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The concept of generalized order statistics was introduced as a unified approach to
a variety of models of ordered random variabl€se purpose of this article is to
investigate the conditions on the parameters that enable one to establish several
stochastic comparisons of genepaspacings for a subclass of generalized order
statistics in the likelihood ratio and the hazard rate ordersservation properties

of the logconvexity and logconcavity gfspacings are also given

1. INTRODUCTION

The concept of generalized order statistics was introduced by Kah7pk8] as a
unified approach to a varity of models of ordered random varigilés. Choosing
the parameters appropriatebeveral other models of ordered rv's are seen to be
particular case€One may refer to KampsL8] for ordinary order statistigsecord
values order statistics with nonintegral sample sizeecord valuessequential order
statistics and Pfeifers recordsefer to BalakrishnanCramer and Kampg 2] for
progressive type Il censored order statistansd refer to BelzungeMercadeyand
Ruiz[6] and references therein for order statistics under multivariate imperfect repair
Generalized order statistics have been of interest during the last few years because
they are more flexible in statistical modeling and infere(ses e.g., AL-Hussaini
and Ahmd[1], Cramer and KampE9], Cramey Kamps and Rychlik[10], Gajek
and Okolewsk{13], Keseling[19], and Nasri-Roudsafi24]).

Stochastic comparisons of spacings of order statistics have been studied by
several author¥Kochar[21], Khaledi and Kochaf20], and others comparégdor-
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malized simple spacingsand Hu and Wej15], Misra and van der Meulef22],
and Hu and ZhuanfdL6] considered generatspacingslt is natural and interesting
to obtain stochastic properties of spacings of generalized order statistics by analogy
with ordinary order statistic§-rancq Ruiz, and Ruiz[12] and Belzunce et a|6]
have made some contributions to this directiBelzunce et al[6] touched upon
one comparison of generplspacings of generalized order statistics in the usual
stochastic order

The purpose of this article is to investigate the conditions on the parameters
that enable one to establish several stochastic comparisons of gprsgratings
for a subclass of generalized order statistics in the likelihood ratio and the hazard
rate ordersin Section 2 we recall the definitions of generalized order statistics
some stochastic orderand some aging notionand we give some useful lemmas
that will be used in Sections 3 and RBreservation properties of the logconvexity
and logconcavity op-spacings are given in Sectioninally, in Section 4general
p-spacings of generalized order statistics are compared in the likelihood ratio and
the hazard rate orders

Throughout the terms “increasing” and “decreasing” mean “nondecreasing”
and “nonincreasing respectively a/0 is understood to be whenever > 0. All
integrals and expectations are implicitly assumed to exist whenever they are writ-
ten For any rvX with distribution functionF, F = 1 — F denotes its survival func-
tion. All distribution functions under consideration are restricted to be continuous
with its support in the positive real ling , .

2. PRELIMINARIES
2.1. Generalized Order Statistics

Uniform generalized order statistics are defined via some joint density function on
a cone of theli". Generalized order statistics based on an arbitrary distribution
functionF are defined by means of the inverse functioriof

DEerFINITION 2.1 (see Kampg17]): Letne N, k=1, my,...,m,_; €N, M, =

,-”;rl m;, 1=r =n-—1, be parameters such that ,=k+n—r + M, = 1for all
r=1,...,n—1,andletm=(my,...,m,_,) ifn =2 (M arbitrary if n=1). If the rv’s
U(r,n,mk), r=1,...,n, possess a joint density of the form

on the coned = u; = U, = --- = U, < 1 of N", then they are called uniform
generalized order statistics. Now, let F be an arbitrary distribution function.
The rv's,

X(r,n,mk) = F*(U(r,n, mk)), r=1...,n,
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are called the generalized order statistics (GOSs, for short) based on F, whére F
is the inverse of F defined by B(u) = sup{x: F(x) = u} for u € [0,1]. In the
particular case m= --- = m,_, = m, the above rv’s are denoted by(tJn, m, k)
and X(r,n,m,k), r =1,...,n, respectively.

Ordinary order statistics of a random sample from a distribukiare a par-
ticular case of GOSs whdn=1 andm, =0 forallr =1,...,n—1. Whenk=1 and
m,=—1forallr=1,...,n—1, then we get the first record values from a sequence
of rv’s with distribution F. Choosing the parameters appropriatelgveral other
models of ordered rv’s are seen to be particular cases

Itis well known that GOSs from a continuous distribution form a Markov chain
with transition probabilities

F(t) \rn
P[X(r,n,mk) >t|X(r—1Lnmk)=s]= <—>

F(s)
fort=sandr=2,...,n. (2.1)
Throughout this articlewe consider the special case of GO&g = --- =
m,_, = m) in which the marginal distribution and density functions of tlie GOS
have closed formsStochastic properties gd-spacings of general GOSs are still
under our investigatianf F is absolutely continuous with density functifhemma

