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Abstract

Data of 2780 Markhoz kids originated from 1216 dams and 211 sires during 1993–2016 in
Markhoz Goat Breeding Station, located in Sanandaj, Iran, were used. Traits investigated
were body weights at birth, weaning, six-month age [six months weight (6MW)], nine-
month age and yearling age [yearling weight (YW)]. Two considered multivariate models
including standard multivariate model (SMM) and fully recursive multivariate model
(FRM) were compared using deviance information criterion (DIC) and predictive ability mea-
sures including mean square of error (MSE) and Pearson’s correlation coefficient between the
observed and predicted values (r(y, ŷ)) of records. Spearman’s rank correlation coefficients
between posterior means of direct genetic effects of the studied traits of kids under SMM
and FRM were also calculated across all, 50, 10 and 1% top-ranked animals. In general,
FRM performed better than SMM in terms of lower DIC and MSE and also higher r(y, ŷ).
For all traits, the lowest MSE and the highest r(y, ŷ) were obtained under FRM. All structural
coefficients estimated under FRM were statistically significant except for that of 6MW on YW.
Comparisons of Spearman’s rank correlations between posterior means of direct genetic
effects of kids for growth traits under SMM and FRM revealed that taking the causal relation-
ships among the studied growth traits of Markhoz goat into account may cause considerable
re-ranking for the animals in terms of estimated breeding values, especially for the top-ranked
animals. It may be concluded that FRM had more plausibility over SMM for genetic evalu-
ation of the studied growth traits in Markhoz goat.

Introduction

Live body weight at different ages has decisive effects on the profitability of breeding enter-
prises. Therefore, these traits may be considered as selection criteria for developing efficient
breeding programmes (Tosh and Kemp 1994). Selection of the best animals for body weight
recorded at different ages to be parents of the next generation is a possible way for increasing
meat production (Boujenane and Kansari 2002).

Rosa et al. (2011) have pointed out that in any breeding programme dealing with multiple
traits, genetic evaluation has great importance for studying potential causal relationships
among the traits. In the classical breeding programmes, breeding values of the selected candi-
dates are predicted using standard mixed models [standard multivariate models (SMMs)], in
which the existed potential causal relationships among the traits are ignored (Valente et al.
2013). Gianola and Sorensen (2004) developed the theory of quantitative genetics to become
suitable for situations in which causal relationships exist between the phenotypes in a multi-
variate system.

Structural equation models (SEMs) enable fitting and studying cause-and-effect relation-
ships between the traits (Wright, 1934) and were first introduced in genetics by Wright
(1921) but have been ignored in quantitative genetics for many years. The work of Gianola
and Sorensen (2004) stimulated the application of SEMs in animal breeding and genetics
(Lopez de Maturana et al. 2010; Valente et al. 2010; Inoue et al. 2016; Mokhtari et al.
2018). Genetic parameters pertaining to SEMs can be useful for modelling biological relation-
ships among the phenotypes (Valente et al. 2010). Furthermore, considering the high compu-
tational demands, fitting SEMs in the model is more parsimonious than SMMs, due to
assumed uncorrelated residual effects. A number of studies have applied mixed-effects
SEMs in the animal breeding context (Lopez de Maturana et al. 2010; Mokhtari et al. 2018;
Amou Posht-e Masari et al. 2019).
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Despite the advances in agricultural methods in developing
countries, the number of goats has increased worldwide during
the last few decades (Abadi et al. 2011; Shamsalddini et al. 2016).
About 96% of goat’s meat and milk are produced in developing
countries, whereas only 4% are found in developed countries
(Esmaeili et al. 2019). Goat production is one of the major sources
of income for farmers in the arid and semi-arid regions of the
world (Barazandeh et al. 2012). Increasing meat, milk and fibre
production of goats is not out of reach for farmers by using accur-
ate and precise selection programmes (Moghbeli et al. 2013).
Markhoz goat is one of the most important indigenous goat breeds
in Iran. The breed is mainly kept by local flock holders in a wide
range of forest mountain habitats in the region of Kurdistan, north-
west of Iran. Markhoz goats are small-sized with a wide range in
coat colour, varying from white to black (Rashidi et al. 2015).
Many researchers have undertaken several studies on genetic evalu-
ation of growth traits in Markhoz goat (Rashidi et al. 2008, 2011)
and other goat breeds (Maghsoudi et al. 2009; Gholizadeh et al.
2010; Mohammadi et al. 2012); however, these studies have not
considered possible causal relationships.

