topic have been limited to a one-unit system, or to an entire system
treated as a single-unit system. Finkelstein and Gertsbakh [12], [13] studied PM for networks
(systems) where the components fail based on shock models. Cha et al. [9] considered PM of
items operating in a random environment. Zarezadeh and Asadi [40] studied PM scheduling
for systems under multiple external shocks. We introduce two new optimal strategies for the
maintenance of an n-component coherent system, with i.i.d. component lifetimes and signature
vector s, under the condition that there is some partial information on the number of destroyed
components in the system. The information is collected under two scenarios: single inspection
and double inspection of the system. In the first strategy, before a predetermined time τ the
system undergoes minimal repair, and after τ the system is equipped with a warning light that
turns on at the time of the kth component failure. Then the system is inspected at time t, t> τ .
The operator decides to perform CM on the entire system when the system fails, or to perform
distinct PM actions (depending on whether the light turns on or not) when the total operating
time reaches t, whichever occurs first. In the second strategy, the system is inspected at two
times t1 and t2, t1 < t2, and depending on the information obtained at t1, the operator performs
different maintenance actions at t2.

Suppose the system starts to operate at time t = 0 and each component may fail over time.
Assume that the system is functioning at time t and at least k components have failed before t.
Under these assumptions, in Section 2, we compute the probability of the number of failed
components in the system. In other words, if Nt is the number of failed components up to time
t, then we calculate the following conditional probabilities:

pt
k,n(i) = P(Nt = i | Xk:n ≤ t< T), i = k, ..., n − 1. (2)

The second scenario considers the condition that exactly k components have failed by time
t1, and at time t2 (t2 > t1) the system is still operating. Under this condition, we calculate the
probability of the number of failed components Nt2 ; i.e., we calculate

pt1,t2
k,n (i) = P(Nt2 = i | Xk:n ≤ t1 < Xk+1:n, T > t2), i = k, ..., n − 1. (3)

We investigate the properties of pt
k,n(i) and pt1,t2

k,n (i) in Section 2. In particular, some stochastic
ordering results for these conditional probabilities are established. In Section 3, we propose
some optimal PM policies for coherent systems with n components as applications of pt

k,n(i)

and pt1,t2
k,n (i). The criteria which will be employed to obtain the optimal PM time for the sys-

tem are the minimal long-run expected cost per unit of time and stationary availability of the
system. We examine the results of the paper by considering the well-known bridge system
consisting of 5 components. Using the presented bridge system, the robustness of the proposed
approaches is also analyzed numerically. The graphical and computational results of the paper
are obtained using MATHEMATICA�, Version 10.

The following auxiliary concepts and definitions are useful in our derivations.

Definition 1.1. Assume that X and Y are nonnegative random variables with cumulative dis-
tribution functions (CDFs) F and G, probability density functions f and g, and reliability
functions F̄ = 1 − F and Ḡ = 1 − G, respectively.

(a) If g(t)
f (t) is increasing in t ≥ 0, then X is said to be less than Y in the likelihood ratio

ordering (denoted by X ≤lr Y).

(b) If Ḡ(t)
F̄(t)

is increasing in t ≥ 0, then X is said to be less than Y in the hazard rate ordering
(denoted by X ≤hr Y).
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(c) If Ḡ(t) ≥ F̄(t) for all t ≥ 0, then X is said to be less than Y in the usual stochastic ordering
(denoted by X ≤st Y).

The implications among these orderings are as follows:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.

Definition 1.2.

(a) A probability vector p = (p1, p2, ..., pn) is said to have increasing failure rate (IFR) if
pk/

∑n
i=k pi is increasing in k = 1, 2, ..., n.

(b) For two probability vectors p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn), if
∑n

j=i qj/∑n
j=i pj is increasing in i, then p is said to be less than q in the hazard rate order (denoted

by p ≤hr q).

For more details on various notions of partial orderings and their applications, we refer to
Shaked and Shanthikumar [33] and Lucia [19].

Definition 1.3. (Karlin [15].) A nonnegative function h(x,y) is totally positive of order 2 (TP2)
if h(x1, y1)h(x2, y2) − h(x1, y2)h(x2, y1) ≥ 0 whenever x1 < x2 and y1 < y2. The function h(x, y)
is said to be reverse regular of order 2 (RR2) if h(x1, y1)h(x2, y2) − h(x1, y2)h(x2, y1) ≤ 0
whenever x1 < x2 and y1 < y2.

2. The probability of the number of failed components of the system

In the present section, first we obtain the functional forms of the conditional probabilities
pt

k,n(i) and pt1,t2
k,n (i). These conditional probabilities are useful in our derivations in Section 3 to

establish the new optimal maintenance strategies on the coherent systems.

Single inspection

Consider a coherent system with lifetime T, as described in the introduction. The system
begins to operate at time t = 0 and each component is subject to failure over time. Assume
that the operator inspects the system at time t and he/she observes that at least k components
have already failed before t, but the system is still working. As we mentioned in the previous
section, the probability of the number of failed components up to time t is given by pt

k,n(i)
in (2). Asadi and Berred [2] explored several properties of the above conditional probability
pt

k,n(i) in the case that k = 0. Eryilmaz [10] considered the number of failed components for a
coherent system whose component lifetimes are exchangeable. Ashrafi and Asadi [3] studied
the number of failed components in three-state networks under different conditions and applied
their results for age-replacement of three-state networks. The conditional probability pt

k,n(i) can
be represented as follows:

pt
k,n(i) = P(Nt = i | Xk:n ≤ t< T)

= S̄i
(n

i

)
φi(t)∑n−1

j=k S̄j
(n

j

)
φj(t)

, i = k, ..., n − 1, (4)

where S̄i =∑n
j=i+1 sj and φ(t) = F(t)/F̄(t), provided that F̄(t) = 1 − F(t)> 0; see Appendix A

for the proof. The expectation of (Nt | Xk:n ≤ t< T) can be calculated as follows:

E(Nt | Xk:n ≤ t< T) = n
∑n−1

i=k S̄i
(n−1

i−1

)
φi(t)∑n−1

j=k S̄j
(n

j

)
φj(t)

, k = 0, 1, ..., n − 1. (5)
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FIGURE 1: The bridge system.

One can easily verify that the common reliability function F̄(t) of the components can be
recovered from two successive values pt

k,n(i) and pt
k,n(i + 1) as follows:

F̄(t) =
(

1 + i + 1

n − i

(
si+1

S̄i+1
+ 1

)
pt

k,n(i + 1)

pt
k,n(i)

)−1

, t> 0.

Remark 2.1. The probability pt
k,n(i) may be interpreted from a Bayesian viewpoint. Assume

that the system designer is interested in the failure probability of the system components at
time t, denoted by P(Nt = i), i = 1, 2, ..., n, as his/her prior belief (prior distribution) when the
system has not yet been put into operation. Now suppose that the system starts to perform its
mission at time t = 0, and the designer has information that at least k components have failed
before t, while the system is functioning. Then the probability pt

k,n(i) can be viewed as the
designer’s posterior belief on Nt, given the information that is provided for the designer.