3.3 of Kampg 18] states thatfor eachr =1,..., n, the marginal density function of
therth GOSX(r,n,m k) based orF is given by

fX(r,n,m,k)(X) = d)r,n,m,k(F(X))f(X), (22)
where

( l)‘

is the marginal density function &f(r, n,m k) andc,_; n = ITj—1 ¥;.n, ¥n.n = k, and
M, = 0. Here the functiong.,:[0,1) — N, m € N, is defined by

Fr.nmi(U) = L-wreHgnw]™,  ue (0, (2.3)

1
——[1-1-x"1], m#-1
Om(x)={m+1 (2.4)
—log(1 - x), m=—1.
It is easy to see that
Yon=k+(—r)(m+1), r=1..,n,

and thatg,,,(x) is nonnegative and increasing;re [0,1) for eachm € N.
Let F be a distribution function of some nonnegative For a given positive
integerp, p<n, let

D\? = X(r + p—1,n,mk) — X(r —1,n,mk), r=1..,n—p+1

https://doi.org/10.1017/5026996480505014X Published online by Cambridge University Press


https://doi.org/10.1017/S026996480505014X

260 T. Hu and W. Zhuang

denote thg-spacings of the GOS§(1, n,m k) = X(2,n,m k) = --- = X(n,n,m,k).
Herg X(0,n,m, k) = 0. Forp = 1, 1-spacings are simple spacings in the literature
Let f'P(x), F\P(x), and F,?(x) denote the respective densitjistribution and
survival functions oﬂDr(,?f, r=1...,n—p+ 1 Clearly flf‘,’])(x) = fx(p,nmi(X)
given by(2.2). From Lemma 3 of Kamps[18], it follows that

(p) _ Cr+p—2,n
fen 0 = T op— 1
x [ TF @I g (F @I 2[F Ot s
X [Gm(F(x + ) — gm(F(u)] P~ (x + u) du (2.5)
and hence
=(p) _ Cr-%—p—2,n
Fen 0 = T n(p 1)

Xfo [F (W™ (W[ gm(F )] 2[F(x + u)] e

X {fl[gm(l —F(x+ u)2z) — gn(F(u))]P~1z7r+p-2n1 dz} du (2.6)

forr=2,...,n—p+1landx=0.

The next proposition states that under suitable restrictions on the parameters of
GOSs the conditional distribution of one GOS given another lower-indexed one
based on a continuous distribution has the same distribution as some GOS based on
the truncated parent distributioe denote byY|A] any rv whose distribution is
the conditional distribution o¥ given eventA.

ProrosiTioN 2.1: Let X(r,n,mk), r = 1,...,n, be GOSs based on a continuous
distribution function F. For each & SuppF), the support of F, denotg,(x) =
F(u+ x)/F(u) for x= 0. Then

[X(r+p—1nmk) — X(r—1,n,mKk)|X(r —1,n,mKk) = u]
2X”(p,n—r+1,m,k),

where p=landr=2,...,n—p+ 1, and X!(p,n —r + 1, mk) is a GOS based
on F,.

Proor: The proof of the casen # —1 is the immediate consequence of Theo-
rem 32 in Keseling[19]. A limiting argument can establish the casenof= —1.
|

For the sake of brevityhe constani in y, , andc, , is suppressed when there
is no confusion in the following context
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2.2. Stochastic Orders and Aging Notions

Some stochastic orders and aging notions that will be used in this article are recalled
in the following two definitions respectively

DEFINITION 2.2: Let X and Y be two rv’'s with respective survival functiénand
G. We say that X is smaller than Y if the following hold:

« In the usual stochastic order, denoted by=% Y or F =, G, if F(t) = G(t)
for all t or, equivalently E[ ¢ (X)] = E[¢(Y)] for all increasing functiongh

« In the hazard rate order, denoted by=X,, Y or F =, G, if G(t)/F(t) is
increasing in t for which the ratio is well defined

* In the likelihood ratio order, denoted by X, Y or F =<, G, if X and Y have
respective density functions (or mass functions) f and g anét)ffgt) is
increasing in t for which the ratio is well defined.

The relationships among these orders are shown in the following diagean
Shaked and Shanthikumgz7], and Miller and Stoyaf23]):

X<, Y= X=p Y= X=4Y.

DEeFINITION 2.3: Let X be a nonnegative rv with distribution function F. X or F is
said to be

* ILR (increasing likelihood ratio) [DLR (decreasing likelihood ratio)] if its
density function x) exists and is logconcave [logconvex] i ;.

« IFR (increasing failure rate) [DFR (decreasing failure rate)]f(x) is log-
concave [logconvex] inx N,

* DRHR (decreasing reversed hazard rate) [IRHR (increasing reversed hazard
rate)] if F (x) is logconcave [logconvex] in &€ 9N, .

If fis logconcavethenF andF are also logconcavéseg e.g., Chandra and
Roy[8], Barlow and Proscha#, p. 77]). If fis logconvexthenF is also logcon-
vex while F is logconcave(see Sengupta and Nanf26]). Furthermore Block,
Savits and Singt 7] proved that ifF is logconvex therf is logconcaveTherefore

ILR = IFR and DRHR
DLR = DFR= DRHR.