To the best of our knowledge, there is only one report on genetic
evaluation of growth traits in breeds of goat considering possible
causal relationships among them. Mokhtari et al. (2018) compared
the SMM, which ignores the possible causal effects among the
traits, with the recursive multivariate model (RMM), a type of
SEM, which handles the existence of causal relationships among
the traits, in terms of the predictive ability of models and the esti-
mates of genetic parameters of growth traits in Raeini Cashmere
goat. They concluded that RMM was more plausible for the genetic
evaluation of growth traits in Raeini Cashmere goat in terms of bet-
ter predictive ability over SMM. The importance of considering
causal relationships among the traits for the accurate ranking of
animals was documented (Amou Posht-e Masari et al. 2019).

Therefore, the objectives of the present research were to
compare SMM and fully recursive multivariate model (FRM) in
terms of their predictive ability. Furthermore, the effect of differ-
ent mathematical models on the ranking of the animals based on
their predicted breeding values was also examined.

Materials and methods

Flock management and the studied traits

The data set and pedigree information used in the present study
were collected from 1993 to 2016 in Markhoz goat Breeding
Station located in Sanandaj, Kurdistan province, north-western
part of Iran. The herd was reared under a semi-intensive produc-
tion system, in which goats were grazed on natural pastures in
spring and were fed by a standard ration in other seasons of
the year. The period of mating started in October and lasted
until November, and the kidding season was from February to
March. Does were first exposed to the bucks approximately at
18 months of age. Annually, 20–30 bucks were randomly allo-
cated to mate with about 10 or 15 does each, with sire identifica-
tion recorded. Some of the sires were used for two or three mating
seasons. New-born kids were weighed and ear-tagged after birth
time and allowed to remain with their dam for a week. One
week after birth, the kids were separated from their dams and
suckled twice a day until 3–4 months of age. All kids weaned
on the same day (Rashidi et al. 2011).

The studied characteristics were body weight traits including
birth weight (BW), weaning weight (WW), six months weight

(6MW), nine months weight (9MW) and yearling weight
(YW). Animals with body weights outside of the range of
mean ± 3 × SD have been excluded from the data set. The structure
and summary of the data set used are presented in Table 1.

Statistical analyses

Investigating the importance of maternal effects on the studied
traits
In mammalian species, growth traits especially in early life are
determined not only by the animal’s own additive genetic merit
but also by maternal effects. The maternal effects mainly denote
those related to the milk production of dam and its mothering
ability (Roy et al. 2008). Previous studies confirmed the import-
ance of including maternal effects in genetic evaluation of growth
traits in several goat breeds (Roy et al. 2008; Rashidi et al. 2011).
Therefore, for studying the role of maternal effects on the genetic
evaluation of the studied traits a restricted maximum likelihood
procedure under average information algorithm, applying DMU
programme (Madsen et al. 2014), was used and nine models
including different combinations of direct additive effects, mater-
nal additive genetic, maternal permanent environmental and
maternal temporary environmental, were tested. The considered
models (in matrix notation) are as below:

y = Xb + Za + e Model 1

y = Xb + Za + Zpe + e Model 2

y = Xb + Za + Zm + e Cov(a, m) = 0 Model 3

y = Xb + Za + Zm + e Cov(a, m) = Aσam Model 4

y = Xb + Za + Zm + Zpe + e Cov(a, m) = 0 Model 5

y = Xb + Za + Zm + Zpe + e Cov(a, m) = Aσam Model 6

y = Xb + Za + Zpe + Zl + e Model 7

y = Xb + Za + Zm + Zpe + Zl + e Cov(a, m) = 0 Model 8

y = Xb + Za + Zm + Zpe + Zl + e Cov(a, m) = Aσam Model 9

where y is a vector of records for the studied traits; b, a, m, pe, l
and e are vectors of fixed, direct genetic, maternal genetic,
maternal permanent environmental, maternal temporary