Remark 2.2. Asadi and Berred [2] investigated the time-dependent behavior of pt
0,n(i) for

different values of i. The following results can be established regarding the time-dependent
behavior of pt

k,n(i); these are similar to Theorem 2.3 of [2]. Let i∗ = max{i: si > 0}. Then (a)
pt

k,n(k) is decreasing in t; (b) for i = k + 1, ..., i∗ − 2, pt
k,n(i) first increases with respect to t

until it attains its maximum, then declines; and (c) pt
k,n(i∗ − 1) is increasing in t. We omit the

proof, which is analogous to that of Theorem 2.3 in Asadi and Berred [2]. The next example
gives applications of these results.

Example 2.1. In Figure 1, a bridge system consisting of five identical components is pic-
tured. We assume that the component lifetimes are i.i.d. random variables having Weibull
distribution with CDF F(t) = 1 − exp{−t2}, t ≥ 0. The system signature can be computed as
s = (0, 0.2, 0.6, 0.2, 0). Then we have φ(t) = et2 − 1 and

pt
k,5(i) = S̄i

(5
i

)
(et2 − 1)i∑4

j=k S̄j
(5

j

)
(et2 − 1)j

, 0 ≤ k ≤ i ≤ 4. (6)

As can be seen in Figure 2(a), pt
1,5(1) is decreasing in t, pt

1,5(2) increases for a period of time
and then decreases, and pt

1,5(3) is increasing in t (see Remark 2.2). It should be mentioned that
in this system, pt

1,5(4) = 0, since for the component with lifetime X5:5, P(T = X5:5) = s5 = 0;
i.e., the component with lifetime X5:5 will never entail the failure of the system. Also, using
Equation (5), we obtain

Ht
k,n :=E(Nt | Xk:n ≤ t< T) = 5

∑4
i=k S̄i

( 4
i−1

)
(et2 − 1)i∑4

j=k S̄j
(5

j

)
(et2 − 1)j

, 0 ≤ k ≤ 4. (7)
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, ,

(a) (b)

FIGURE 2: (a) The plots of pt
k,n(i) for i = 1, 2, 3 and k = 1 in Example 2.1. (b) The plots of Ht

k,n for
k = 0, 1, 2 in Example 2.1.

Figure 2(b) shows the graph of Ht
k,n as a function of t for k = 0, 1, 2. It is seen that Ht

k,n is
increasing in k and t. We have proved the same result for a general system structure and an
arbitrary baseline distribution in Corollary 2.1.

The following theorem gives some stochastic properties of (Nt | Xk:n ≤ t< T). Before giv-
ing the theorem, we mention the well-known result that, if X and Y are two nonnegative
random variables with probability density functions f1 and f2, respectively, then the order
X ≤lr Y is equivalent to saying that fm(t) is TP2 in (m, t) ∈ {1, 2} × [0,∞) (see Shaked and
Shanthikumar [33]).

Theorem 2.1. Assume that the distribution function F is absolutely continuous. Then the
conditional random variable (Nt | Xk:n ≤ t< T) in (2) satisfies in the following orderings:

(a) for 0 ≤ k ≤ n − 1, (Nt | Xk:n ≤ t< T) ≤lr (Nt | Xk+1:n ≤ t< T);

(b) for each 0< t1 ≤ t2, (Nt1 | Xk:n ≤ t1 < T) ≤lr (Nt2 | Xk:n ≤ t2 < T).

Proof. See Appendix B. �
It is known that the likelihood ratio order between two random variables implies the usual

stochastic order between them. Using this fact and Theorem 2.1, one can verify the behavior
of E(Nt | Xk:n ≤ t< T) in terms of k and t, as shown in the following corollary.

Corollary 2.1. E(Nt | Xk:n ≤ t< T) is increasing in terms of k and t.

We now provide a comparison between two different coherent systems based on the number
of failed components in each system.

Theorem 2.2. Suppose that two coherent systems with, respectively, orders n and n + 1 have
signature vectors s(1) = (s1, s2, ..., sn) and s(2) = (p1, p2, ..., pn+1). Let the component lifetimes
of the first system be X1, X2, ..., Xn, and let those of the second system be Y1, Y2, ..., Yn+1,
where in the two systems the components are independent and have a common distribution
function F. Denote by Nt and N∗

t the number of failed components of the first and second
systems, respectively, at time t. If s(1) ≤hr s(2), then

(N∗
t | Yk:n+1 ≤ t< T2) ≥lr (Nt | Xk:n ≤ t< T1), t ≥ 0,
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where T1 and T2 denote the lifetimes of the system with order n and the system with order
n + 1, respectively.

Proof. See Appendix C. �
The next result gives a likelihood ratio order comparison on the failed components between

two coherent systems.

Theorem 2.3. Assume that S1 and S2 are two coherent systems with i.i.d. component lifetimes
X1, X2, ..., Xn and Y1, Y2, ..., Yn whose CDFs are F and G, respectively. Let Nt and N∗

t be the
numbers of failed components in S1 and S2, respectively, on [0, t]. Further, suppose that the
lifetime of the system S1(S2) is denoted by T1(T2) and the corresponding signature vector is
denoted by s(1) (s(2)). If X1 ≤st Y1 and s(1) ≥hr s(2), then

(Nt | Xk:n ≤ t< T1) ≥lr (N∗
t | Yk:n ≤ t< T2), t ≥ 0.

Proof. See Appendix D. �

Double inspection

Consider again a coherent system with n i.i.d. components and suppose that the system
starts working at time t = 0. We assume that the system is monitored by the operator at two time
instances t1 and t2 (with t1 < t2). This method of inspection is known in the literature as double
monitoring. Some recent references in this regard are Zhang and Meeker [43], Parvardeh et al.
[26], and Navarro and Calì [22]. Suppose that the number of failed components up to time t1
is k, and at time t2 the system is still operating. Under these circumstances, we intend to study
the probability of the number of failed components in the system at time t2. The probability
mass function of this random variable, pt1,t2

k,n (i), can be written as

pt1,t2
k,n (i) = P(Nt2 = i | Xk:n ≤ t1 < Xk+1:n, T > t2)

=
S̄i
(n

i

)( i
k

) ( F̄(t1)
F̄(t2)

− 1
)i−k

∑n−1
j=k S̄j

(n
j

)( j
k

) ( F̄(t1)
F̄(t2)

− 1
)j−k

, i = k, ..., n − 1. (8)

For the proof, see Appendix E. From (8), the mean number of failed components up to time t2
can be represented as

ϕ(t1, t2) =E(Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2)

=
n
∑n−1

i=k S̄i
(n−1

i−1

)( i
k

) ( F̄(t1)
F̄(t2)

− 1
)i

∑n−1
j=k S̄j

(n
j

)( j
k

) ( F̄(t1)
F̄(t2)

− 1
)j . (9)

The next theorem reveals some stochastic properties of (Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2) in
terms of k, t1, and t2.

Theorem 2.4. Assume that the common baseline CDF F is absolutely continuous. Then

(a) for 0 ≤ k ≤ n − 2,

(Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2) ≤lr (Nt2 | Xk+1:n ≤ t1 < Xk+2:n, T > t2);

https://doi.org/10.1017/apr.2020.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.37


1204 M. HASHEMI AND M. ASADI

(b) for each 0< t1 ≤ t∗1 < t2 ≤ t∗2 ,

(Nt2 | Xk:n ≤ t∗1 < Xk+1:n, T > t2) ≤lr (Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t∗2).

