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Abstract. A one-premiss rule is said to be archetypal for a consequence relation when not only
is the conclusion of any application of the rule a consequence (according to that relation) of the
premiss, but whenever one formula has another as a consequence, these formulas are respectively
equivalent to a premiss and a conclusion of some application of the rule. We are concerned here
with the consequence relation of classical propositional logic and with the task of extending the
above notion of archetypality to rules with more than one premiss, and providing an informative
characterization of the set of rules falling under the more general notion.

§1. Introduction and background. For present purposes languages—meaning sen-
tential languages—can be identified with their sets of formulas, taken to be freely generated
from a countably infinite set of sentence letters or propositional variables p1, p2, . . . (the
first three of which we abbreviate to p, q, r ), by means of connectives of varying arities.
We take an n-premiss rule over such a language L to be a set of n + 1-tuples of formulas
〈A1, . . . , An+1〉 (Ai ∈ L , i = 1, . . . , n + 1), thinking of each such tuple as an application
of the rule, with premisses A1, . . . , An and conclusion An+1. In what follows we are
concerned only with n-premiss sequential rules, in the sense of [8], which is to say those
rules R for which there is some 〈A1, . . . , An+1〉 ∈ R with every 〈B1, . . . , Bn+1〉 ∈ R being
a substitution instance of 〈A1, . . . , An+1〉 ∈ R, i.e., for every such 〈B1, . . . , Bn+1〉 there is
a substitution ¯s with ¯s(Ai ) = Bi (i = 1, . . . , n+1). These sequences 〈A1, . . . , An+1〉 ∈ R
of which every other tuple in R is a substitution instance are called skeletons of R in [12]:
they are unique to within relettering, so it is for most purposes safe to speak of the skeleton
of a rule, and to allow transfer of terminology from applying to rules to applying to
their skeletons, and vice versa.1 If there are m distinct sentence letters (counting by type
rather than token) appearing in the formulas A1, . . . , An+1 altogether, we call this an
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1 In [3] such skeletons are referred to as forms of inference, and the terminology of being archetypal
(introduced below) is applied to these rather than the induced rules; here we follow [10] in
applying it to the rules themselves. This is an example of the transfer of terminology mentioned
in the text to which this note is appended. Strictly speaking Rautenberg’s skeletons are not
of the form 〈A1, . . . , An+1〉 but are rather the corresponding pairs 〈{A1, . . . , An}, An+1〉, to
emphasize the irrelevance of a particular ordering of the premiss formulas. For many purposes
an intermediate version is desirable, in which the premisses are collected into a multiset rather
than a set, so that while order is disregarded, the “n” is stabilized in talk of the applications of an
n-premiss rule, but these details need not worry us here.
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m-variable rule. Rather than writing “〈A1, . . . , An+1〉” we write “A1, . . . , An/An+1” to
denote the skeleton in question, or alternatively, the unique rule with that skeleton. Given
a substitution-invariant consequence relation �,2 we say that such a rule is derivable for,
or (more often) is correct for, �, when A1, . . . , An � An+1. For ease of exposition and in
order for convenient terminology to have a natural interpretation—see Remark 1.5 below—
we restrict attention to consequence relations which are not only substitution-invariant but
satisfy some additional conditions:

Convention 1.1. From this point on, by a consequence relation will be meant a finitary
consequence relation which is both substitution-invariant and congruential. (� is congru-
ential if for any formulas A, B in the language of �, if A �� B then for any context
C(·) provided by the language, we have C(A) �� C(B). This terminology is taken
from Segerberg [13], adapting an earlier usage by Makinson. Alternative terms with some
currency are “extensional” and “self-extensional”—though the first of these is dangerously
misleading for the present concept.)

Humberstone [3] concentrates on the question of which rules are not only correct for a
consequence relation but archetypally so, in the sense that they subsume, modulo equiva-
lence (mutual consequence), every other correct rule. More precisely, where “C �� ¯s(A)”
means “C � ¯s(A) and ¯s(A) � C”:3

DEFINITION 1.2. A 1-premise rule A/B is archetypal for a consequence relation � when
A/B is correct for � and for any formulas C, D, for which C � D, there exists a substitu-
tion ¯s with C �� ¯s(A), and D �� ¯s(B).

It is easy to see, for example, that the two-variable rule A ∧ B/A—i.e., the rule with
skeleton 〈p ∧ q, p〉—is archetypal for the consequence relation, �CL, of classical propo-
sitional logic: any classically sanctioned inference from a formula C to a formula D can
be rewritten as the inference from a conjunction to its first conjunct, where the conjunction
is classically equivalent to C and the conjunct is classically equivalent to D (since we can
take the conjunction as D ∧ C and the inferred conjunct as D itself). On the other hand,
it is equally evident that the rule A ∨ A/A is not archetypal for �CL: it could at most
subsume inferences from C to D in which C and D were (classically) equivalent. Such
evident nonstarters for the status of archetypal rules we collect together in the following
definition:

DEFINITION 1.3. A 1-premiss rule A/B which is correct for a consequence relation � is
degenerate (w.r.t. �) if one of the following three conditions obtains:

(i) A � C for all C in the language of �;

(ii) � B (i.e., ∅ � B);

(iii) B � A.

Otherwise the rule A/B is nondegenerate w.r.t. �.

2 A consequence relation � is substitution-invariant (sometimes called ‘structural’) if
A1, . . . , An, . . . � B implies ¯s(A1), . . . , ¯s(An), . . . � ¯s(B) for all substitutions ¯s.

3 When the “�” notation appears decorated with a sub- or superscript, etc., we give the decoration
only in the forward direction, writing, for instance “A ��CL B” to mean that A �CL B and
B �CL A.

https://doi.org/10.1017/S1755020318000072 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000072


CLASSICALLY ARCHETYPAL RULES 281

The following appears as Theorem 2.1, with the parenthetical material included, in
[3] which also notes that the result can be strengthened into an equivalence, for correct
2-variable 1-premiss rules for �CL, between archetypal and nondegenerate.4 [10] shows
that the parenthetical qualification can be dropped: the result holds without the restriction
to 2-variable rules—that is, that it held for n-premiss rules for any n. (A streamlined version
of the proof appears in [11].)