Table 1. Descriptive statistics for the studied traits

Item

Traits (kg)

BW WW 6MW 9MW YW

Mean 2.6 16 18 21 25

SD 0.46 4.2 4.3 5.1 6.8

Min. 1.2 5 6 7 8

Max. 4.5 31 35 39 48

C.V. (%) 17.9 27 24 24 27

No. of records 2780 2780 2780 2780 2780

No. of sires 211 211 211 211 211

No. of dams 1216 1216 1216 1216 1216

BW, birth weight; WW, weaning weight; 6MW, six months weight; 9MW, nine months weight;
YW, yearling weight.
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environmental (common litter effects) and the residual effects,
respectively. The matrices of X, Za, Zm, Zpe, and Zl are design
ones associating corresponding effects to a vector of y. Also, A
is the numerator relationship matrix and σam denotes covariance
between additive and maternal effects. Common fixed effects
included in the models for the studied traits were the sex of
kids in 2 classes (male and female), dam age at lambing in 6
classes (2–7 years old), birth year in 23 classes (1993–2016) and
birth type in 3 classes (single, twin and triplet). Interactions
among fixed effects were also fitted. Age of kids at weaning, at
six months, at nine months, and at yearling body weight weighing
(in days) was considered as a linear covariate for WW, 6MW,
9MW, and YW, respectively. Significance testing of fixed effects
and least square analyses were carried out using the general linear
model procedure of the SAS software (SAS 2004). The interac-
tions between considered fixed effects were not significant and
therefore dropped out.

The Akaike’s information criterion (AIC) was applied for
determining the most appropriate model among tested models
(Akaike 1974):

AICi = −2 log Li + 2Pi

where log Li is the maximized log-likelihood and Pi is the number
of parameters fitted for model i. In each case, the model with the
lowest AIC was considered as the best model. The AIC values
under the considered animal models are given in Table 2, with
the most appropriate model in boldface for each trait.

Statistical inference

After the selection of the most suitable model of genetic analysis
for the studied traits, Bayesian Markov Chain Monte Carlo
(MCMC) implementation was carried out applying the
GIBBS2F90 programme of Misztal et al. (2002), which imple-
ments Gibbs sampling to evaluate the posterior density of the par-
ameter estimates. The length of the chain and the burn-in period
were examined by visual inspection of the trace plots of posterior
samples of the parameters in several preliminary analyses. For
each model, 100 000 iterations were run and posterior samples
from each chain were thinned considering thinning intervals of
10 iterations after discarding the first 10 000 iterations as burn-in.
Hence, 9000 samples were considered for computing features of
the posterior distribution. Posterior analyses for calculating pos-
terior means and posterior standard deviations (PSDs) were car-
ried out applying the POSTGIBBSF90 programme of Misztal et al.
(2002).

It was assumed that the direct additive and maternal additive
genetic effects followed a multivariate normal distribution, a
priori, with a null mean vector and a (co)variance matrix G⊗A,
where G and A are the genetic (co)variance matrix and numerator
relationship matrix among animals, respectively. Furthermore, it
was assumed that the vector of residual effects followed a multi-
variate normal distribution with a null mean vector and (co)vari-
ance matrix R⊗In, where In is an identity matrix and R is the
residual (co)variance matrix; ⊗ shows the Kronecker product.
Multivariate normal distribution was also assumed for maternal
permanent environmental and maternal temporary environmen-
tal effects so that their fully conditional distributions were also
multivariate normal. The prior distribution of the genetic (G),
maternal permanent environmental (Pe) and maternal temporary
environmental (L) (co)variance matrices were follow inverted

Wishart distribution so that their fully conditional posterior dis-
tributions were also inverted Wishart (Sorensen and Gianola
2002). The SEMs are not identifiable at the likelihood level due
to the presence of extra parameters, including structural coeffi-
cients. For achieving identification, it was assumed that residual
correlations in the system were uncorrelated. In other words, in
SEMs, R was assumed to be a diagonal matrix for the identifica-
tion purposes.