2.3. Some Useful Lemmas

The following lemmas are useful in deriving the main results of this artidenma
2.1 is due to Misra and van der Meulg?2], hereafter referred to as MMLemma
2.2 is the extension of LemmaZRin MM.

LEmMMA 2.1: Let ® be a subset of the real ling and let X be a nonnegative rv
having a distribution function belonging to the famify= {G(-|6),6 € 0}, which
satisfies that
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G(-1601) =«[=s] G(-]16,) wheneer6,,0, € ® andb, < 6,.
Let¥(x,0) be a real-valued function defined &t X ®. Then the following hold:

() Ey[Ww(X,0)]is increasing ing if ¥(x,0) is increasing inY and increasing
[decreasing] in x

(i) Ey[¥(X,0)]isdecreasing i if ¥(x, ) is decreasing i and decreasing
[increasing] in x.

LeEmMA 2.2: Let X be a nonnegative rv with distribution function F. If X is DLR
[ILR] and if m = 0, then the following hold:

(i) For each fixed ue M.,

gm(F(X + U)) B gm(F(u))
Im(F (X))

is increasing [decreasing] in x& N, .

Pu(X) =

(ii) For fixed %, > x4 > 0,

Om(F (X2 + u)) — gm(F(u))
Im(F (X1 + ) — gm(F(u))

is increasing [decreasing] in & N, .

Py x,(U) =

Proor: Denotel ,(X) = gn(F(x)). Observe that

F(x) X
L(x) = f 1- u)mdUZJ [F(u)]™f (u) du (2.7)
0 0]
holds for eachm € ), wheref is the density of-. Since the logconvexitjlogcon-
cavity] of f(x) implies thatF (x) is logconvexlogconcavéin x, it follows that
log Li(x) = mlog F(x) + log f(x)

is also logconvexlogconcavéin x for m= 0. The rest of the proof is the same as
that of Lemma 2L in MM. u

Remark 2.1:Form= 0, Lemma 22 reduces to LemmaZ2in MM. It is worthwhile
pointing out that Lemma.2 is, in general not true whemm < 0, as illustrated by
the following counterexampid.et X be uniformly distributed on the intervéd,1).
ThenX s ILR. For each fixedu € (0,1) andx € (0,1 — u), we have

QI-uw™t—2-u—xm?

hu(X) = -1t form=# —1
and
_ log(1—u—x)—log(1—u) _
hu(X) = 10g(1— %) form= —1.
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Observe that

Y0 = (M+DI1— (1—x™]1L-u—x"
“[(1-uw™' = A-u—-x)™*](1-x)"m}
@a-um™i(1—-xm
AL-—u—x)m

=M+DA-u—x)"1-uld—-—x)"-
— +o0 (asx—1—u)
for m# —1 andm < 0, whereZ means equality in sigrand

sgn

1 1
’ = _ _ + — — — — _—
i (X) 10— x 09 =x) +[log(l—u—x) —log(1 - uw] T—
szgn—(l— X)log(1—x) + (1 —u—x)[log(1—u—x) — log(1— u)]
>0 (asx — 1—u).
Therefore ¢,(x) is not decreasing ix; that is Lemma 22(i) is not true in this

example Similarly, it can be checked that Lemma2Zii) does not hold in this
example

Remark 2.2:0bserve that2.7) holds for eachm, and that(2.7) can be written as
Lm(X) = f [A]™ " ™(t) dt, (2.8)
0

whereA(t) = f(t)/F(t) is the failure rate function dof. Since the logconcavity of
A(t) implies thaff (t) and—log F(t) are both logconcavisee PellergyShakegand
Zinn[25, Appendix), it follows that the integrand if2.8) is logconcave whem &
[—1,0). Thereforeif A(t) is logconcave anth € [—1,0), theny,(x) is decreasing
inx € N, for each fixedu € N, andy, ,,(u) is decreasing i € N, for fixed
Xo > Xq > 0.

To state Lemma 2, we first recall the following Prekopa’s theorem

LeEmMA 2.3 (see Eatorf1l, Thm. 5.1]): Suppose that ™ X 3% — N, is a
logconcave function and

n(x) = Lkh(x,z) dz

is finite for eachx € M™. Thenn(x) is logconcave ik € R™.

LeEmMA 2.4: Let X be a nonnegative rv with distribution function F. If X is ILR and
m = 0, or if the failure rate function of F is logconcave anden[—1,0), then the
following hold:

() gm(F(x)) is logconcave in>»e N, .
(i) gm(F(x+ u)) — gm(F(u)) is logconcave in(x,u) € N2.
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Proor: The logconcavity ofy,,(F(x)) follows from the proof of Lemma.2 and
Remark 22. The same argument as that of the proof of Lemndai® MM yields
part(ii) by applying Lemma 3. u

The next lemma gives conditions on the parameters to compare GOSs based on
two different distributions in the hazard rate ordeshich follows from Theo-
rem 36 in Franco et al[12].