THEOREM 1.4. Every nondegenerate (2-variable) 1-premiss rule which is correct for �CL
is archetypal for �CL.

In what follows, we shall be interested in relaxing the restriction in Theorem 1.4 (or in
Połacik’s generalization of it [10]) to 1-premiss rules. This will require coming up with
an appropriate definition of a notion analogous to (non)degeneracy—though perhaps not
deserving to be spoken of in precisely those terms, as we shall observe—since Definition
1.3 is tailored specifically to the 1-premiss case.

Continuing with these recapitulations, a principal theme in [3] is the contrast between
classical and intuitionistic (propositional) logic in respect of results like Theorem 1.4.
Denoting the latter’s consequence relation by � IL, we find that not only does Theorem 1.4
not survive the replacement of �CL by � IL, but the exceptions in the latter case are many
and various. Because this theme is not directly pertinent to the developments below, we
confine ourselves here to three examples from [3]: none of the following rules (identified
here by their skeletons), all of which are correct and nondegenerate for � IL, are archetypal
for � IL: p/q → p; p ↔ q/p → q; p/¬¬p. Further details may be found in [3].5 Among
the consistent extensions of � IL in the same language—one thing that might be meant
by ‘intermediate consequence relations’—the only one relative to which every correct
nondegenerate rule is archetypal is �CL; see Połacik [10, 11].

One can also consider extensions of � IL, �CL, etc., which expand the language, such as
arise in modal logic, adding an additional primitive 1-ary connective � (or instead �, or
for the case of � I L , both). If we want to consider the smallest monotone modal logic—
thought of as a consequence relation—with classical logic as the underlying nonmodal
logic, or more explicitly the smallest modal logic in which � is monotone, one adds
the further conditional constraint that whenever A � B, we have �A � �B. Note that
the corresponding constraint with “�” replaced by “��” is already built into the present
discussion by the congruentiality condition in Convention 1.1. A typical application6 of the
notion of archetypal rule in this setting is the observation that the monoton(icit)y constraint
here can be formulated in unconditional terms as by requiring that �(A ∧ B) � �A
for all A, B, here making use of the fact that p ∧ q / p is archetypal, and so one could
equally use any other one-premiss rule which is archetypal for �CL instead. For example,
using p / q → p in this capacity one could isolate the monotone modal logics as those
satisfying the condition that �A � �(B → A). On the other hand, since, as recalled above,
p / q → p is not archetypal for � IL, the smallest (congruential) intuitionistically based

4 In [3], m-variable rules—or their skeletons—are called m-ary, but this is confusing since we are
identifying rules with relations among formulas, so an m-ary rule should be an (m − 1)-premiss
rule, rather than a rule with an m-variable skeleton.

5 In the case of the last of these rules the situation is especially simple: no rule of the form ¬A/B
or A/¬B could be archetypal for � IL because ¬ is not universally representative according to
� IL. This point is stressed in [3] and [10]; on universally representative connectives generally,
see Chapter 9 of [5].

6 See the Digression on p. 347 of [7].
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modal logic in which � is monotone cannot be similarly captured as the least consequence
relation in the present language satisfying �A � �(B → A). For that consequence relation
we do not have, for example, �(r ∧ s) � �r , since r ∧ s / r cannot be subsumed under
p / q → p in intuitionistic logic. (This follows from Proposition 4.6 in [3] together with
the fact that (r → (r ∧ s)) → (r ∧ s) �IL r .) The following remark, occasioned by this
digression into the modal area, may be skipped by readers wanting to get straight to the
agenda of the present article.

REMARK 1.5. A referee commented that in view of part (iii) of Definition 1.3 the modal
rule A /�A, of Necessitation, counts as degenerate in (for example) S4, making the term
“degenerate” somewhat misleading. This has prompted the inclusion of Convention 1.1, to
make explicit our tacit preference for how the concepts in play here apply to the modal
case. Recall, sticking with the case of S4 (though any normal modal logic extending
KT would do for present purposes) that one distinguishes the local consequence relation
associated with a modal logic (in the set-of-formulas sense of ‘logic’) from the global
consequence relation associated with that logic: the former deems A to be a consequence
of a set of formulas if it can be derived from that set of formulas together with theorems
of the logic, with the aid of Modus Ponens, with the latter allowing also applications of
Necessitation. (The terminology is based on fact that the former consequence relation
preserves the property of being true at an arbitrarily selected point in a model for the
logic, while the latter preserves the property of being true throughout such a model.)
Let us call these relations, for the case of S4, �loc

S4 and �glo
S4 , respectively. Convention

1.1 with its condition of congruentiality directs us specifically to �loc
S4 because according

to �glo
S4 each of p,�p is a consequence of the other, while these two formulas are not

interreplaceable in arbitrary contexts (p → �p and �p → �p, being, for example,
respectively, unprovable and provable in S5). By contrast, for the (congruential) local
consequence relations, one does not have �A and A as consequences of each other. The
referee’s observation remains correct for the case in which degeneracy is understood as in
Definition 1.3 and then applied to the discussion of noncongruential consequence relations:
there is the misleading connotation that there is no significant distinction to be drawn
between two formulas which are consequences of each other. (Otherwise, why is the
transition from one to another of two such formulas being described as denegerate?) To
reinforce the local perspective, conditions like congruentiality, monotony and closure under
necessitation were not described using the vocabulary of rules, though of course one can
retain this perspective while adopting that vocabulary—for the purposes of presenting a
proof system, for example—provided one distinguishes between rules of proof and rules
of inference. The latter distinction does more work than the simple local/global contrast
in play here, a famous example being the case of uniform substitution, as a rule of proof
which is not a rule of inference, not preserving either truth at a point or truth throughout a
model but rather validity at a point (and therefore validity on a frame). See [4] for further
discussion. �

The remainder of our discussion returns us specifically to the case of classical logic,
as governing the connectives ∧, ∨, →, ↔, →, ¬ as well as, for good measure, the
nullary connectives � and ⊥, and the question raised above as to what an analogue of
Theorem 1.4 might look like once the restriction to 1-premiss rules is relaxed. A rule which
is archetypal for �CL will be called classically archetypal. So, although we begin with
the definition of archetypality for an arbitrary consequence relation, without restriction
to one-premiss rules, we will be aiming eventually for a characterization, specifically, of
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those rules which are classically archetypal. This will be appear as Theorem 3.9, the “if”
direction of which provides the analogue of Theorem 1.4 for the general many-premiss
case.