Proof. See Appendix F. �
As the likelihood ratio order is a subclass of the usual stochastic order, we get the following

corollary from Theorem 2.4.

Corollary 2.2. E(Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2) is a decreasing function of t1 and an increas-
ing function of k and t2.

The next theorem provides a comparison between the failed components in two coherent
systems in terms of likelihood ratio order.

Theorem 2.5. Let S1 and S2 denote two coherent systems with i.i.d. component lifetimes
X1, X2, ..., Xn and Y1, Y2, ..., Yn whose CDFs are F and G, respectively. Let Nt and N∗

t be
the number of failed components of S1 and S2, respectively, on [0, t]. Further, suppose the
lifetime of the system S1 (S2) is T1 (T2) with signature vector s(1) (s(2)). If X1 ≤hr Y1 and
s(2) ≤hr s(1), then

(Nt2 | Xk:n ≤ t1 < Xk+1:n, T1 > t2) ≥lr (N∗
t2 | Yk:n ≤ t1 < Yk+1:n, T2 > t2), 0 ≤ t1 < t2.

Proof. See Appendix G. �

3. Optimal corrective and preventive maintenance models

In this section, we develop two maintenance strategies for n-component coherent sys-
tems based on the conditional probabilities introduced in the previous section. The following
notation is used in our strategies:

• ccm: cost of CM for each component;

• cpm: cost of PM for each component;

• ccms: cost of CM for the whole system;

• cpms: cost of PM for the whole system;

• c∗
pms: cost of rigid PM for the whole system;

• cmin: cost of minimal repair for each component;

• w1: time to perform CM together with PM;

• w2: time to perform CM on the system;

• w3: time to perform PM on the system;

• w4: time to perform rigid PM on the system.

Strategy I

Assume that a coherent system begins to operate at time 0. A minimal repair has been
performed on each component of the system that fails in the interval (0, τ ). Thus, we can
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FIGURE 3: Maintenance Strategy I.

assume that the system, consisting of n unfailed components with age τ , is alive at τ . Here,
τ is a predetermined constant which may be considered, for example, as a guarantee time of
the system. We assume that, after τ , a warning lamp is installed on the system that turns on at
the time of the kth component failure, where k is predetermined (for a realistic example where
warning lamps are employed in a system, we refer to Shimizu and Kawai [35], where the
authors consider a warning lamp in a vehicle’s electronic power steering system (EPS) which
will operate in case of failure of components of the EPS; see also Khaledi and Shaked [16]).

The operator decides to perform CM on the whole system at a cost of ccms once the system
fails in the interval (τ, t), or he/she decides to perform a PM action when the total operating
time reaches t if the lamp turns on, whichever occurs first. More precisely, the operator decides
to perform PM on all operating components together with CM on the failed ones at a cost of
cpm for PM and a cost of ccm for CM, when the total operating time reaches t, provided that the
warning light has lit up before or at time t. On the other hand, if the system is alive at t and the
lamp does not turn on, he/she performs a perfect PM on the entire system with a cost of cpms.
It should be mentioned here that, in the above situation, the operator knows only whether the
light is on or off. In other words, the warning light might have been turned on at a time before t;
the operator does not know the exact time of the kth failure in the interval (τ, t). Two different
cases of renewal cycle for Strategy I are shown in Figure 3. The upper axis in Figure 3 shows
the case where system failure has not occurred up to time t; that is, the system age reaches t.
The lower axis depicts the case where the system fails before the age reaches t.

It is evident that in the above policy, the inspection of the system is done in the interval
(0, τ ), where the components of the system have been monitored continuously, and at the
single time instant t (see Pham and Wang [27]). As mentioned in [27], a justification for the
first part is that in the interval (0, τ ) the components are ‘young’ and hence a minor repair is
adequate. Thus, before τ , only minimal repairs, which require little time and have low cost,
are carried out. After the system reaches age τ , as the cost of continuous monitoring may be
substantial and minimal repair may not be reasonable because of the increased failure rate of
the components, the operator does not monitor the system; instead, an alarm is installed which
operates at the time of the kth failure. Using this information we obtain the optimal time of PM
under the following settings on the cost function.

To evaluate the cost in interval (0, τ ), we shall utilize a cost function used by Sheu [34]; see
also Pham and Wang [27]. For each component, let the cost of the ith minimal repair depend
on the deterministic part a1(t, i) and the age-dependent random part a2(t). Note that a1(t, i)
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depends on the number i of minimal repairs performed on the component and the age t of that
component. Two parts are now linked by a positive function h. In fact, the required cost of
the ith minimal repair at age t for each component is h(a1(t, i), a2(t)), where h is a continuous
nondecreasing function of t, and is a nondecreasing function of i. Thus, the expected cost of
minimal repairs for the whole system in a renewal period is

c∗
min = nE

⎡
⎣N(τ )∑

i=1

h(a1(Si, i), a2(Si))

⎤
⎦,

where N(τ ) denotes the total number of minimal repairs during the time interval (0, τ ), and
S1, S2, ... are the successive failure times of each component at which minimal repairs have
been performed. It is known that for the minimal repair the failure times follow a nonhomoge-
neous Poisson process with rate r(t) (see Barlow and Hunter [6] or Gertsbakh [14]). Note that
r(t) is the failure rate of a component lifetime. It has been proved by Sheu [34] that

c∗
min = n

∫ τ

0
ν(y)r(y)dy, (10)

where ν(y) =EN(y)Ea2(y)[h(a1(y,N(y) + 1), a2(y))]; see also Pham and Wang [27]. A special
case considered in the literature is that in which h(a1(t, i), a2(t)) is assumed to be a con-
stant cmin (see Barlow and Hunter [6] and Tahara and Nishida [37]). We assume that this cost
includes the cost of monitoring and the cost of repair. Thus c∗

min reduces to

c∗
min = ncminH(τ ),

where H(τ ) = ∫ τ
0 r(t)dt is known as the mean value function of the failure process.

In this strategy, we consider t as a decision variable and τ as a predetermined time instant.
By using the renewal reward theorem (see, e.g., Ross [30], p. 52), the average cost of sys-
tem maintenance per unit time is then defined as the ratio of the average cost of the system
maintenance per renewal cycle to the expected duration of a renewal cycle. In other words,

ηI(t) = n
∫ τ

0 ν(y)r(y)dy + Fτ (t − τ )ccms + cpmsP1,k(τ, t)

τ +E(min(t − τ, Tτ ))

+ P2,k(τ, t)
[
(ccm − cpm)E(Nt,τ | (Xτ )k:n ≤ t< Tτ ) + ncpm

]
τ +E(min(t − τ, Tτ ))

, (11)

where Fτ (·) denotes the CDF of the lifetime of an n-component system where each compo-
nent’s age is τ , E(Nt,τ | (Xτ )k:n ≤ t< Tτ ) is the expectation of the number of failed components
of the live system at time t with at least k failed components when all components are
functioning at time τ (for τ < t),

P1,k(τ, t) = P(Xk:n > t, T > t | X1:n > τ ),

and

P2,k(τ, t) = P(Xk:n ≤ t< T | X1:n > τ ).
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Note that (Xτ )k:n is the kth order statistic from the CDF F(t|τ ) = 1 − F̄(t)/F̄(τ ), t> τ . We can
easily show that

Fτ (t − τ ) = 1 −
n−1∑
j=0

S̄j

(
n

j

)(
1 − F̄(t)

F̄(τ )

)j (
F̄(t)

F̄(τ )

)n−j

, (12)

P1,k(τ, t) =
k−1∑
i=0

S̄i

(
n

i

) (
1 − F̄(t)

F̄(τ )

)i (
F̄(t)

F̄(τ )

)n−i

,

and

P2,k(τ, t) =
n−1∑
i=k

S̄i

(
n

i

)(
1 − F̄(t)

F̄(τ )

)i (
F̄(t)

F̄(τ )

)n−i

.