Lopez de Maturana et al. (2007) pointed out that the method
described by Gianola and Sorensen (2004) for incorporating cau-
sal effects in quantitative genetics is not straightforward enough to
perform in a general manner and showed that recursive models
could be handled by fitting parent trait as a covariate for other
trait(s) while genetic correlations between traits are considered
in multivariate analyses. In this case, the parent trait denotes
trait which causally influences other trait(s). Therefore, this meth-
odology was applied in the present study. Detailed information
and the theoretical background about the methodology used in
the present study for fitting recursive models are given by
Lopez de Maturana et al. (2007).

Model comparisons

The SMM and FRM were compared by applying deviance in-
formation criterion (DIC), predictive ability measures, and
Spearman’s rank correlations between posterior means of genetic
effects under SMM and FRM. The DIC takes the trade-off
between model goodness-of-fit and the corresponding complexity
of model into account (Bouwman et al. 2014). A model with
smaller DIC values is better supported by the data.

For assessing the predictive ability of the tested models (SMM
and FRM), the dataset was randomly partitioned five times into
two sets including the training set (50% of data set) and testing

Table 2. AIC values from univariate analysis for the studied traits with the best
model in bold

Traits

Modela BW WW 6MW 9MW YW

Model 1 −2415 9169 9415 10 086 11 390

Model 2 −2460 9147 9401 10 084 11 391

Model 3 −2445 9155 9407 10 087 11 394

Model 4 −2441 9159 9410 10 090 11 397

Model 5 −2458 9150 9404 10 090 11 394

Model 6 −2455 9153 9407 10 093 11 397

Model 7 −2534 9150 9403 10 090 11 393

Model 8 −2532 9153 9406 10 093 11 396

Model 9 −2529 9157 9409 10 096 11 400

BW, birth weight; WW, weaning weight; 6MW, six months weight; 9MW, nine months weight;
YW, yearling weight.
aModel 1 included direct additive and residual effects; Model 2 included direct additive,
maternal permanent environmental and residual effects; Model 3 included direct additive,
maternal additive and residual effects; Model 4 is similar to Model 3, but a covariance
between direct and maternal additive effects was assumed; Model 5 included direct
additive, maternal additive, maternal permanent environmental and residual effects; Model
6 is similar to Model 5, but a covariance between direct and maternal additive effects was
assumed; Model 7 included direct additive, maternal permanent environmental, maternal
temporary environmental and residual effects; Model 8 included direct additive, maternal
additive, maternal permanent environmental, maternal temporary environmental and
residual effects; Model 9 is similar to Model 8, but a covariance between direct and maternal
additive effects was assumed. The best model is shown in bold.

The Journal of Agricultural Science 513

https://doi.org/10.1017/S0021859620000830 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859620000830


set (retained 50% data set). Then, solutions for all fixed and ran-
dom effects of the training set were estimated and used to predict
body weight records in the testing set. The predictive ability of the
models was assessed by PREDICTF90 programme of Misztal et al.
(2002) and compared applying two measures. The first measure
was the mean square of error (MSE) as follow:

MSE =
∑n

i=1 (yi − ŷi)
2

n

where, yi and ŷi represent the ith observed and predicted record
for each trait in the testing data set, respectively, and n is the num-
ber of records. The second measure was the Pearson correlation
between observed and predicted values (r(y, ŷ)) in the testing
data set. The MSE and r(y, ŷ) values were calculated five times,
and the average of obtained results was used as the final value.
The lower MSE and higher r(y, ŷ) indicate the superiority of
the model.