§2. Archetypality for multi-premiss rules. First, we need to generalize the notion of
archetypality so as to apply to rules with more than one premiss.

DEFINITION 2.1. A rule A1, . . . , An/B is archetypal for a consequence relation �
when A1, . . . , An/B is correct for � and for any formulas C1, . . . , Cn, D, for which
C1, . . . , Cn � D, there exist a permutation π : {1, . . . , n} −→ {1, . . . , n} and a sub-
stitution ¯s with Ci �� ¯s(Aπ(i)) for i = 1, . . . , n, and D �� ¯s(B).

Note that the n = 1 case of this definition coincides with archetypality for 1-premiss
rules as understood as in §1. A simpler definition would discard the part about permutations
here, and simply declare A1, . . . , An/B to be archetypal for � when C1, . . . , Cn � D
implies the existence of a substitution ¯s with Ci �� ¯s(Ai ) for i = 1, . . . , n, and
D �� ¯s(B). We shall have occasion to observe below (Remark 2.8) that this, for the
case of �CL, at least, is equivalent to that given in Definition 2.1; but it seems wiser not
to preempt at this stage the possibility that the order of the Ai may have to be changed for
〈C1, . . . , Cn, D〉 to be subsumable under 〈A1, . . . , An, B〉.

In the interests of completeness, we should pause for a moment to note that the range of
archetypal n-premiss rules, rather than just the n = 1 case, includes not only the case(s) of
n > 1 but also that of n = 0. Here Definition 2.1 applies, with formulas A1, . . . , An and
C1, . . . , Cn dropping out of the picture, leaving only B and D. Such a rule is, when correct
for a consequence relation, essentially just a theorem schema (or axiom schema) whose
applications are its instances, all of them consequences of ∅ by the consequence relation
in question. So when B is (the skeleton of) such a rule and for D with � D (or ∅ � D if
you prefer), we have B �� ¯s(D) automatically, taking ¯s as the identity substitution. Thus
for 0-premiss rules, correctness and archetypality coincide.

For many purposes it is possible to avoid considering multi-premiss rules once single-
premiss rules have been addressed, since one can transpose the one-premiss treatment to
the general case by replacing the rule A1, . . . , An / B with the rule A1 ∧ . . . ∧ An / B.
That would certainly not be possible here. Consider for example the rules with skeletons
p, q / p on the one hand and p ∧ q / p on the other. As already remarked in §1, the latter
rule is classically archetypal; the former is certainly not, subsuming by substitution only
those two-premiss inferences in which the conclusion is equivalent to one of the premisses.

EXAMPLE 2.2. (i) The rule with skeleton p, q/(p ∧ q) ∨ r is classically archetypal,
since if A, B �S C we have ¯s with ¯s(p) = A, ¯s(q) = B and ¯s(r) = C . One need only
check that ¯s((p ∧ q) ∨ r) is in this case CL-equivalent to C .
(ii) By contrast the rule with skeleton p, q/p ∧ q is not classically archetypal, since for
example, whenever C1, C2 �CL D while D �CL C1 or D �CL C2—e.g., recalling (i),
taking C1, C2, D as, respectively, p, q, (p ∧ q) ∨ r—we cannot have ¯s(p), ¯s(q) and
¯s(p ∧ q), alias ¯s(p) ∧ ¯s(q) equivalent, respectively, to C1, C2, D (which would force
D �CL C1 and D �CL C2). �

The nonarchetypal Example 2.2(ii) illustrates the same kind of phenomenon as those
cited in [3]—features of the example not shared by every (two-premiss) inference cor-
rect for the consequence relation, such as having its premisses be consequences of its
conclusion—but there is very little temptation to talk of the rule involved here,
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∧-introduction as one might naturally call it, as degenerate. One of the best known
two-premiss rules, Modus Ponens, with skeleton p → q, p / q would also not easily
be called degenerate, but it exhibits also too much specificity to be classically archety-
pal, since one of the premisses is a classical consequence of the conclusion. (This fea-
ture of the rule shows incidentally that, as with that in Example 2.2(ii), this rule is not
intuitionistically archetypal either. Another feature of the present case that could have
been cited to show that it is not classically archetypal—namely that the disjunction of
its premisses is a consequence of ∅—would not have carried across to the intuitionistic
setting.)

The impressionistic verdict of nondegeneracy for Modus Ponens could be justified by
the following extension of degeneracy as given in Definition 1.3: a rule A1, . . . , An/B
assumed correct for a consequence relation � is degenerate (w.r.t. �) if one of the following
three conditions obtains:

(i)′ A1, . . . , An � C for all C in the language of �;

(ii)′ � B;

(iii)′ B � Ai for all Ai (i = 1, . . . , n).

If conjunction behaves as expected according to � this amounts to the degeneracy (by
the lights of Definition 1.3) of the one-premiss surrogate A1 ∧ . . . ∧ An / B. This would
undermine the intuitive verdict of nondegeneracy of ∧-Introduction, and an even stronger
notion of nondegeneracy would still not provide a sufficient condition for archetypality in
the multi-premiss case. This stronger notion is the negation of degeneracy as defined by
(i)′, (ii)′ and the following weakening of (iii)′: (iii)′′ B � Ai for some Ai (i = 1, . . . , n).
Note that this still coincides with degeneracy à la Definition 1.3 but now rules not only
∧-Introduction but also Modus Ponens to be degenerate. But the classically correct rule
(with skeleton)

p, p ∧ q / (p ∧ q) ∨ r

is not degenerate while still classically archetypal, since it can only subsume an inference
from two premisses to a conclusion when one of the premisses has the other as a (classical)
consequence. Evidently we need to replace these notions of degeneracy by something less
specific, forbidding, essentially, the obtaining of any logical relations among the premisses
and conclusion of a rule other than as required for the correctness of the rule. This is most
conveniently done in semantic terms, as follows.