Also, from Equation (5), we can obtain

E(Nt | Xk:n ≤ t< T) = n
∑n−1

i=k S̄i
(n−1

i−1

)
φi(t)∑n−1

j=k S̄j
(n

j

)
φj(t)

.

By replacing φ(t) with
(

F̄(τ )
F̄(t)

− 1
)

, we may obtain the corresponding formula for E(Nt,τ |
(Xτ )k:n ≤ t< Tτ ). Also, it can easily be shown that

E(min (t − τ, Tτ )) =
∫ t−τ

0
[1 − Fτ (x)]dx

= 1

F̄n(τ )

n−1∑
j=0

S̄j

(
n

j

) ∫ t−τ

0
(F̄(τ ) − F̄(x + τ ))j(F̄(x + τ ))n−jdx.

In the following proposition, in the case that the decision variable in ηI(t) is t, we verify the
existence of the optimal value t∗ minimizing ηI(t).

Proposition 3.1. Let r(t) be the failure rate of components and ηI(t) be as given in Equation
(11). If limt→∞ r(t) is finite and

lim
t→∞ r(t)>

ccms + n
∫ τ

0 ν(y)r(y)dy

(n − i∗ + 1)(ccms − ncpm − (i∗ − 1)(ccm − cpm))(τ +μτ )
, (13)

then there exists a finite t∗ which satisfies d
dtηI(t) |t=t∗= 0 and minimizes ηI(t), where μτ is the

expectation of the lifetime of an n-component system whose components have age τ , and i∗ is
defined in Remark 2.2.

Proof. See Appendix H. �

Remark 3.1. Although, in Strategy I, we have considered t as a decision variable and τ as a
predetermined time instant, one can instead consider τ as a decision variable (or even consider
both t and τ as decision variables). In this case, the cost function (11) has to be minimized
with respect to τ (or with respect to both τ and t simultaneously). In Example 3.1, we have
numerically and graphically illustrated Strategy I for the bridge system in the cases that either
t or both τ and t are considered as the decision variables.
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(a) (b)

FIGURE 4: The expected cost of the system maintenance per unit time in Example 3.1: (a) τ = 0.1,
k = 1, 2, 3 from top to bottom; (b) k = 0, τ = 0.1, 0.3, 0.5 from top to bottom.

It should be pointed out that, in the policy described above, we assume that all maintenance
actions take negligible times. Now, suppose that minimal repair also takes negligible time, but
PM combined with CM takes w1 time units, CM on the whole system at time t takes w2 time
units, and PM on the whole system at time t takes w3 time units. In the literature, a well-known
criterion in the maintenance of systems is stationary availability. The stationary availability is
defined as the ratio of the average time that the system is in a functioning state to the average
length of a cycle. The stationary availability for Strategy I is then given by

AI(t) = τ +E(min(t − τ, Tτ ))

τ +E(min(t − τ, Tτ )) + w1P2,k(τ, t) + w2Fτ (t − τ ) + w3P1,k(τ, t)
.

Remark 3.2. We should mention here that the maintenance type depends not only on the
action that is performed (replacement or repair of the failed component, a major overhaul
of the system, and so on) but also on the complexity of the system structure. For example, the
replacement of a failed component of a complex system does not generally improve the sys-
tem’s performance, and hence can be considered a minimal repair. By contrast, if the system is
not complex, then the same replacement may produce a noticeable improvement and therefore
cannot be considered a minimal repair; see Pulcini [28].

Now let us see the following example.

Example 3.1. Assume that the bridge system in Figure 1 has component lifetimes which are
independent Weibull random variables with CDF F(t) = 1 − exp{−t2}, t ≥ 0. It is known that
the system signature is (0, 0.2, 0.6, 0.2, 0) (see, e.g., Samaniego [32]). Let cmin = 0.5, ccms =
25, cpms = 4, ccm = 2, and cpm = 1. In Figure 4, the graphs of ηI(t) are presented for different
values of k and τ .

In order to investigate the robustness of Strategy I with respect to the model parameters
cpms, ccms, cmin, ccm, and cpm, we have provided some numerical results in Tables 1 and 2. As
the tables show, when ccms increases, t∗ decreases and the operator should perform preventive
action sooner. On the other hand, when cpms gets larger, t∗ increases too; i.e., the larger the
cost of system PM, the later the time of performing system PM. When cmin gets larger, the
optimal time of PM gets larger too, and when ccm increases, as expected, t∗ decreases. Hence,
according to this example, it is evident that the model is robust in terms of ccms, cpms, cmin, and
ccm. In the same manner one can see that the model is robust in terms of the other parameters
cpm and τ .
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TABLE 1: Optimal maintenance time for Strategy I.

τ = 0.1, k = 2, cmin = 0.5, ccm = 2, cpm = 1

cpms = 4 ccms = 25

ccms t∗ ηI(t∗) cpms t∗ ηI(t∗)

10 0.5910 10.4489 3 0.3714 10.9460
15 0.4883 11.6615 4 0.4153 13.1557
20 0.4436 12.4957 5 0.4566 15.0298
25 0.4153 13.1557 6 0.4962 16.6257
30 0.3947 13.7096 7 0.5341 17.9800
35 0.3787 14.1903 8 0.5703 19.1462

TABLE 2: Optimal maintenance time for Strategy I.

τ = 0.1, k = 2, ccms = 25, ccm = 2, cpms = 4

ccm = 2 cmin = 0.5

cmin t∗ ηI(t∗) ccm t∗ ηI(t∗)

0.1 0.4147 13.1071 1 0.4310 12.5609
0.3 0.4150 13.1314 1.5 0.4231 12.8639
0.5 0.4153 13.1557 2 0.4153 13.1557
0.75 0.4157 13.1861 2.5 0.4077 13.4367
1 0.4159 13.2043 3 0.4005 13.7071

TABLE 3: Optimal maintenance times for Strategy I with k = 2, cmin = 0.5, ccms = 25, cpms = 4,
ccm = 2, and cpm = 1.