LeMmMA 2.5: Let X(r,n,m,k) and Y(r’,n’,m, k) be two GOSs based on distribution
functions F and G, respectively. If £, G and m= —1, then

X(r,n,mKk) <., Y(r,n,mk) whenevert=randr —r=n’—n.

3. PRESERVATION OF LOGCONVEXITY AND LOGCONCAVITY
OF p-SPACINGS

For ordinary order statisticB8arlow and Proschal8] established that if the parent
distributionF is DFR then the corresponding simple spacivii)ié)1 k=1,...,nare
also DFR and MM [12] proved that ifF is DLR, then theD.”) are also DLR For
record valuesGupta and Kirmanj14] noticed that ifF is DFR, then theDSr), are
also DFR In the following theoremwe extend these results to the simple spacings

of GOSs

THeoreM 3.1: Let X(r,n,mk), r =1,...,n, be GOSs based on distribution func-
tion F.

(1) If Fis DFR, then Dn, r=1,...,n, are also DFR.
(2) If Fis DLR, then n, r= l ...,n, are also DLR.

PRrROOF:

(1) It follows from (2.1) that the survival function oD(l) is given by

_ “l F(x+ e

Fin(x) = f [(F(—y)y)} Aoy nme(F(Y),  x=0,  (3.1)
where®,_; , m k(F(+)) is the distribution function oK(r — 1,n,m, k). The
DFR property ofF implies that[F(x + y)/F(y)]” is logconvex inx for
eachy € 9, . Since the logconvexity is closed under mixtisee Barlow
and Proschaf¥, p. 103)), it follows from (3.1) thatF, () is logconvex in
x € N.. Hence D™ is DFR

(2) From(2.2) and(2.3), we have

logfh(x) = logcy + (v, — 1)log F(x) + logf(x).

Since the logconvexity dfimplies thatF is logconvexit follows thatf]fln) is
also logconvexTo consider the logconvexity dfy for r = 2,...,n, fix
6 > 0 and consider the ratio
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fin (6 +8)
A(0) = W, 6 =0.

From(2.5), we get that
A(6) = |Ea[‘1’1(U1,0)],

where

F(o+6+ u)]%l f(6+86+u)
F(6+u) f(6 + u)
is increasing in@,u) € N2 by using the DLR property of, and the non-

negative rvU; has a distribution function belonging to the famiB; =
{H4(-10) : 6 = 0O} with corresponding densities given by

v (u,0) = [

ha(ul6) = dy(0) [F(W]™F (W) g 2(F(U)[F(O + w]" (0 +u), u=0;

hered,(#) is the normalizing constanit is seen thatH(-[6;) <, Hy(-|6,)
and hence Hy(-]6;) =g Hi(-|6,) whenever, = 6, = 0 sincey, =1 and
hy(ulf,)  di(6,) F(u+6,) )7 f(6,+u)
hy(ul6,) di(6,) | F(u+6,) f(6,+u)

is increasing iu € N .. Therefore A,(0) is increasing i € N, by using
Lemma 21. This completes the proof u

From the proof of Theorem.B(1), we know that the conclusion is also true for
the simple spacings of the GOSs without restriction= --- = m,_; = m. For
p = 2, the p-spacings do not preserve the DFR or DLR property of the parent dis-
tribution (see MM[22, Remark 31]).

MM also established that the genepaspacingg1 = p = n) of ordinary order
statistics preserve the ILR property of the parent distribufidms result is gener-
alized from ordinary order statistics to GOSs under some restriction on the param-
eters in the following theorem

THEOREM 3.2: Let X(r,n,m k), r=1,...,n, be GOSs based on a distribution func-
tion F. If FisILR and m= 0, then D(’;) r=1,...,n—p+1, are alsolLR for
p=1...,n

Proor: Forr = 1, the result follows from(2.2) and(2.3) by using Lemma 2(i).
Forr = 2, a similar argument to that in the proof of Theorer8 B MM yields the
desired result by applying Lemmas32and 24 in (2.5). u

Notice that the epoch times of a nonhomogeneous Poisson process with inten-
sity function A(t) are the record values of a sequence of independent and identi-
cally distributed(i.i.d.) nonnegative rv's with the failure rate beingt), where
[ A(u)du= o for all t € 9. From Theorem 3 in Pellerey et al[25], we know
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that if the hazard rate function(t) of the underlying distribution is logconcave
then the simple spacings of record values are.ILRis result can be extended to
the general spacings of GOSs withe [—1,0) under the same condition

THeEOREM 3.3: Let X(r,n,m k), r=1,...,n, be GOSs based on a distribution func-
tion F. If the hazard rate function(t) of F is logconcave and n&E [—1,0), then
Dfﬂ) r=1...,.n—p+1arelLRforp=1,...,n

Proor: Forr = 2, rewrite (2.5) as

Cr-%—p—2,n

(p) -
) = o 1

x f LA] ™ (W) g (F ()] 2[F (x + )] 7m0

X [Gm(F (X + 1)) = gm(F(u)] P~ (x + u) du.