Call an assignment v of one of the two truth-values, T, F , to every formula a valuation.
(Thus all valuations are ‘bivalent’.) A valuation v is Boolean, if v respects the conventional
association of truth-functions with connectives (thus v(A ∧ B) = T iff v(A) = v(B) = T ,
for all A, B, etc.). Now for the reformulation: a classically correct rule A/B is nonde-
generate when there are Boolean valuations v1, v2, v3 with: v1(A) = F and v1(B) = F ,
v2(A) = F and v2(B) = T , and v3(A) = T and v3(B) = T . (Of course there are no such
valuations v with v(A) = T and v(B) = F , since ex hypothesi, A/B is correct.) This has an
obvious generalization to the case of n-premiss rules for n > 1, and similarly generalizing
from the Boolean case, via the notion of V -validity for any class V of (bivalent) valuations,
rule being V -valid when for all v ∈ V verifying its premisses verifies its conclusion.
(For V as the class of Boolean valuations, the V -valid rules are just those rules that are
correct for �CL, then.) What we now define is the more restrictive notion of being “exactly”
V -valid—the terminology, adapted from [1], being explained below—for which purpose
we first adapt some other terminology, from [2], p. 265:
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DEFINITION 2.3. (i) Where x1, . . . , xm ∈ {T, F} we say that a class of valuations V
imposes a ban on 〈x1, . . . , xm〉 for 〈A1, . . . , Am〉 just in case there is no v ∈ V for which
v(Ai ) = xi for i = 1, . . . , m.
(ii) We denote by βV (A1, . . . , Am) the set of all 〈x1, . . . , xm〉 such that V imposes a ban
on 〈x1, . . . , xm〉 for 〈A1, . . . , Am〉. Think of this as the set of bans V imposes in respect of
〈A1, . . . , Am〉.
(iii) When V is clear from the context, we write βV (·) as β(·), and refer to any 〈x1, . . . , xm〉
∈ β(A1, . . . , Am) as a ban obeyed by 〈A1, . . . , Am〉.

Using this apparatus there is the obvious definition of V -validity would have it that the
rule A1, . . . , An / B is V -valid when 〈T n, F〉 ∈ βV (A1, . . . , An, B), where 〈T n, F〉 ab-
breviates 〈T, . . . , T︸ ︷︷ ︸

n times

, F〉. What we need for present purposes is the following strengthening

of this notion of V -validity:

DEFINITION 2.4. A rule A1, . . . , An/B is exactly V -valid just in case

βV (A1, . . . , An, B) = {〈T n, F〉}.
The terminology here is adapted from de Jongh and Chagrova [1], in which the re-

sult of substituting A1, . . . , An for p1, . . . , pn in a formula F(p1, . . . , pn) is denoted
by F(A1, . . . , An) and is said to be exactly provable in a theory when F(A1, . . . , An) is
provable in that theory and for any other (propositional) context G of n formulas for which
G(A1, . . . , An) is provable in the theory, we have � IL F(p1, . . . , pn) → G(p1, . . . , pn).
De Jongh and Chagrova consider the case in which the theory in question may itself be a
logic, and in particular may be IL, as well as having in mind the case of theories—such as
Heyting Arithmetic—with IL (or rather, intuitionistic predicate logic) as the underlying
logic. If we take the theory and the logic to be classical (propositional) logic (i.e., in
the latter case replace the reference to � IL with one to �CL), then in the case where
F(p1, . . . , pn) is (p1 ∧ . . . ∧ pn−1) → pn the exact provability of F(A1, . . . , An) adds
to its provability—i.e., in the present setting, to An’s being a classical consequence of
A1, . . . , An−1—the requirement that anything else �CL tells us about A1, . . . , An follows
from this: these formulas stand in no further logical relations according to classical logic.7

This amounts to the class of Boolean valuations imposing no further ban in respect of
〈A1, . . . , An〉 beyond the ban on 〈T n, F〉 which the fact that A1, . . . , An−1 �CL An

records. We now return, for conformity with the earlier discussion, to the case in which
there are n (rather than n − 1) premisses, and “B” symbolizes the conclusion. What the
various considerations in play here suggest is the following result, which will appear as
Theorem 3.9: a rule A1, . . . , An/B is classically archetypal if and only if it is exactly
V -valid, where V is the class of Boolean valuations. Thus what correspond in the general
case to the correct but degenerate rules (in the sense of Definition 1.3) as precisely the
correct rules that are not classically archetypal, are the V -valid rules which fail to be exactly
V -valid for this choice of V .

The n = 1 form of the envisaged result is essentially a reworking of Theorem 1.4.
We can see the failure of p, q/p ∧ q to be archetypal, remarked on in Example 2.2(ii)
above, in the light of the present considerations in the following way. Understood relative

7 No further coercive logical relations, as it is put in Humberstone [6] (which, however, restricts the
discussion to binary logical relations), since here we want to exclude such ‘permissive’ relations
as consistency, etc.
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to the class of Boolean valuations, 〈p, q, p ∧ q〉 obeys not only a ban on 〈T, T, F〉,
reflecting the classical correctness of the rule p, q/p∧q, but also further bans on 〈F, F, T 〉,
〈F, T, T 〉, and 〈T, F, T 〉. To recast in the present terms another example—the case of
Modus Ponens—from our earlier discussion (after Example 2.2), β(p → q, p, q) con-
tains not only 〈T, T, F〉, required for correctness but also the supernumerary 〈F, F, T 〉,
〈F, F, F〉, and 〈F, T, T 〉.

The harder part of the main result of the present article, showing that a rule is classically
archetypal if and only if it is exactly V -valid for V the class of Boolean valuations, is the
main business of §3. But we can settle the easy (‘only if’) half at once. Since there will
be no further mention of nonclassical logics from this point on, to expedite discussion we
make the following:

Convention 2.5. For the remainder of our discussion archetypal means “classically
archetypal”, correct means “correct for �CL”, valuation means “Boolean valuation”, ex-
actly valid means “exactly V -valid for V = the class of (Boolean) valuations”, and equiv-
alent means being assigned the same value by every valuation in this class.