τ t∗ ηI(t∗)

1.00 1.1263 6.45966
1.05 1.06135 6.40032
1.10 1.11026 6.35702
1.20 1.20856 6.31107
1.25 1.25787 6.30534
1.30 1.30728 6.30943
1.35 1.35676 6.32228
1.40 2.40631 6.34300

The optimal times t∗ that minimize the average cost per unit of time and ηI(t∗) are presented
in Table 3 for several time instants τ . Note that if we consider τ and t as two decision variables,
then the optimal value for the pair (τ, t) is (1.25, 1.25787), which results in the minimum
maintenance cost 6.30534. The optimal values of (τ, t) are also tabulated in Table 4 for different
values of ccms and cpms.
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TABLE 4: Bivariate optimal maintenance times for Strategy I.

k = 2, cmin = 0.5, ccm = 2, and cpm = 1

cpms = 4 ccms = 25

ccms τ ∗ t∗ ηI(τ ∗, t∗) cpms τ ∗ t∗ ηI(τ ∗, t∗)

10 1.241 1.257 6.287 3 1.084 1.092 5.458
15 1.247 1.259 6.296 4 1.253 1.261 6.305
20 1.251 1.260 6.302 5 1.402 1.410 7.051
25 1.253 1.261 6.305 6 1.536 1.545 7.724
30 1.255 1.262 6.308 7 1.658 1.628 8.341
35 1.256 1.262 6.310 8 1.770 1.782 8.912

FIGURE 5: The three-dimensional plot of cost function in Example 3.1: (a) k = 0, (b) k = 2.

(a) (b)

FIGURE 6: The stationary availability in Example 3.1: (a) τ = 0.1, k = 1, 2, 3 from top to bottom; (b)
k = 0, τ = 0.1, 0.3, 0.5 from top to bottom.

Figure 5 depicts the three-dimensional plots of the cost function in terms of (τ, t) for
k = 0, 2, cmin = 0.5, ccms = 25, cpms = 4, ccm = 2, and cpm = 1.

Figure 6 depicts the plots of AI(t) for w1 = 0.08, w2 = 0.2, and w3 = 0.02, and for several
values of k and τ . As the plots show, the system availability first increases to attain its maximum
and then decreases.
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(a) (b)

FIGURE 7: The expected cost of the system maintenance per unit time in Example 3.1 with
h(a1(t, i), a2(t)) = 3t + a2(t) where a2(t) follows the normal distribution with mean 1: (a) τ = 0.1,
k = 1, 2, 3 from top to bottom; (b) k = 0, τ = 0.1, 0.3, 0.5 from top to bottom.

Now, assume that h(a1(t, i), a2(t)) = a1(t) + a2(t), where a1(t) = 3t and a2(t) follows the
normal distribution with mean 1. Then, by (10), c∗

min = n(2τ 3 + τ 2). The expected maintenance
cost ηI(t) is presented in Figure 7 for several values of k and τ .

The special case of this policy in which there is no minimal repair, i.e. τ = 0, may be of
interest. In this particular case, the average cost of the system maintenance per unit of time can
be reduced to

ηI(t) = ccmsFT (t) + cpmsP(T > t, Xk:n > t)

E(min(t, T))

+ P(Xk:n ≤ t< T)[(ccm − cpm)E(Nt | Xk:n ≤ t< T) + ncpm]

E(min(t, T))
,

where

P(Xk:n ≤ t< T) =
n−1∑
i=k

S̄i

(
n

i

)
Fi(t)F̄n−i(t),

P(T > t, Xk:n > t) =
k−1∑
i=0

S̄i

(
n

i

)
Fi(t)F̄n−i(t),

and E(Nt | Xk:n ≤ t< T) is defined in (5).
Also, for this particular case where τ = 0, the stationary availability may be written as

AI(t) = E(min(t, T))

E(min(t, T)) + w1P(Xk:n ≤ t< T) + w2FT (t) + w3P(T > t, Xk:n > t)
.

Now we consider the following example.

Example 3.2. Consider again the bridge system in Example 2.1 whose component lifetimes
are independent Weibull random variables with CDF F(t) = 1 − exp{−t2}, t ≥ 0. Figure 8(a)
depicts the plots of ηI(t) for ccms = 20, cpms = 4, ccm = 2, and cpm = 1 and the values k =
1, 2, 3. Figure 8(b) depicts the plots of AI(t) for k = 2, w1 = 0.08, w2 = 0.2, and w3 = 0.02. As
the plot shows, the system availability first increases to attain its maximum and then decreases.
The availability attains its maximum at t∗ = 0.32645 and AI(t∗) = 0.921662.

An analysis of the results of Table 5 indicates that the maintenance strategy I with τ = 0
is robust. It is seen that when ccms increases, the optimal time of PM decreases, as expected.
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TABLE 5: Optimal maintenance time for Strategy I with τ = 0.

k = 2, cmin = 0.5, ccm = 2, cpm = 1

cpms = 4 ccms = 20

ccms t∗ ηI(t∗) cpms t∗ ηI(t∗)

10 0.5941 10.5716 3 0.3894 10.7757
15 0.4873 11.8695 4 0.4413 12.7725
20 0.4414 12.7725 5 0.4914 14.4032
25 0.4123 13.4943 6 0.5398 15.7332
30 0.3913 14.1054 7 0.5863 16.8148
35 0.3749 14.6403 8 0.6302 17.6933

(a) (b)

FIGURE 8: (a) The average maintenance cost per unit time in Example 3.2; (b) the stationary availability
in Example 3.2.

Also, when cpms gets larger, the optimal time of PM gets larger, too. One can easily see that,
based on this example, the model is robust in terms of the costs cpm and ccm.

We should mention here that the only difference between the maintenance schedules given
in this example and those of Example 3.1 is that, in Example 3.1, the operator performs
minimal repair in a time interval at the beginning of the system operation, while in the present
example there is no minimal repair. By considering the same initial values for these two
maintenance policies, one can make a comparison based on the expected cost or the avail-
ability criterion. For example, let cmin = 0.5, ccms = 25, cpms = 4, ccm = 2, cpm = 1, w1 = 0.08,
w2 = 0.2, and w3 = 0.02. If k = 1 and τ = 0.1, the optimal values of ηI and AI are 15.0488 and
0.8790, respectively, whereas if we do not perform minimal repair, the optimal values of ηI and
AI are 15.4200 and 0.8727, respectively. Therefore, based on these observations, the operator
prefers to perform minimal repair at the starting point of the maintenance. One can show that
the situation is reversed if k = 3, in which case no minimal repair is preferred.

Strategy II

Assume that a new coherent system begins to operate at time 0. Suppose that the system has
been inspected at two times t1 and t2, with t1 < t2. If the system fails before t1, then the operator
performs CM on the entire system with a cost of ccms at the time of the system failure. He/she
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FIGURE 9: Maintenance Strategy II.

performs the same action if the system fails during the time interval (t1, t2). On the other hand,
if the system is functioning at t2, the operator decides among three different actions:

(a) If the number of components that have failed by t1, namely Nt1 , is at most (k1 − 1), the
operator performs PM on the whole system with a cost of cpms.

(b) If k1 ≤ Nt1 ≤ k2, then he/she decides to perform PM on all operating components of the
system together with CM on all failed ones, at a cost of cpm for PM and a cost of ccm

for CM.

(c) If Nt1 is at least (k2 + 1), then the operator decides to perform a more rigid PM on the
system (than in Case (a)) at a cost of c∗

pms.

In this strategy, we assume that t2 is the decision variable, while t1, k1, and k2 are fixed con-
stants. Three different cases of renewal cycle for Strategy II are shown in Figure 9. The upper
axis in Figure 9 depicts the case in which system failure has not occurred up to time t2; that is,
the age of the system reaches t2. The middle axis shows the case in which the system is alive
at the inspection time t1 and fails before attaining the age t2. The lower axis depicts the case
where the system fails before its age reaches the time of inspection t1.