The SMM and FRM were also compared using Spearman’s
rank correlations between the posterior means of genetic effects
for all, 50% top-ranked, 10% top-ranked and 1% top-ranked ani-
mals. For this purpose, breeding values (equivalent to the SMM)
were estimated as (Konig et al. 2008):

BV∗= L−1BV

where BV is a vector of breeding values estimated under FRM.
The matrix Λ is the structural coefficients matrix, in which diag-
onal elements are filled with 1 and the off-diagonal elements are
determined based on the causal relationships between the traits.
Structural coefficients are in fact a kind of regression coefficient,
which are estimated by fitting SEMs (Gianola and Sorensen
2004). The matrix of structural coefficients with five traits
under a FRM, which is used in the present study, is as follows:

L5×5 =

1 0 0 0 0
−l21 1 0 0 0
−l31 −l32 1 0 0
−l41 −l42 −l43 1 0
−l51 −l52 −l53 −l54 1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

where the first trait affects second, third, fourth, and fifth traits,
the second trait affects the third, fourth, and fifth traits, the
third trait affects fourth and fifth traits, and eventually, the fourth
trait has a causal effect on the fifth trait.

Results

Direct additive genetic and maternal additive genetic effects, with-
out considering covariance between them, and maternal perman-
ent environmental effects (Model 5) were random sources of
variation for BW. Model 2, in which direct additive genetic effects
and maternal permanent environmental effects were significant
random effects, determined as the best one for WW, 6MW and
9MW traits. Maternal effects had no influencing effects on YW.

The outcome of comparisons between SMM and FRM based
on DIC is presented in Table 3. The lower DIC was obtained
under FRM than SMM. The SMM and FRM were also compared
in terms of the predictive ability of models based on the average
MSE and average Pearson’s correlation coefficient between
observed and predicted records (r(y, ŷ)) of the traits under these

models (Table 4). For all the studied traits, the lowest MSE and
the highest r(y, ŷ) values were obtained under FRM, which was
more pronounced for 6MW, 9MW and YW than BW and WW.

Applying FRM features of posterior means and PSDs for struc-
tural coefficients among the studied body weight traits of
Markhoz goat are presented in Table 5. All the estimated struc-
tural coefficients were positive and highly significant, except for
that of 6MW on YW. Considering the causal structure considered
under FRM (Fig. 1) among the studied body weight traits of
Markhoz goat, BW had direct causal effects on all other studied
traits the estimated direct causal effects of BW on WW, 6MW,
9MW and YW were 1.24, 0.79, 0.87 and 0.50, respectively. In
other words, each 1 kg increase in BW of Markhoz kids will
increase WW, 6MW, MW and YW as 1.24, 0.79, 0.87 and 0.50
kg, respectively. Direct causal effects of WW on 6MW, 9MW
and YW were 0.65, 0.22 and 0.16, respectively.

Spearman’s rank correlations between posterior means of dir-
ect genetic effects within the studied traits applying SMM and
FRM for the whole animals, 50, 10 and 1% of top-ranked animals
are shown in Table 6. The highest Spearman’s rank correlation
(1.00) between posterior means of direct genetic effects was
obtained for BW. Rankings of the ten top-ranked animals for
the trait studied based on the posterior direct genetic effects
under SMM and FRM are shown in Table 7. Substantial changes
were observed in the rank of the ten top-rank animals especially
for 6MW, 9MW and YW. For example, for YW, the best animal
when applying SMM was ranked as the rank of 231 under FRM.

Discussion

Statistical comparisons between SMM and FRM

Mokhtari et al. (2018) compared RMM and SMM for genetic
evaluation of early growth traits in Raeini Cashmere goat includ-
ing BW, WW and 6MW in terms of DIC, MSE and r(y, ŷ) and

Table 3. DIC values from the different multivariate studied models

Model DIC

SMM 35 661

FRM 35 167

SMM, standard multivariate model; FRM, fully recursive multivariate model.

Table 4. Predictive ability for the studied traits under the different multivariate
studied models

Traits

Model

SMM FRM

MSE r(y, ŷ) MSE r(y, ŷ)

BW 0.176 0.456 0.174 0.471

WW 11.4 0.593 10.8 0.635

6MW 12.5 0.564 6.1 0.794

9MW 17.6 0.581 7.5 0.769

YW 24.5 0.665 12.4 0.849

BW, birth weight; WW, weaning weight; 6MW, six months weight; 9MW, nine months weight;
YW, yearling weight; SMM, standard multivariate model, FRM, fully recursive multivariate
model; MSE, mean square of error, r(y, ŷ) = Pearson correlation between observed and
predicted values.
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found lower DIC, lower MSE and higher r(y, ŷ) (for WW and
6MW) under RMM than the SMM one. They concluded that con-
sidering causal relationships among the studied growth traits in
Raeini goat may provide a better explanation for biological rela-
tionships among the studied traits. Amou Posht-e Masari et al.
(2019) compared three multivariate models including SMM, tem-
poral RMM and FRM for genetic evaluation of growth traits in
Lori-Bakhtiari sheep breed, temporal RMM favoured over other
models in terms of lower DIC.