The desired result now follows from Remarkk2and Lemmas.3 and 24.
The proof of the case= 1 is trivial. [ |

Remark 3.1:Choosing =1 in Theorem 3, we obtain that if the hazard rate func-
tion A(t) of Fis logconcavgthenX(r,n,m k), r =1,...,n, are ILR form & [-1,0).
Pellerey et al[25] considered the special case= —1 in their Corollary 22.

4. STOCHASTIC COMPARISONS BETWEEN p-SPACINGS

For ordinary order statisticghe following are comparison results for general
p-spacings
(P) D =,DP,forr=1,...,n— pif Fis DLR (see[22]).
(P) D71 =,D”forr=1,...,n—p+1if Fis DLR (see[22]).
(Py) D? =, [=,]1DP nsaforr=1,...,n—p+1if Fis DLR[ILR] (see
[16]).
(P) D? =, DP  forr=1,...,n— pif Fis DFR(see[22]).
(P) D?., =, D forr =1,...,n— p + 1if F is DFR(see[22]).
(Ps) D? =p [=n] D Pynssforr=1,....,n—p+1if Fis DFR[IFR] (see
[15]).
(P) D? =,DPihforr=2,...,n—p+1if Fis ILR (see[16]).
(Pg) D =, DPiVforr=2,...,n—p+1if Fis IFR and DRHRse€[16]).
In this sectionwe investigate conditions on the parameters to extend the above
comparison resulté?;)—(P;) from ordinary order statistics to GOSEheorems 4

and 44 deal with the likelihood ratio orderingvhereas Theorems2land 43 deal
with the hazard rate ordering
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THEOREM 4.1: Let X(r,n,m k), r=1,...,n, be GOSs based on a distribution func-
tion F, where m= 0. Then the following hold:

(@) D" =,DP, forr=1,...,n— pif Fis DLR.
(b) Dy =, Dr‘ﬁ?forr—l ..,n—p+1ifFis DLR.
(c) Df';) =, [=,]D P piaforr=1,...,n—p+1if Fis DLR [ILR].

ProoFr:
(a) Suppose thaF is DLR. It suffices to verify that for each fixed=1,...,
n—p,

PLn(6)

85(0) = (,,) 5(0)

is increasing i € N, . We consider two cases
Case 1:Forr = 2,...,n — p, it follows from (2.5) that

Cp+r71

P E,[V2(Us,0)],

A2(0) =

where
Wy (U,0) = gm(F(U)[F(6 + u)] ™D,

and the nonnegative tJ, has a distribution function belonging to the family
P, ={H,(-]6) : 6 = 0} with corresponding densities given by

ho(ul6) = d2(0)[F(W]™f (W) gi 2(F(W)[gm(F (8 + W) — gm(F ()] P~
X [F(o+uw]rw—(0+u), u=0

here d,(0) is the normalizing constanit is seen thatfor m= 0, the following
hold:

e W,(u,0) is increasing inu,8) € N2.
e Hy(-]61) =, Hx(-]6,) for 6, = 6, = 0 since

h,(ul6,) _ d>(6,) [ Om(F (62 + u)) — gm(F(u)) TP 2
h(ul6,) d>(01) | 9m(F (01 + U)) — gm(F(u))
[ F(6, + u) ]7p+r1—1 f(6,+ u)

F(6, +u) (6, + u)

is increasing inu € M. by using Lemma 2 and the fact that the logcon-
vexity of f implies the logconvexity of.

Then by Lemma 21, we conclude thah,(6) is increasing i € 9, .
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Case 2:Forr =1, it follows from (2.2) and(2.5) that

& [* FOF"(X) [ Gn(F (6 + X)) = gn(F(X)
Gz Jo [F(O)]™ On(F(6))
[ F(o+ x)]vml £(0 + x)
F(6) 7(0)

A,(0) =

is increasing ind € N, by using Lemma 2. This completes the proof of

part(a).
(b) Suppose thdt is DLR. It suffices to verify that for each fixed=1,...,n—
p+1
( ) _ r(ﬁ)Jrl(G)
As f(P)(e)

is decreasing i € M .. Forr = 1, from (2.2), we get that

Cp—1,n+1 [ﬁ(e)]ypﬁﬂ_l _ Co—1,n+1
Cpfl,n ['f(e)]yp’n71 Cpfl,n

As(0) = [F(o)™*

is decreasing i € M .. Forr = 2, from (2.5), we get that

Cp+r72,n+1

As(8) = |Ea[|fm+l(0 +Uy)]

p+r—2,n

is also decreasing ifi € i, by Lemma 21, where the nonnegative t,
has a distribution function belonging to the fami®y. This completes the
proof of part(b).