The average cost of the system maintenance per unit of time is

ηII(t2) = D(t2)

E(min(t2, T))
, (14)

where

D(t2) = ccmsP(T ≤ t2) + cpmsP(T > t2,Nt1 ≤ k1 − 1)

+ [(ccm − cpm)E(Nt2 | k1 ≤ Nt1 ≤ k2, T > t2) + ncpm]

× P(T > t2, k1 ≤ Nt1 ≤ k2) + c∗
pmsP(T > t2,Nt1 ≥ k2 + 1),

and

E(min(t2, T)) =
∫ t2

0

n−1∑
j=0

S̄j

(
n

j

)
Fj(t)F̄n−j(t)dt.
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In the special case where k1 = k2 = k, D(t2) may be reduced to

D(t2) = ccmsP(T ≤ t2) + cpmsP(T > t2,Nt1 ≤ k − 1)

+ [(ccm − cpm)ϕ(t1, t2) + ncpm]P(T > t2,Nt1 = k) + c∗
pmsP(T > t2,Nt1 ≥ k + 1),

where, from (9),

ϕ(t1, t2) =
n
∑n−1

i=k S̄i
(n−1

i−1

)( i
k

) ( F̄(t1)
F̄(t2)

− 1
)i

∑n−1
j=k S̄j

(n
j

)( j
k

) ( F̄(t1)
F̄(t2)

− 1
)j .

Also,

P(T > t2,Nt1 ≤ k − 1) =
k∑

i=1

si

i−1∑
j=0

(
n

j

)
Fj(t2)F̄n−j(t2)

+
n∑

i=k+1

si

n∑
m=n−i+1

n∑
l=max (m,n−k+1)

(
n

l

)(
l

m

)
Fn−l(t1)(F̄(t1) − F̄(t2))l−mF̄m(t2)

and

P(T > t2,Nt1 ≥ k + 1) =
n∑

i=k+2

si

i−1∑
j=k+1

n−k−1∑
m=n−i+1

(
n

m

)(
n − m

j

)
Fj(t1)

× (F̄(t1) − F̄(t2))n−j−mF̄m(t2).

On the other hand,

P(T > t2,Nt1 = k) =
n∑

i=k+1

si

i−1∑
j=k

(
n

j

)(
j

k

)
Fk(t1)F̄n−j(t2)(F̄(t1) − F̄(t2))j−k

=
n−1∑
j=k

S̄j

(
n

j

)(
j

k

)
Fk(t1)F̄n−j(t2)(F̄(t1) − F̄(t2))j−k.

Also, we may obtain

P(T < t2) = 1 −
n−1∑
j=0

S̄j

(
n

j

)
Fj(t2)F̄n−j(t2).

The aim here is to minimize ηII(t2) with respect to the decision variable t2; that is, we should
find the possible value t2, if it exists, such that

ηII(t
∗
2) = min

t2>t1
ηII(t2).

Now, let us assume that PM combined with CM takes w1 time units, CM on the whole
system takes w2 time units, PM on the whole system takes w3 time units, and the rigid PM on
the system takes w4 time units. The stationary availability for Strategy II is given by

AII(t2) = E(min(t2, T))

E(min(t2, T)) + B(t2)
,
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(a) (b)

FIGURE 10: (a) The average maintenance cost per unit time in Example 3.3; (b) the stationary availability
for Strategy II in Example 3.3.

where

B(t2) = w1P(T > t2, k1 ≤ Nt1 ≤ k2) + w2P(T ≤ t2)

+ w3P(T > t2,Nt1 ≤ k1 − 1) + w4P(T > t2,Nt1 ≥ k2 + 1).

Remark 3.3. In Strategy II, we assumed that t2 is the only decision variable and t1 is a fixed
constant. However, in this strategy, one can instead assume that t1 is the decision variable (or
even that both t1 and t2 are decision variables) and minimize the cost function (14) based on
that. The other point we should mention here is that of the conditions under which there exists
an optimum value which minimizes the cost function (14). Since the functional form of ηII(t2)
is rather complicated in the general setting, we can verify the existence of a possible optimum
value for a given lifetime distribution of the components numerically (or graphically) using
mathematical software. In the next example, we illustrate this in more detail.

Example 3.3. Let us look at again the bridge system in Example 2.1, where the component
lifetimes are i.i.d. with Weibull distribution, with reliability function F̄(t) = exp{−t2}, t ≥ 0.
Figure 10(a) shows the plot of ηII(t2) for t1 = 0.5, c∗

pms = 20, ccms = 20, cpms = 5, ccm = 2,
and cpm = 1, and different values k = 1, 2, 3. Figure 10(b) depicts the plots of AII(t) for k =
2, t1 = 0.5, w1 = 0.04, w2 = 0.05, w3 = 0.02, and w4 = 0.06. It can be seen that the system
availability first increases to arrives at its maximum and then decreases. The availability attains
its maximum at t∗2 = 0.719917 and AII(t∗2) = 0.952746.

An analysis of the results in Table 6 indicates that the maintenance strategy II is robust.
It is seen that when ccms increases (or cpm decreases), the optimal time of PM decreases, as
expected. This robustness is true also in terms of c∗

pms. That is, when c∗
pms gets larger, the

optimal time of PM gets larger, too. One can easily see that, based on this example, the model
is robust in terms of the costs cpms and ccm.

Considering t1 and t2 as two decision variables, the three-dimensional plot of the cost func-
tion is depicted in Figure 11. The optimal values of (t1, t2) are also tabulated in Table 7 for
different values of ccms and c∗

pms.
Recalling Example 3.2, it is interesting to compare Strategies I and II for the bridge system.

To do so, let τ = 0.1, t1 = 0.5, cmin = 0.5, ccms = 25, cpms = 4, ccm = 2, cpm = 1, c∗
pms = 20,

w1 = 0.08, w2 = 0.2, w3 = 0.02, and w4 = 0.06. If k = 2 in Strategy I and k1 = k2 = 1 in
Strategy II, then the optimal values of ηI and ηII are 13.1557 and 20.6165, and the optimal
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TABLE 6: Optimal maintenance time for Strategy II with t1 = 0.5, k = 1.

ccm = 2, cpms = 5

cpm = 1, c∗
pms = 20 ccms = 20, c∗

pms = 20 cpm = 1, ccms = 20

ccms t∗2 ηII(t∗2) cpm t∗2 ηII(t∗2) c∗
pms t∗2 ηII(t∗2)

10 1.3000 11.6949 0.6 0.6465 17.8146 8 0.5477 15.4899
15 0.8010 15.8536 0.75 0.6581 18.1069 10 0.5725 16.1256
20 0.6774 18.5673 1.0 0.6774 18.5673 12 0.5957 16.7025
25 0.6101 20.6165 1.25 0.6966 18.9959 15 0.6281 17.4757
30 0.5656 22.2806 1.5 0.7159 19.3944 17 0.6483 17.9389
35 0.5330 23.6913 1.75 0.7352 19.7645 20 0.6774 18.5673
40 0.5077 24.4218 2.0 0.7545 20.1078 22 0.6959 18.9474

TABLE 7: Bivariate optimal maintenance times for Strategy II.

k = 2, cpms = 8, ccm = 2 and cpm = 1

c∗
pms = 12 ccms = 10

ccms t∗1 t∗2 ηII(t∗1, t∗2) c∗
pms t∗1 t∗2 ηII(t∗1, t∗2)

10 0.3017 1.4270 11.7054 9 0.7051 1.3849 11.7043
11 0.4780 1.0876 12.7653 10 0.4417 1.4205 11.7052
12 0.5712 0.9344 13.6611 11 0.3520 1.4530 11.7053
13 0.6303 0.8425 14.4204 12 0.3017 1.4270 11.7054
14 0.6718 0.7794 15.0765 13 0.2683 1.4277 11.7054

FIGURE 11: The three-dimensional plot of the cost function in Example 3.3.

https://doi.org/10.1017/apr.2020.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.37


Component failure in coherent systems with applications to maintenance 1217

values of AI and AII are 0.9250 and 0.8728, respectively. This means that based on both the
expected maintenance cost and the stationary availability criteria, Strategy I is preferred.