In a previous study, Lopez de Maturana et al. (2010) consid-
ered causal relationships among calving traits including gestation
length (as parent trait), calving difficulty and stillbirth in first-
parity US Holsteins under three RMMs and compared them
with the SMM in terms of mean square error and Pearson’s cor-
relation coefficient between predicted and observed records. They
generally concluded that models included causal relationships
performed better than SMM by lower mean square error and
higher Pearson correlation coefficient between predicted and
observed records.

Structural coefficients

In the present study, any improvement in BW had positive causal
effects on the other body weight traits in Markhoz goat. Mokhtari
et al. (2018) reported direct causal effects of BW on WW and on
6MW of Raeini Cashmere kids as 1.94 and 2.48 kg, respectively,
which were higher than the corresponding values estimated in
the present study. Mioc et al. (2011) studied the BW and WW
of Croatian multicoloured goat kids and reported that kids with
higher BW have higher WW, also. Valente et al. (2013) pointed
out that the genetic effects from SMM and SEM have different
meanings, while the SMM represent overall genetic effects that
included all direct and indirect (which mediating by other traits)
effects on each trait and SEM represent only direct effects (which
not mediating by other traits in the causal network). Overall
effects may be partitioned into direct and indirect ones by apply-
ing SEM (Valente et al. 2013). As shown in Fig. 1, BW had indir-
ect causal effects on 6MW (mediated via WW), on 9MW
(mediated via WW and 6MW) and YW (mediated via WW,
6MW and 9MW). The indirect causal effect of BW on 6MW
was calculated as the product direct causal effects of BW on
WW (1.24), WW on 6MW (0.65) which was 0.806. The overall
causal effects of BW on 6MW are the summation of direct
(0.79) and indirect (0.806) causal effects, which is equal to
1.596. In general, each 1 kg increase in BW of Markhoz kids
will increase 6MW as 1.1596 kg. The overall causal effect (direct
and indirect) of BW on 6MW of Raeini Cashmere goat was
obtained as 4.48 kg by Mokhtari et al. (2018) which was higher
than the corresponding value obtained in the present study.
Considering the same manner, the overall effects of BW on
9MW and YW were calculated as 1.337 and 0.832 kg, respectively.

It may be concluded that any increase in WW of Markhoz kids
significantly will increase 6MW, 9MW and YW. Mokhtari et al.
(2018) studied causal relationships among early growth traits in
Raeini Cashmere goat by fitting a FRM. They estimated direct
causal recursive effects of WW on 6MW as 1.03 kg which was
higher than the corresponding value obtained in the present
study. WW had indirect causal effects on 9MW (mediated via
6MW) and on YW (mediated via 6MW and 9MW), which
were calculated as 0.38 and 0.27 kg, respectively. Overall causal
effects of WW on 9MW and YW were obtained as 0.60 and
0.43 kg, respectively. Direct causal effects of 0.58 and 0.71 kg

Table 5. Posterior means ± PSD for the structural coefficients under the fully
recursive multivariate (FRM) model

Traits Mean ± PSDa

BW–WW 1.2 ± 0.27

BW–6MW 0.8 ± 0.19

BW–9MW 0.9 ± 0.19

BW–YW 0.5 ± 0.28

WW–6MW 0.7 ± 0.03

WW–9MW 0.2 ± 0.03

WW–YW 0.2 ± 0.04

6–9MW 0.6 ± 0.03

6MW–YW 0.0 ± 0.04

9MW–YW 0.7 ± 0.04

BW, birth weight; WW, weaning weight; 6MW, six months weight; 9MW, nine months weight;
YW, yearling weight; PSD, posterior standard deviation.
a99% HPD intervals did not include zero.