(c) Suppose thaF is DLR [ILR]. It suffices to verify that for each fixed
r=%4,...,n—p+1

fP) nea(6)

A4(0) = frfﬁ)(e)
is increasinddecreasingin 8 € ), . Forr = 1, from (2.2) and(2.5), we
get that
Conrr [ 2 Im(F(0 + X)) — gn(F(x)) P71
= m(x)f
a0 = f 9 (X)[ Gl F(0) ]
< F(6 +x) )mnl f(6 + x) d
F(0) o)
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is increasingdecreasingiin 6 € i, by Lemma 22. Forr = 2, from (2.5),
we get that
Co+r—1,n+1

A4(0) = PN T Ey[¥4(Us,0)],

where
W, (U,0) = gm(F(U)[F (0 + u)]7errnea= Yoo = g (F(u))

does not depend ofand is increasing im € N, sinceyp,, n1 =K+
(n+1—p—=r)(m+1) = 7yp—1n andU; has the distribution belonging
to the familyP,. It can be checked that,(-|0;) <. [= ] Ha(-|6,) for 6, =
0, = 0if Fis DLR[ILR]. Thereforeapplying Lemma 2L yields thatA 4(9)
is increasinddecreasingjin 6 € 9, . This completes the proof u

Remark 4.1:In views of Remark 2, the proof of Theorem 4(c) is still valid for
m € [—1,0) under the stronger condition that the failure raté=af logconcave
Therefore for GOSs if m € [—1,0) and the failure rate of is logconcavethen
D? =D iforr=1,...,n—p+1

An immediate consequence of Theorerh & the following corollary

CorOLLARY 4.1: Let X(r,n,mk), r =1,...,n, be GOSs based on a distribution
function F. If F is DLR and n& 0, then

D'” =,D{Y whenevers=rands—r=1-n.
Choosingm = —1 in Remark 41, we have the following corollary

COROLLARY 4.2: Let X (1), X_(2),... be record values based on a sequence of i.i.d.
rv's with distribution function F. If the failure rata(t) of F is logconcave, then

Xiiprr) = Xiry =i Xi(prs) — Xy WheneerO=r=s

In Theorem 41, if, instead F is assumed to be DFRFR], then the results can
be weakened from the likelihood ratio order to the hazard rate deder Theo-
rems 42 and 43).

THEOREM 4.2: Let X(r,n,m,k),r=1,...,n, be GOSs based on a distribution func-
tion F. If F is DFR and n= —1, then the following hold:

(@) DR = D forr=1,...,n—p.

(b) Df?,)ﬂ_herﬁ?forr—l n—p+1.
Proor: We give the proof of the case thait> —1; the proof of the cassm= —1
follows from the closure property of the hazard rate order under weak convergence

Let A{P(t) denote the hazard rate function®df®), and sef,(x) = F(u + x)/F (u)
for x = 0 andu € SuppF).
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(a) First consider € ®, ={2,3,...,n— p + 1}. From(2.5) and(2.6), we get
that

APN(X) = B, [Ws(Us,0)], 6 € 0y, (4.1)
where
f(x+ u) [1— (Fy(x)m™t]pt

q’s(u’a) == 1 ’
R I R O L

and the nonnegative 3 has a distribution function belonging to the famib =
{Hs(-|0): 0 = 0} with corresponding densities given by

ha(u[0) = d3(0)[F(u)]™ PP~ (u)gh 2(F (u)) [F (U + x)]7o+es
X f [1- (Fy(x)2)™ )P tzveei"tdz, u=0;

here d;(0) is the normalizing constan®bserve the following

e W5(u,0) is decreasing ifu, 8) € N2 since(1l—s,2)/(1 — s,2) is increasing
inze R, whens, >s; > 0.
e Hg(-|6,) =, Hs(-]6,) for 65,6, € ®; andf, = 0,. To see i it suffices to
prove that
hs(ul + 1)

isincreasingirue N, foro =2,...,n—p. 4.2
Note that

ha(ul6 +1)  da(6 +1)
hs(uld)  ds(6)

Im(FW)[F(u+x)] ™ VE,[Zy™ V],
where the nonnegative &4 has a distribution function belonging to the fam-
ily P, ={Ha(-|u):u = 0} with corresponding densities given by

ha(zJu) = dy(U)[1 — (Fy(x)2)™ 1] P iz7vorp217 0<z<1

From the DFR property of, it follows thath,(z|u’)/h4(z|u) is decreasing
inz € (0,1) whenevew = u= 0 and henceH,(-|u) =, Hy(-|u’) whenever
U’ = u= 0. Applying Lemma 21 yields(4.2).

Again, applying Lemma 2L in (4.1) yields that)\(p) (x) is decreasing it € 0
for each fixedx € N, . This means thab, ") =, D ff)l Jforr € 0.
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It remains to show thad;” =, D3". For this consider

FEh(x) fm P[D5? > x|X(1,n,m k) = u]
0

- (1)
Fih () PIX(p.nmk >x]  rlau

- f‘” P[X"Y(p,n—1,mKk) > x] £0 (W) du 4.3)
= 1n .