PROPOSITION 2.6. A rule is archetypal only if it is exactly valid.

Proof. Suppose that R = A1, . . . , An / B is (classically) archetypal. Thus R is
correct for �CL. To show that R is exactly valid, suppose otherwise. Then for some
〈x1, . . . , xn, y〉 �= 〈T n, F〉, the class of Boolean valuations imposes a ban on 〈x1, . . . , xn, y〉
for 〈A1, . . . , An, B〉. Let Ci be � if xi is T and let Ci be ⊥ if xi is F , for i = 1 . . . n, and let
D be � if y is T and ⊥ if y is F . Note that C1, . . . , Cn �CL D because 〈x1, . . . , xn, y〉 �=
〈T n, F〉, but C1, . . . , Cn / D cannot be subsumed under R because any ban obeyed by
〈A1, . . . An, B〉 will be obeyed by 〈¯s(A1), . . . ¯s(An), ¯s(B)〉 (¯s any substitution), so no such
(n + 1)-tuple can be coordinatewise equivalent to 〈C1, . . . , Cn, D〉, this sequence having
been chosen to assume (on any Boolean valuation) the banned sequence 〈x1, . . . , xn, y〉 of
truth-values. �

We can press Proposition 2.6 into service to help explain one aspect of the discus-
sion above. Although our definitions concerning multi-premiss rules are fully general,
our concrete illustrations have involved specifically two-premiss rules. We mentioned in
Example 2.2(i) a classically archetypal two-premiss rule, and in 2.2(ii) and the immediately
following discussion two correct but nonarchetypal rules—an ∧-introduction rule and an
→-elimination (or Modus Ponens) rule. Thus our sample of concrete two-premiss cases
involve an archetypal 3-variable rule and two nonarchetypal 2-variable rules. This is not
a misleading feature of the sample: There are no archetypal two-premiss two-variable
rules. For the succinct formulation of an observation explaining this fact, we use the
following:

Notation. Let Rn
m be the set of all correct n-premiss m-variable rules, and ARn

m be the set
of all such rules which are archetypal.

By Proposition 2.6, if R ∈ ARn
m , then all sequences 〈x1, . . . , xn+1〉 ∈ {T, F}n+1, except

〈T n, F〉 are realized as truth values for the formulas of the (skeleton of the) rule R. In
particular, the subsequences 〈x1, . . . , xn〉 ∈ {T, F}n (with repetitions) must exhaust the
whole set {T, F}n . It follows that

2m ≥ 2n+1 − 1;
that is, we must have m > n. This proves the following:
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OBSERVATION 2.7. There is no archetypal rule with m premisses and m or fewer vari-
ables; in particular, then, ARm

m = ∅, for all m ∈ N.

Thus our sample negative cases were those in which m ( = n) = 2.
When we have not only Proposition 2.6 but also its converse, the latter to be established

in the following section (Theorem 3.9), we shall have a simple decision procedure for
archetypality, since the exact validity of a rule can be decided by a truth-table test.8 Where
R = 〈A1, . . . , An, B〉 is an m-variable rule draw up the 2m-line truth-table noting the val-
ues given for the formulas A1, . . . , An, B in these lines and check that every combination
except for 〈T n, F〉 appears, which means that to make up for the missing 〈T n, F〉, some
other combination appears exactly twice. (These various lines of the truth table correspond,
in the reasoning of §3, to the atoms of the free Boolean algebra with m free generators.)

REMARK 2.8. The fact that archetypality and exact validity coincide also allows us to
settle an issue raised after the formulation of Definition 2.1. The worry was that a rule—
and for definiteness let us make it a three-premiss rule A1, A2, A3 / B might not be able to
subsume a particular transition from formulas C1, C2, C3, in that order, to D, in the sense
of there being a substitution ¯s with ¯s(A1) equivalent to C1, ¯s(A2) equivalent to C2, ¯s(A3)
equivalent to C3 (and also ¯s(B) equivalent to D), and instead have to do some permuting,
so that in fact, say, there was only a substitution ¯s for which while ¯s(A1) was equivalent
to C1 (and ¯s(B) equivalent to D), ¯s(A2) and ¯s(A3) were equivalent, respectively, to C3
and C2. At least in the case of classical archetypality, this cannot happen, since it is
immediate from the definition of exact validity that if rules R and S differ only up to a
permutation of their premisses, R is valid iff and only if S is. Thus for present purposes
it would have made no difference if the reference to permutations had been omitted from
Definition 2.1 (or equivalently, if we had insisted that the permutation π featuring there
should be the identity permutation). �

Using the truth-table method sketched above, one can easily verify that a rule is
exactly valid, when simply appealing to the definition of archetypality it would be far
from obvious that the rule is archetypal. The following is an illustration of this with a
rule in R2

3, contrasting in respect of ‘obvious archetypality’ with the rule (also in R2
3) of

Example 2.2(i).

EXAMPLE 2.9. The truth-table method shows that the rule with skeleton

p ∧ (q ∨ r), p ↔ (q ↔ r) / r

is exactly valid, and therefore, given the results of the following section, archetypal. Note
that here the conclusion position is occupied by a sentence letter, while in the rule of Exam-
ple 2.2(i), with skeleton p, q / (p ∧ q) ∨ r it was the premiss positions that were occupied
by sentence letters. This makes it less obvious that the premisses are independent—capable
of being assigned together all combinations of truth-values—than in the present case. That
combined with validity is not, it should be noted in passing, sufficient for exact validity,
as one sees from the case of the rule (with skeleton) 〈p ↔ q, q ↔ r, p ↔ r〉 which is
not exactly valid (and therefore by Proposition 2.6, unlike the other rules mentioned here,
lies outside AR2

3) which obeys bans not only on the validity-required 〈T, T, F〉 but also on
〈T, F, T 〉, 〈F, T, F〉, and 〈F, F, F〉. �

8 Furthermore, our proof in §3 yields an effective procedure supplying all substitutions required for
archetypality.
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Having sampled some of the convenience afforded to us by the fact that archetypal
and exactly valid rules coincide, it remains only to get down to establishing that this
is indeed a fact, as we shall at Theorem 3.9, supplementing Proposition 2.6 above with
a proof of its converse. (We also return to the first rule mentioned under Example 2.9
in Example 3.10 to illustrate an important aspect of the proof.) Although Theorem 3.9
expressly concerns exact validity, we derive it from Proposition 3.7 and Corollary 3.8
thereto and these results pertain to arbitrary sets of bans on truth-values for sequences of
formulas with no special privileging of the distinction between premisses and conclusions,
as attention to the particular ban 〈T n, F〉 suggests. It is for this reason that the second rule
touched on in Example 2.9 used the notation 〈p ↔ q, q ↔ r, p ↔ r〉, rather than the
notation p ↔ q, q ↔ r / p ↔ r . The sequence of formulas involved here does at least
obey a ban on 〈T 2, F〉, which is of no special interest as far as Proposition 3.7 or Corollary
3.8 is concerned.9 But we continue to refer to arbitrary (n + 1)-tuples, or (n + 1)-term
sequences of formulas, as n-premiss rules, on the grounds that we have defined a rule to
be any set of such sequences as are all substitution instances of one sequence in the set
(the skeleton of the rule) and proceeded to identify the rule in question by citing one such
representative sequence.

§3. The main result. This section is devoted to a proof of our main result, strength-
ening the “only if” in Proposition 2.6 to an “if and only if” in Theorem 3.9 and thereby
showing that the appropriate replacement for nondegeneracy as we pass from the one-
premiss case to characterizing archetypal rules with arbitrarily many premisses is indeed
exact validity. The following notation will allow for more concise formulations at some
points:

For any k ∈ N, let k stand for the set {1, . . . , k} and let P(k) denote the power set of k.
Let FBm be the free m-generated Boolean algebra, i.e., the Lindenbaum algebra of

classical propositional logic in the language with m propositional variables p1, . . . , pm .
Recall that the elements of FBm are equivalence classes [A] of formulas A with respect to
the equivalence relation ≡ defined as

A ≡ A′ iff A ��CL A′.

(We use the “≡” notation for its familiarity in this setting.) Let ≤ stand for the usual
ordering of the algebra FBm , that is

[A] ≤ [A′] iff A �CL A′.

As is well known, FBm is a Boolean algebra whose meet and join are infimum and
supremum with respect to ≤, respectively. The algebra FBm is freely generated by the
set of [pi ] for i ∈ m and the atoms of FBm are of the form

[px1
1 ∧ . . . ∧ pm

xm ],

9 For example, we may be interested in ordered triples 〈A, B, C〉 obeying a ban on 〈T, T, T 〉, i.e.,
inconsistent triples of formulas, for which it would not be natural to think of A and B as premisses
and C as a conclusion. Corollary 3.8 then implies that if 〈A, B, C〉 obeys this ban and no other
bans then any three jointly inconsistent formulas (whatever other logical relations may obtain
between them) are equivalent to substitution instances of A, B, C by some single substitution.
Similarly if 〈A, B, C〉 obeys this ban and some additional ban then such a substitution can be
found to formulas equivalent to any other three formulas obeying those two bans, regardless of
what further bans they may obey.
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where p0
i = ¬pi and p1

i = pi , for any propositional variable pi . The set of all the atoms
of the algebra FBm will be denoted by Atoms(FBm).

DEFINITION 3.1. We say that the sequence R̄ = 〈[A1], . . . , [An], [An+1]〉 of elements of
FBm is
(i) correct iff for every atom a of FBm,

if a ≤
∧

1≤i≤n

[Ai ] then a ≤ [An+1];

(ii) flexible iff R̄ is correct and for every set I ∈ P(n + 1) � {n} there is an atom aI such
that

aI ≤ [Ai ] iff i ∈ I .

There is a one-to-one correspondence between the atoms of FBm and valuations
v : {p1, . . . , pm} → {T, F}.10 Namely, for every atom a = [px1

1 ∧. . .∧ pm
xm ] we uniquely

assign the valuation va such that va(pi ) = xi . On the other hand for every valuation v we
uniquely assign the atom av such that av = [pv(p1)

1 ∧ . . . ∧ pv(pm )
m ]. Then a and va as well

as av and v will be said to be comprise a corresponding atom and valuation.

PROPOSITION 3.2. Let a and v be a pair of corresponding atoms of FBm and valuation.
Then, for every [A] ∈ FBm,

a ≤ [A] iff v(A) = T . (1)

Proof. Let a = [px1
1 ∧ . . . ∧ pm

xm ]. By the definition of ≤, the condition a ≤ [A] is
equivalent to

px1
1 ∧ . . . ∧ pm

xm �CL A. (2)

The fact that v(A) = T implies (2) follows from the well-known Kalmár Lemma (for the
Completeness Theorem for CL), as in [9, Lemma 1.13]. If (2) holds, then (by the Soundness
Theorem for CL), since v(px1

1 ∧ . . . ∧ pm
xm ) = T , we have v(A) = T . �

PROPOSITION 3.3. The rule 〈A1, . . . , An+1〉 ∈ Rn
m obeys a ban on 〈x1, . . . , xn+1〉 iff

there is no atom a of FBm such that

a ≤ [Ai ] iff xi = T .

Proof. From the definition of bans (Definition 2.3(iii)) and Proposition 3.2. �
By Propositions 3.2 and 3.3 we get the following:

COROLLARY 3.4. A rule 〈A1, . . . , An, An+1〉 ∈ Rn
m is correct iff there is no atom a of

FBm such that a ≤ [Ai ] iff i ∈ n.

This explains the restriction on the set I imposed in Definition 3.1(ii).

PROPOSITION 3.5. A rule R = 〈A1, . . . , An, An+1〉 ∈ Rn
m is exactly valid iff the

corresponding sequence R̄ = 〈[A1], . . . , [An], [An+1]〉 of elements of FBm is flexible.