4. Conclusions

In reliability engineering, although an extensive number of research works have been
devoted to optimal maintenance of one-unit systems, only a small portion of the literature
has considered maintenance of multi-component systems. This paper aimed to propose some
optimal strategies for the maintenance of a multi-component coherent system using some par-
tial information on the number of destroyed components in the system. For this purpose, first,
we proposed two criteria for evaluating the conditional probability function of the number of
destroyed components in the system. In the computation of the proposed measures, we utilized
some partial information on the status of the components of the system based on some inspec-
tion strategies. The derivations of both criteria rely on the notion of the signature associated
with a coherent system. Using these criteria, we then introduced two different approaches to
the optimal maintenance of the system. In the first approach, before a predetermined time τ ,
the system undergoes minimal repair, and after τ , the system is equipped with a warning light
that turns on at the time of the kth component failure. Then the system is inspected at time t,
where t> τ , and the operator decides to perform CM on the entire system once the system fails
or to perform a PM action when the total operating time reaches t if the warning light turns
on, whichever occurs soonest. In the second approach, the system is inspected at two times
t1 and t2, where t1 < t2, and depending on the information obtained at t1, the operator per-
forms different maintenance actions at t2. In the proposed approaches, optimality criteria were
defined based on the long-run expected costs of maintenance and availability of the system.
The results of the paper were applied to the bridge system, for which several illustrative plots
were presented. In this paper, we assumed that the component lifetimes were i.i.d. One may
also consider other scenarios for component failure to propose optimal strategies for main-
taining complex systems. The extension of the results of this paper to systems with dependent
and/or non-identical components would be an interesting area for future research.

Appendix A. Proof of Equation (4)

The probability mass function of (Nt | Xk:n ≤ t< T) can be computed as

pt
k,n(i) = P(Nt = i | Xk:n ≤ t< T)

=
∑n

m=i+1 P(Xi:n ≤ t< Xi+1:n, Xk:n ≤ t< T, T = Xm:n)

P(Xk:n ≤ t< T)

=
∑n

m=i+1 P(T = Xm:n)P(Xi:n ≤ t< Xi+1:n, Xk:n ≤ t< Xm:n)

P(Xk:n ≤ t< T)

= S̄i
(n

i

)
Fi(t)F̄n−i(t)

P(Xk:n ≤ t< T)
, i = k, ..., n − 1, (15)

where the second equality follows from the law of total probability; the third and fourth
equalities follow from the facts that the order statistics are independent from their ranks (see
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Kochar et al. [17]), and that [Xi:n ≤ t< Xi+1:n] ⊆ [Xk:n ≤ t< Xm:n] for k ≤ i<m, respectively;
and S̄i =∑n

j=i+1 sj. On the other hand, using the law of total probability,

P(Xk:n ≤ t< T) =
n∑

m=k+1

P(Xk:n ≤ t< T | T = Xm:n)P(T = Xm:n)

=
n∑

m=k+1

sm

m−1∑
j=k

(
n

j

)
Fj(t)F̄n−j(t)

=
n−1∑
j=k

S̄j

(
n

j

)
Fj(t)F̄n−j(t). (16)

Therefore

pt
k,n(i) = S̄i

(n
i

)
φi(t)∑n−1

j=k S̄j
(n

j

)
φj(t)

, i = k, ..., n − 1.

Appendix B. Proof of Theorem 2.1

To prove Part (a), first note that

pt
k,n(i) = S̄i

(n
i

)
φi(t)∑n−1

j=k S̄j
(n

j

)
φj(t)

I{k,k+1,...,n−1}(i),

where I{k,k+1,...,n−1} denotes the indicator function on the set {k, k + 1, ..., n − 1}. It is easy to
show that I{k,k+1,...,n−1}(i) is TP2 in (i, k) ∈ {k, ..., n − 1} × {0, ..., n − 1}. This, in turn, implies
that pt

k,n(i) is TP2 in (i, k) ∈ {k, ..., n − 1} × {0, ..., n − 1}.
Part (b) follows from the result that was stated right before the theorem and the fact that

φi(t) and hence pt
k,n(i) are TP2 in (i, t) ∈ {k, ..., n − 1} × [0,∞).

Appendix C. Proof of Theorem 2.2

The probability mass function of (Nt | Xk:n ≤ t< T1) is given in (4). Similarly, the probabil-
ity mass function of (N∗

t | Yk:n+1 ≤ t< T2) can be expressed as

qt
k,n+1(i) = S̄(2)

i

(n+1
i

)
φi(t)∑n

j=k S̄(2)
j

(n+1
j

)
φj(t)

, i = k, ..., n,

where S̄(2)
i =∑n+1

j=i+1 pj. Therefore, the fraction qt
k,n+1(i)/pt

k,n(i) is proportional to

S̄(2)
i

S̄(1)
i

(n+1
i

)
(n

i

) ,
which is increasing in i = 0, 1, ..., n. This completes the proof.

Appendix D. Proof of Theorem 2.3

Denote by pt,r
k,n(i) the conditional probability in (4) for the system Sr , r = 1, 2; that is

pt,r
k,n(i) = S̄(r)

i

(n
i

)
φi

r(t)∑n−1
j=k S̄(r)

j

(n
j

)
φ

j
r(t)

, i = k, ..., n − 1, (17)
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where φ1(t) = F(t)/F̄(t), φ2(t) = G(t)/Ḡ(t), and S̄(r)
i =∑n

j=i+1 s(r)
j , r = 1, 2. It follows from the

assumptions of the theorem that both S̄(r)
i and φi

r(t) are RR2 in (i, r) ∈ {k, ..., n − 1} × {1, 2}.
Since the product of two RR2 functions is again an RR2 function, we conclude that pt,r

k,n(i) is
RR2 in (i, r) ∈ {k, ..., n − 1} × {1, 2}. This completes the proof.