IP[X(p,n, m,k) > x]

where the last equality follows from Propositiorizand X“(p,n — 1, m k) is a
GOS based of,. Since the DFR property df, F <, F,. By Lemma 25, we get
thatX(p,n,m, k) =, X“(p,n—1,m k) foru € 9N, , which, in turn, implies that the
ratio in the integrand irf4.3) is increasing inx € %, . Therefore D{”) =, D3".
This completes the proof of pafa).

(b) Forr =1, the desired resul])i‘[ﬂJr;l = X(p,n+1,mKk) = X(p,n,mKk) =
D}ﬁi follows from Lemma . Now, consider = 2, and letp andr be fixed From
(2.5) and(2.6), the failure rate function oD,(f},) is given by

AP(X) = Ey[Ws(Us,0)], 6E O, ={r+p—1r+p,...}, (4.4)
where

fx+u) [1- (RO Pt

‘l’e(u, 9) =

’

Ty f [1- (Fu(x)2)™ ] P 1zve-20-t dz

and the nonnegative s has a distribution function belonging to the famiy =
{Hs(-|u):u = 0} with corresponding densities given by

hs(ul6) = ds(8)[F (W] ™ PP~ (u) g, 2(F(U)[F(X + u)]7ree-20
x J [1- (Fu(x)2)™]P tzrerotdz, u=0;

here ds(0) is the normalizing constan®bserve that the following hoid

* Ws(u,0) is decreasing i € M, and increasing i € O,.
e Hs(-]61) = Hs(-|6,) for 01,0, € O, and, = 6,. To see it it suffices to
prove that

hs(ul@ + 1)

isd ing im e N, foro € 0,. 4.5
he(u[8) is decreasing i 4 for 2 (4.5)
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Note that

hs(ulo +1)  ds(6 +1)
hs(ule)  ds(6)

[F(u+x)]m*

1
f [1- (R(02)™*]P 127 e 2o tdz
0

X 1
f [1- (Fy(0)2)™1]P 227 n 201 dz
0]
) F(u+ x)]™E, [¥(Z
= T 40) [F(u+x)] u[ W7 (Z5,u)],

where¥,(z,u) = z™? is increasing irz € (0,1), not depending o, and
the nonnegative rnZ, has a distribution function belonging to the family
Ps = {Hg(-|u) : u = 0} with corresponding densities given by

he(z|u) = dg(u)[1— (Fu(x)2)™ 1 ]P 7 z7ene™h 0 <z<1;
here ds(u) is the normalizing constan®ince

he(z|u') _ ds(u’) [ 1- (Ifuf(x)z)m“} p-1

he(zlu) — ds(u) | 1— (Fu(x)2)™*

is decreasing irz € (0,1) for u’ = u = 0 by using DFR property of, it
follows from Lemma 21 that(4.5) holds

Again, applying Lemma 2L in (4.4) yields that)\(,f’ﬁ,(x) is increasing i € 0,

for each fixedx € R, . Therefore D%, ; =y, D'? for r = 2. This completes the
proof of the theorem [ |

Remark 4.2:The reversed inequalities in Theorerg 4lo not in generalhold when
Fis IFR, as shown by a counterexample in Hu and Zhydrgj. Hence the inequal-
ities in parts(a) and(b) of Theorem 41 cannot be reversed whénis ILR.

Remark 4.3:Theorem £ is not true form < —1, as illustrated by the following
counterexample_et X(r,n,m k),r =1,2,...,n, be GOSs based on the exponential
distributionF(x) = 1 — e, x = 0, wherem < —1. Theny, , < y+1n forr =
1,...,n—p,andy, n:1 < yr.nforr=1,...,n— p+1. DenoteY, ,=y, ,D, " forr =
1,...,n. From Theorem 3.0 in Kampq 18], we know thatF is also the distribution
function ofY; ,. Hence

E[D?]1>E[D?. ] forr=1,...,n—p
and

E[D?,.]1>E[D] forr=1,...,n—p+1
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Therefore Theorem 42 cannot be true in this exampleven in the usual stochastic
ordep.

In the next theorenthere is no further restrictiofike m= —1) on the param-
eterm.

THEOREM 4.3: Let X(r,n,m k), r=1,...,n, be GOSs based on a distribution func-
tion F. If Fis DFR [IFR], then O® =, [=, 1D P ;s forr=1,...,n—p+1.