Fig. 1. Multivariate fully recursive model considered among the studied growth traits
in Markhoz goat (BW, birth weight; WW, weaning weight; 6MW, six months weight;
9MW, nine months weight; YW, yearling weight).

Table 6. Spearman’s rank correlations of posterior means of direct genetic
effects for studied growth traits in Markhoz goat under the standard
multivariate (SMM) and fully recursive multivariate (FRM) models

Traits
All

animals
50%

top-ranked
10%

top-ranked
1%

top-ranked

BW 1.000** 1.000** 1.000** 1.000**

WW 0.994** 0.977** 0.940** 0.837**

6MW 0.945** 0.841** 0.762** 0.550**

9MW 0.925** 0.808** 0.670** 0.205ns

YW 0.892** 0.740** 0.548** 0.190ns

BW, birth weight; WW, weaning weight; 6MW, six months weight; 9MW, nine months weight;
YW, yearling weight.
**P-value <0.01, ns, P-value <0.05.
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were obtained from 6MW on 9MW and from 9MW on YW,
respectively. The indirect causal effect of 6MW on YW (mediated
via 9MW) was calculated as 0.411. No significant direct causal
effect was observed from 6MW on YW.

Ranking of animals under SMM and FRM

Considering causal relationships among the studied growth traits
of Markhoz goat had no impact on posterior means of direct gen-
etic effects of BW. In the fully recursive model considered among
growth traits of Markhoz goat (Fig. 1) BW is considered as a par-
ent trait, which influenced all other traits but not influenced by
the others. The obtained Spearman’s rank correlation between
posterior means of direct genetic effects of BW may be explained
partly by such a causal structure. When 50% and 10% of
top-ranked animals were considered, the lowest Spearman’s
rank correlations were obtained for YW (Table 6). There were
substantial changes for rank correlations between posterior
means of genetic effects under SMM and FRM for 1% top-ranked
animals, except for BW. Spearman’s rank correlations between
posterior means of direct genetic effects for 9MW and YW
were not statistically significant (P > 0.05); implied substantial
re-ranking of animals under SMM and FRM. Therefore, this
underlies the importance of model choice in breeding value esti-
mation and it may be concluded that accounting for causal rela-
tionships among the studied growth traits in Markhoz goat may
has beneficial effects for accurate predicting of breeding values
and correspondingly accurate ranking of top-ranked animals.
Konig et al. (2008) studied causal relationships between claw dis-
orders and milk yield in Holstein cows via recursive models and
reported changes in the ranking of top-ranked sires under SMM
and TRM. Amou Posht-e Masari et al. (2019) reported re-ranking
of the top-ranked animal for 6MW of Lori-Bakhtiari lambs under
SMM and temporal recursive model.

In conclusion, inferring relationships among the studied
growth traits in Markhoz could help to identify the development
of the growth process from birth to yearling age. Furthermore,
FRM showed more superiority over SMM in terms of lower

MSE and higher Pearson’s correlation coefficient between
observed and predicted records of the studied growth traits.
Furthermore, for fitting FRM, the residual correlations among
the traits studied were set zero, which reduced the number of
parameters to be estimated (15 residual correlations were not esti-
mated under FRM). On the other hand, FRM included extra para-
meters over SMM as structural coefficients (10 structural
coefficients were estimated in the present study). It may be con-
cluded that the FRM is a more parsimonious model than the cor-
responding SMM which reduces computational demands in a
multivariate genetic evaluation context. Comparisons of rank cor-
relations between posterior means of direct genetic effects for the
studied growth traits under SMM and FRM revealed that taking
the causal relationships among the studied growth traits of
Markhoz goat into account may cause considerable re-ranking
for the animals, especially top-ranked ones, in terms of the esti-
mated breeding values.

In conclusion, the present study revealed that causal effects
had more statistical advantages than ignoring them for accurate
genetic evaluation of the studied growth traits in Markhoz goat
in terms of predictive ability of models and ranking of animals.
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