Appendix E. Proof of Equation (8)

The probability mass function of (Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2) can be computed as

pt1,t2
k,n (i) = P(Nt2 = i | Xk:n ≤ t1 < Xk+1:n, T > t2)

=
∑n

m=i+1 P(Xi:n ≤ t2 < Xi+1:n, Xk:n ≤ t1 < Xk+1:n, T > t2, T = Xm:n)

P(Xk:n ≤ t1 < Xk+1:n, T > t2)

=
∑n

m=i+1 P(T = Xm:n)P(Xi:n ≤ t2 < Xi+1:n, Xk:n ≤ t1 < Xk+1:n, Xm:n > t2)

P(Xk:n ≤ t1 < Xk+1:n, T > t2)

=
∑n

m=i+1 sm
(n

i

)( i
k

)
Fk(t1)(F̄(t1) − F̄(t2))i−kF̄n−i(t2)

P(Xk:n ≤ t1 < Xk+1:n, T > t2)
. (18)

But

P(Xk:n ≤ t1 < Xk+1:n, T > t2)

=
n∑

m=k+1

P(Xk:n ≤ t1 < Xk+1:n, T > t2 | T = Xm:n)P(T = Xm:n)

=
n∑

m=k+1

P(Xk:n ≤ t1 < Xk+1:n, Xm:n > t2)P(T = Xm:n)

=
n∑

m=k+1

sm

m−1∑
j=k

(
n

j

)(
j

k

)
Fk(t1)(F̄(t1) − F̄(t2))j−kF̄n−j(t2)

=
n−1∑
j=k

S̄j

(
n

j

)(
j

k

)
Fk(t1)(F̄(t1) − F̄(t2))j−kF̄n−j(t2). (19)

Therefore

pt1,t2
k,n (i) =

S̄i
(n

i

)( i
k

) ( F̄(t1)
F̄(t2)

− 1
)i−k

∑n−1
j=k S̄j

(n
j

)( j
k

) ( F̄(t1)
F̄(t2)

− 1
)j−k

, i = k, ..., n − 1. (20)

Appendix F. Proof of Theorem 2.4

The probability mass function in (8) may be written as

pt1,t2
k,n (i) =

S̄i
(n

i

)( i
k

) ( F̄(t1)
F̄(t2)

− 1
)i−k

∑n−1
j=k S̄j

(n
j

)( j
k

) ( F̄(t1)
F̄(t2)

− 1
)j−k

I{k,...,n−1}(i).
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To prove Part (a), first note that
( i

k

)
and I{k,...,n−1}(i) are TP2 in (i, k) ∈ {k, ..., n − 1} ×

{0, ..., n − 1}. Since the product of two TP2 functions is a TP2 function, we conclude that
pt1,t2

k,n (i) is TP2 in (i, k) ∈ {k, ..., n − 1} × {0, ..., n − 1}, which implies that pt1,t2
k+1,n(i)/pt1,t2

k,n (i) is
increasing in i. Hence the proof of Part (a) is complete.

To prove Part (b), it can be shown that pt1,t2
k,n (i) is RR2 in (i, t1) ∈ {k, ..., n − 1} × [0, t2) and

TP2 in (i, t2) ∈ {k, ..., n − 1} × (t1,∞), and hence the result follows.

Appendix G. Proof of Theorem 2.5

Denote by pt1,t2,r
k,n (i) the conditional probability in (8) for the system Sr, r = 1, 2; that is,

pt1,t2,r
k,n (i) = S̄(r)

i

(n
i

)( i
k

)
(ψr(t1, t2) − 1)i−k∑n−1

j=k S̄(r)
j

(n
j

)( j
k

)
(ψr(t1, t2) − 1)j−k

, i = k, ..., n − 1, (21)

where S̄(r)
i =∑n

j=i+1 s(r)
j , r = 1, 2, and

ψr(t1, t2) =
⎧⎨
⎩

F̄(t1)
F̄(t2)

,r = 1;

Ḡ(t1)
Ḡ(t2)

,r = 2.
(22)

By the assumption s(1) ≥hr s(2), S̄(2)
i /S̄(1)

i is non-increasing in i, and hence S̄(r)
i is RR2 in

(i, r) ∈ {k, ..., n − 1} × {1, 2}. On the other hand, it can be concluded from X1 ≤hr Y1 that
(ψr(t1, t2) − 1)i is also RR2 in (i, r) ∈ {k, ..., n − 1} × {1, 2}. From the fact that product of two
RR2 functions is an RR2 function, we conclude that pt1,t2,r

k,n (i) is RR2 in (i, r) ∈ {k, ..., n − 1} ×
{1, 2}. This completes the proof of the theorem.

Appendix H. Proof of Proposition 3.1

Let fτ denote the density function corresponding to F̄τ . On differentiating the cost function
(11) with respect to t, we obtain

d

dt
ηI(t)

sgn=
{(

ccms
fτ (t − τ )

F̄τ (t − τ )
+ A1(t)

F̄τ (t − τ )
+ A2(t)

F̄τ (t − τ )
+ A3(t)

F̄τ (t − τ )

)(
τ +

∫ t−τ

0
F̄τ (x)dx

)
−P2,k(τ, t)

[
(ccm − cpm)E(Nt,τ | (Xτ )k:n ≤ t< Tτ ) + ncpm

]
− n

∫ τ

0
ν(y)r(y)dy − Fτ (t − τ )ccms − cpmsP1,k(τ, t)

}
, (23)

where ‘
sgn= ’ means to have the same sign,

A1(t) = cpms

k−1∑
i=0

S̄i

(
n

i

)(
1 − F̄(t)

F̄(τ )

)i−1 (
F̄(t)

F̄(τ )

)n−i−1
f (t)

F̄(τ )

{
i

F̄(t)

F̄(τ )
− (n − i)

(
1 − F̄(t)

F̄(τ )

)}
,

A2(t) =n
(
ccm − cpm

) n−1∑
i=k

S̄i

(
n − 1

i − 1

)(
1 − F̄(t)

F̄(τ )

)i−1 (
F̄(t)

F̄(τ )

)n−i−1
f (t)

F̄(τ )

×
{

i
F̄(t)

F̄(τ )
− (n − i)

(
1 − F̄(t)

F̄(τ )

)}
,
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and

A3(t) = ncpm

n−1∑
i=k

S̄i

(
n

i

)(
1 − F̄(t)

F̄(τ )

)i−1 (
F̄(t)

F̄(τ )

)n−i−1
f (t)

F̄(τ )

{
i

F̄(t)

F̄(τ )
− (n − i)

(
1 − F̄(t)

F̄(τ )

)}
.

By using Equation (12), it can be observed that

lim
t→∞

fτ (t − τ )

F̄τ (t − τ )
= lim

t→∞ r(t),

lim
t→∞

A1(t)

F̄τ (t − τ )
= 0,

lim
t→∞

A2(t)

F̄τ (t − τ )
= −(i∗ − 1)(n − i∗ + 1)(ccm − cpm) lim

t→∞ r(t),

lim
t→∞

A3(t)

F̄τ (t − τ )
= −n(n − i∗ + 1)cpm lim

t→∞ r(t).

One can show that if

lim
t→∞ r(t)>

ccms + n
∫ τ

0 ν(y)r(y)dy

(ccms − ncpm − (i∗ − 1)(ccm − cpm))(n − i∗ + 1)(τ +μτ )
,

then the right-hand side of Equation (23) is positive. This means that, under the condition (13),
ηI(t) is eventually strictly increasing. On the other hand, one can obtain

lim
t→τ

d

dt
ηI(t) = −n

∫ τ
0 ν(y)r(y)dy + cpms

τ 2 .

Therefore, ηI(t) is initially decreasing. We conclude that ηI(t) has at least a finite minimum.
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