Proor: We give the proof of the casm > —1; the proof of the casen < —1 is
similar and the proof of the casa = —1 follows by a limiting argumentFrom
(2.5) and(2.6), the failure rate function ob,?), .4, 0 € ©;=1{0,1},r =1,...,n—
p + 1, is given by

/\(rlj—)o,n+e(x) = [E,[ (U7, 0)],
where

f(x+u) [1— (R,O)™ P

\IIS(LLG) ==
F(x+ ! -

e f [1- (Fu(x)2)™ Ptz reno™t dz
0

f(x+u) [1— (Fy(x)mt]p-t

’

F(x+u) [* _
( ) f [1 _ (FU(X)Z)m+1] p—lZpr,l,n—l dz
0
and the nonnegative tJg has a distribution function belonging to the famiy =
{H;(-|0): 6 € ©3} with corresponding densities given by
h7(u6) = d7(6)[F (W] ™ PP~ (u) gy #*(F (u)) [F(x + u)] ez
1
8 f [1—- (Ru(x)2)™ P tzreant dz
0
here d;(6) is the normalizing constajaind we use the identity thgt, 1.9, nvo =

Yr+p-1,n fOr 6 € O5. Observe the following

* W(u,0) does not depend ahand is decreasindncreasinginu € N, if F
is DFR[IFR].
* H;(-]0) = H4(-|1) since
h7(ul0)  d7(0)

Om(F(u)) isincreasingirue N, .

By Lemma 21, we obtain that«\(r‘l)g,nw(x) is decreasingincreasingin 6 € 0. So
we prove the desired result for= 2.
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It remains to verify thaD1") =, Di". . For this consider

2(pr:+1(x) foo |P[D£,pr)1+1 > x| X(1,n,mKk) = u] fO (u) d
FPx) o P[X(p,n,m k) > X] funa(U) du

_f‘” P[X"(p,n,m k) > x] e
Jo P[X(p,n,mKk) >x] fnes

u) du, (4.6)

where the last equality follows from Propositiori2and X"(p,n,m k) is a GOS
based orf,. Note that the DFRIFR] property ofF implies thatF <., [=,] F.. By
Lemma 25, we get thaiX(p,n,m k) <. [=n] XY(p, n, m k) foru € 9, , which, in
turn, implies that the ratio in the integrand {#.6) is increasing decreasingin

x € N, . Therefore D" =, [=,,]D:", 1. This completes the proof of the theorem
n

In views of Theorems 2 and 43, we have the following two corollaries

CorOLLARY 4.3: Let X(r,n,m,k), r =1,...,n, be GOSs based on a distribution
function F. If F is DFR and n= —1, then
D\? =, DY whenevers=rands—r=I—n.

CoROLLARY 4.4: Let X (1), X_(2),... be the same as in Corollary 4.2. If the failure
rate A(t) of F is decreasing [increasing], then

Xiiptn) = Xin) =t [Zne] XL(prs — X9 WheneveO =r <s.

Finally, the following theorem extendd7) from ordinary order statistics to
GOSs

THEOREM 4.4: Let X(r,n,m k), r=1,...,n, be GOSs based on a distribution func-
tion F with failure rate functiom(t). If m= 0 and F is ILR, or if me [-1,0) and
A(t) is logconcave, then

D”=,DP{Y forr=2,...,n—p+1 4.7)
or, equivalently,
X(j,n,mKk) — X(i,n,m,k) =, X(j,n,mk) — X(I,n,m,Kk)

wheneveD=l=i<j=n. (4.8)

Proor: The equivalence of4.7) and(4.8) is trivial. We give the proof 0f(4.7)
only. It suffices to prove that for =2,...,n—p + 1,

(p*l)( )

r 1n
f(p) )

(i) Forr=3,...,n—m+ 1, A,(6) can be written as

A (0) = is increasing i € N ..

AL(B) = TZ Eo[%(Un0)], 0=0, 4.9)
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where

In(F(u+6))
m(F (W)

isincreasing iP € M, and decreasing in € R, form= —1 by Lemma
2.4, and the rWJ, is defined as in Theorem2 SinceH,(-|0,) =, Hy(-|6;)
for 6, > 0, = 0, applying Lemma 2 in (4.9) yields thatA, (#) is increas-
inging € N,.

(i) Forr = 2, it follows from (2.2) and(2.5) that

1 @ EM™(u)f(u) [ F(u+ @) Jre+a1
J o

\Ifg(u, 6) =

80) Py gu(FO) | Feo)
y [ Om(F (6 + 1) — qm(F(U))]pl fluto) .
Im(F(6)) f(0) ’
which is decreasing ifi € ). by using Lemma 2 and Remark 2. This
thus completes the proof [ ]

Theorem 44 cannot bein generaltrue whenF is DLR, as shown by Example
3.1in Hu and Zhuand16].
Choosingm = —1 in Theorem 4, we have the following corollary

CorOLLARY 4.5: Let X (1), X (2),... be the same as in Corollary 4.2. If the failure
rate A(t) of F is logconcave, then

In Corollaries 42, 4.4, and 45, {X, 1), X_(2), ...} can be interpreted as the epoch
times{T;, T,,...} of anonhomogeneous Poisson process with intensity funation
(see the paragraph before TheorerB)3For various comparison results of non-
homogeneous Poisson processe® can refer to Belzungkillo, Ruiz, and Shaked
[5] and references therein

It is still an open problem whethéPg) holds for GOSs
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