10 As valuations were introduced in the discussion before Definition 2.3 they assigned a truth-
value to every formula of the language, so the language for present purposes is the set
of formulas constructed from sentence letters p1, . . . , pm , and since Boolean valuations are
uniquely determined by their behaviour on the sentence letters, here we are identifying valuations
with assignments of truth-values to the sentence letters p1, . . . , pm .
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Proof. First we show that the rule R is correct iff the sequence R̄ is correct. Assume that
R is correct, i.e., A1, . . . , An �CL An+1. Then in FBm , we have

∧
1≤i≤n[Ai ] ≤ [An+1],

and in particular, for every atom a, if a ≤ ∧
1≤i≤n[Ai ] then a ≤ [An+1] which amounts

to the correctness of the sequence R̄. Now suppose that the rule R is not correct. Then
A1, . . . , An �CL An+1, so there is a valuation v such that v(Ai ) = T for 1 ≤ i ≤ n, and
v(An+1) = F . Then it follows from Proposition 3.2 that for the corresponding atom av we
have av ≤ ∧

1≤i≤n[Ai ] and av �≤ [An+1], i.e., the sequence R̄ is not correct.
Assume that R is exactly valid. Consider I ⊆ (n + 1) such that I �= n. Then there is a

valuation v such that

v(Ai ) =
{

T if i ∈ I,

F if i ∈ (n+1) � I .

Hence v(
∧

i∈I Ai ∧∧
i∈(n+1)�I ¬Ai ) = T . By Proposition 3.2, for the corresponding atom

av we have av ≤ [Ai ] iff i ∈ I .
Assume that the sequence R̄ = 〈[A1], . . . , [An], [An+1]〉 is flexible. Let

�x = 〈x1, . . . , xn+1〉 ∈ {T, F}n+1

such that �x �= 〈T n, F〉. Let I = {i ∈ (n + 1) : xi = T }. Then there is an atom a such that
a ≤ [Ai ] iff i ∈ I . Then, by Proposition 3.2, for the valuation va corresponding to a, we
have va(Ai ) = T iff i ∈ I . Hence it follows that va(Ai ) = xi for 1 ≤ i ≤ n + 1. �

DEFINITION 3.6. Let R̄ = 〈[A1], . . . , [An], [An+1]〉 be a sequence of elements of the
algebra FBm. For every set I ⊆ (n + 1) we define the following sets of atoms:

At(R̄, I ) := {a ∈ Atoms(FBm) : a ≤ [Ai ] iff i ∈ I },
and let

β̄(R̄) = {I ⊆ (n + 1) : At(R̄, I ) = ∅}.
PROPOSITION 3.7. Let R̄ = 〈[A1], . . . , [An+1]〉 and S̄ = 〈[B1], . . . , [Bn+1]〉 be se-

quences of elements of the free Boolean algebra FBm such that β̄(R̄) ⊆ β̄(S̄). Then there
is an endomorphism ε : FBm → FBm such that ε([Ai ]) = [Bi ], for all i ∈ (n + 1).

Proof. Notice that⋃
{At(R̄, I ) : I ⊆ (n + 1)} =

⋃
{At(S̄, I ) : I ⊆ (n + 1)} = Atoms(FBm).

Indeed, for any atom a, we have a ∈ At(R̄, Ia), where Ia = {i ∈ (n + 1) : a ≤ [Ai ]}.
Similarly in the other case.

In terms of the families {At(R, I ) : I ⊆ (n + 1)} and {At(S, I ) : I ⊆ (n + 1)} we will
define an endomorphism ε : FBm → FBm .

First, we define a function ε̄ : Atoms(FBm) → FBm in the following way. For every
nonempty set At(R̄, I ) we choose an atom aI ∈ At(R̄, I ) and put

ε̄(aI ) =
∨

{b : b ∈ At(S̄, I )}
and ε̄(a) = 0 for other atoms in At(R̄, I ) and when At(S̄, I ) = ∅.

Obviously, every nonzero element of the algebra FBm can be uniquely represented by a
join of the some atoms of FBm . In particular, for each i ∈ m we have

[pi ] =
∨

{[px1
1 ∧ . . . ∧ pxm

m ] : xi = T }.
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Now we can define the required endomorphism by setting its values on the set of generators
of the algebra FBm :

ε([pi ]) =
∨

{ε̄([px1
1 ∧ . . . ∧ pxm

m ]) : xi = T }. (3)

Notice that for any elements [Ai ] and [Bi ] of FBm where i ∈ (n + 1), we have

[Ai ] =
∨

{a : a ∈ At(R̄, I ) and i ∈ I }
[Bi ] =

∨
{b : b ∈ At(S̄, I ) and i ∈ I }.

Recall that if a ∈ At(R̄, I ) for some set I , then ε(a) is a join of atoms of At(S̄, I ) or ε(a)
is equal to 0 when At(S̄, I ) is the empty set. Moreover, by the assumption

β̄(R̄) ⊆ β̄(S̄),

each nonempty set At(S̄, I ) of atoms is represented as ε̄(a) for some a. So, in a sense, all
the atoms of FBm are in the range of ε̄. Consequently, for every i ∈ (n+1), we get

ε([Ai ]) =
∨

{ε(a) : a ∈ At(R̄, I ) and i ∈ I }
=

∨
{b : b ∈ At(S̄, I ) and i ∈ I }

= [Bi ].

Hence ε is the desired endomorphism of the algebra FBm . �
Notice that from Proposition 3.7 it follows that if R̄ = 〈[A1], . . . , [An+1]〉 a flexible

sequence then for every correct sequence S̄ = 〈[B1], . . . , [Bn+1]〉 of elements of FBm ,
there is an endomorphism ε : FBm → FBm such that ε([Ai ]) = [Bi ], for all i ∈ (n + 1).

Recall that β(A1, . . . , An+1) is the set of bans to {T, F}n+1 imposed in respect of the
rule 〈A1, . . . , An+1〉.

COROLLARY 3.8. Let R = 〈A1, . . . , An+1〉 and S = 〈B1, . . . , Bn+1〉 be any rules
of Rn

m for which β(R) ⊆ β(S). Then there is a substitution ¯s for which we have
¯s(Ai ) ��CL Bi , for i ∈ (n + 1).

Proof. Consider the sequences R̄ and S̄ corresponding to the rules R and S, respectively.
It is easy to see that

β̄(R̄) ⊆ β̄(S̄) iff β(R) ⊆ β(S).

Then, by Proposition 3.7, there is an endomorphism ε of the algebra FBm such that
ε([Ai ]) = [Bi ], for all i ∈ (n + 1). The required substitution ¯s can be defined, up to
equivalence in CL, by means of ε in the natural way by putting ¯s(pi ) to be the disjunction
of the representatives of the equivalence classes of atoms as in (3). �

THEOREM 3.9. A rule is archetypal if and only if it is exactly valid.

Proof. The ‘only if’ half was Proposition 2.6. The ‘if’ half is a special case of Corollary
3.8, since that tells us that if a rule R is exactly valid, and hence β(R) ⊆ β(S) for any valid
rule S with the same number of premisses, then there is a substitution subsuming S under
R, showing R to be archetypal. �

EXAMPLE 3.10. Identifying rules with their skeletons, recall the rules

R = p1, p2 / (p1 ∧ p2) ∨ p3 and S = p1 ∧ (p2 ∨ p3), p1 ↔ (p2 ↔ p3) / p3
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noted in Examples 2.2(i) and 2.9 to be, respectively, archetypal and exactly valid (at a
stage before we had proved these two notions to be coextensive; for continuity with our
more recent discussion, here write p, q, r explicitly p1, p2, p3). To illustrate the procedure
described in the proof of Proposition 3.7 we follow that procedure to find a substitution ¯s
such that ¯s(S) = R.

We consider the Lindenbaum algebra FB3 and the atoms ai of FB3. Let x1x2x3 be the
binary representation of the number i , then, identifying 0 and 1 with F and T , respectively,

ai = [px1
1 ∧ p2

x2 ∧ p3
x3 ],

where, as at the start of this section, p0
i = ¬pi and p1

i = pi , for the propositional
variables pi .

One can check that

At(S̄, ∅) = {a0} At(R̄, ∅) = {a0}
At(S̄, {1}) = {a6} At(R̄, {1}) = {a4}

At(S̄, {2}) = {a2, a4} At(R̄, {2}) = {a2}
At(S̄, {3}) = {a3} At(R̄, {3}) = {a1}
At(S̄, {1, 2}) = ∅ At(R̄, {1, 2}) = ∅

At(R̄, {1, 3}) = {a5} At(S̄, {1, 3}) = {a5}
At(R̄, {2, 3}) = {a1} At(S̄, {2, 3}) = {a3}

At(R̄, {1, 2, 3}) = {a7} At(S̄, {1, 2, 3}) = {a6, a7}.
Since At(S̄, {2}) contains two elements, we have to consider two cases according to the

choice of the element of this set. So, we have the functions ε1 and ε2 defined on the set of
atoms.

ε1(a0) = a0 ε2(a0) = a0

ε1(a1) = a3 ε2(a1) = a3

ε1(a2) = a2 ε2(a2) = 0

ε1(a3) = a1 ε2(a3) = a1

ε1(a4) = 0 ε2(a4) = a2

ε1(a5) = a5 ε2(a5) = a5

ε1(a6) = a4 ε2(a6) = a4

ε1(a7) = a6 ∨ a7 ε2(a7) = a6 ∨ a7.

So we have

ε1([p1]) = ε1(a4 ∨ a5 ∨ a6 ∨ a7) = a4 ∨ a5 ∨ a6 ∨ a7

ε1([p2]) = ε1(a2 ∨ a3 ∨ a6 ∨ a7) = a1 ∨ a2 ∨ a4 ∨ a6 ∨ a7

ε1([p3]) = ε1(a1 ∨ a3 ∨ a5 ∨ a7) = a1 ∨ a3 ∨ a5 ∨ a6 ∨ a7.

Now we can compute the required substitution:

¯s1(p1) = p1

¯s1(p2) = (p1 → (p3 → p2) ∧ ((p2 ↔ p3) → p1)

¯s1(p3) = (p1 ∧ p2) ∨ p3.
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In a similar way we can compute the other substitution

¯s2(p1) = (p2 → p3) → p1

¯s2(p2) = (p3 → p2) ↔ p1

¯s2(p3) = (p1 ∧ p2) ∨ p3. �

We illustrate the same procedure but now considering a rule which is correct though not
archetypal, with a view to subsuming it under the rule S of Example 3.10.

EXAMPLE 3.11. The rule in question is the Modus Ponens rule, MP =〈p1→p2, p1, p2〉,
observed in the discussion immediately following Example 2.2 not to be archetypal
(something later seen in Observation 2.7 to follow immediately from the fact that MP ∈
R2

2. We wish to find ¯s with ¯s(S) = MP, S being as in Example 3.10. Proceeding as before
we can find two required substitutions either of which will serve as such an ¯s:

¯s3(p1) = p1 → p2

¯s3(p2) = p2 → p1

¯s3(p3) = p2

and

¯s4(p1) = �
¯s4(p2) = p1 ↔ p2

¯s4(p3) = p2. �

REMARK 3.12. Recall (from Observation 2.7) that if R = 〈A1, . . . , An+1〉 ∈ Rn
m is

exactly valid then m ≥ n + 1. One can show that for such a rule R there is a substitution
¯s for which the rule ¯s(R) = 〈¯s(A1), . . . , ¯s(An+1)〉 ∈ Rn

n+1 is an exactly valid (n + 1)-ary
rule. The proof is similar to that of Theorem 2 of [11]. (This fact, in case of n = 1, was
used in [10] to prove that every nondegenerate 1-premiss rule is archetypal by reducing the
problem for the rules in more than two variables to the 2-variable rules, the latter having
been settled in [3], as was recalled in Theorem 1.4 and the surrounding discussion.) �

§4. Acknowledgment. For numerous improvements incorporated into this article, we
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