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The concept of generalized order statistics was introduced as a unified approach to
a variety of models of ordered random variables+ The purpose of this article is to
investigate the conditions on the parameters that enable one to establish several
stochastic comparisons of generalp-spacings for a subclass of generalized order
statistics in the likelihood ratio and the hazard rate orders+ Preservation properties
of the logconvexity and logconcavity ofp-spacings are also given+

1. INTRODUCTION

The concept of generalized order statistics was introduced by Kamps@17,18# as a
unified approach to a varity of models of ordered random variables~rv’s!+Choosing
the parameters appropriately, several other models of ordered rv’s are seen to be
particular cases+ One may refer to Kamps@18# for ordinary order statistics, record
values, order statistics with nonintegral sample size, k-record values, sequential order
statistics, and Pfeifers records, refer to Balakrishnan, Cramer, and Kamps@2# for
progressive type II censored order statistics, and refer to Belzunce, Mercader, and
Ruiz@6# and references therein for order statistics under multivariate imperfect repair+
Generalized order statistics have been of interest during the last few years because
they are more flexible in statistical modeling and inference~see, e+g+, AL-Hussaini
and Ahmd@1# , Cramer and Kamps@9# , Cramer, Kamps, and Rychlik@10# , Gajek
and Okolewski@13# , Keseling@19# , and Nasri-Roudsari@24# !+

Stochastic comparisons of spacings of order statistics have been studied by
several authors+ Kochar@21# , Khaledi and Kochar@20# , and others compared~nor-
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malized! simple spacings, and Hu and Wei@15# , Misra and van der Meulen@22#,
and Hu and Zhuang@16# considered generalp-spacings+ It is natural and interesting
to obtain stochastic properties of spacings of generalized order statistics by analogy
with ordinary order statistics+ Franco, Ruiz, and Ruiz@12# and Belzunce et al+ @6#
have made some contributions to this direction+ Belzunce et al+ @6# touched upon
one comparison of generalp-spacings of generalized order statistics in the usual
stochastic order+

The purpose of this article is to investigate the conditions on the parameters
that enable one to establish several stochastic comparisons of generalp-spacings
for a subclass of generalized order statistics in the likelihood ratio and the hazard
rate orders+ In Section 2, we recall the definitions of generalized order statistics,
some stochastic orders, and some aging notions, and we give some useful lemmas
that will be used in Sections 3 and 4+ Preservation properties of the logconvexity
and logconcavity ofp-spacings are given in Section 3+ Finally, in Section 4, general
p-spacings of generalized order statistics are compared in the likelihood ratio and
the hazard rate orders+

Throughout, the terms “increasing” and “decreasing” mean “nondecreasing”
and “nonincreasing,” respectively+ a00 is understood to bè whenevera . 0+ All
integrals and expectations are implicitly assumed to exist whenever they are writ-
ten+ For any rvX with distribution functionF, OF 5 1 2 F denotes its survival func-
tion+ All distribution functions under consideration are restricted to be continuous
with its support in the positive real lineR1+

2. PRELIMINARIES

2.1. Generalized Order Statistics

Uniform generalized order statistics are defined via some joint density function on
a cone of theRn+ Generalized order statistics based on an arbitrary distribution
functionF are defined by means of the inverse function ofF+

Definition 2.1 ~see Kamps@17# !: Let n [ IN, k $ 1, m1, + + + ,mn21 [ R, Mr 5

( j5r
n21 mj , 1 # r # n 2 1, be parameters such thatgr, n 5 k 1 n 2 r 1 Mr $ 1 for all

r 51, + + + , n21, and let Km5 ~m1, + + + ,mn21! if n $ 2 ~ Km arbitrary if n51). If the rv’s
U~r, n, Km, k!, r 5 1, + + + , n, possess a joint density of the form

fU~1, n, Km, k!, + + + ,U~n, n, Km, k!~u1, + + + ,un! 5 kS)
j51

n21

gj, nDS)
i51

n21

~12 ui !
miD~12 un!k21

on the cone0 # u1 # u2 # {{{ # un , 1 of Rn, then they are called uniform
generalized order statistics. Now, let F be an arbitrary distribution function.
The rv’s,

X~r, n, Km, k! 5 F21~U~r, n, Km, k!!, r 5 1, + + + , n,
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are called the generalized order statistics (GOSs, for short) based on F, where F21

is the inverse of F defined by F21~u! 5 sup$x : F~x! # u% for u [ @0,1# . In the
particular case m1 5 {{{ 5 mn21 5 m, the above rv’s are denoted by U~r, n,m, k!
and X~r, n,m, k!, r 5 1, + + + , n, respectively.

Ordinary order statistics of a random sample from a distributionF are a par-
ticular case of GOSs whenk51 andmr 5 0 for all r 51, + + + , n21+Whenk51 and
mr 5 21 for all r 51, + + + ,n21, then we get the firstn record values from a sequence
of rv’s with distribution F+ Choosing the parameters appropriately, several other
models of ordered rv’s are seen to be particular cases+

It is well known that GOSs from a continuous distribution form a Markov chain
with transition probabilities

IP@X~r, n, Km, k! . t 6X~r 2 1, n, Km, k! 5 s# 5 S OF~t !

OF~s!
Dgr, n

for t $ s andr 5 2, + + + , n+ (2.1)

Throughout this article, we consider the special case of GOSs~m1 5 {{{ 5
mn21 5 m! in which the marginal distribution and density functions of ther th GOS
have closed forms+ Stochastic properties ofp-spacings of general GOSs are still
under our investigation+ If F is absolutely continuous with density functionf, Lemma
3+3 of Kamps@18# states that, for eachr 51, + + + , n, the marginal density function of
the r th GOSX~r, n,m, k! based onF is given by

fX~r, n,m, k!~x! 5 fr, n,m, k~F~x!! f ~x!, (2.2)

where

fr, n,m, k~u! 5
cr21, n

~r 2 1!!
~12 u!gr, n21 @gm~u!# r21, u [ ~0,1!, (2.3)

is the marginal density function ofU~r, n,m, k! andcr21, n 5 ) j51
r gj, n, gn, n 5 k, and

Mn 5 0+ Here, the functiongm: @0,1! r R, m [ R, is defined by

gm~x! 5 H 1

m1 1
@12 ~12 x!m11# , mÞ 2 1

2log~12 x!, m5 21+
(2.4)

It is easy to see that

gr, n 5 k 1 ~n 2 r !~m1 1!, r 5 1, + + + , n,

and thatgm~x! is nonnegative and increasing inx [ @0,1! for eachm [ R+
Let F be a distribution function of some nonnegative rv+ For a given positive

integerp, p # n, let

Dr, n
~ p! 5 X~r 1 p 2 1, n,m, k! 2 X~r 2 1, n,m, k!, r 5 1, + + + , n 2 p 1 1,
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denote thep-spacings of the GOSsX~1,n,m, k! # X~2,n,m, k! # {{{ # X~n,n,m, k!+
Here, X~0, n,m, k! [ 0+ For p 5 1, 1-spacings are simple spacings in the literature+
Let fr, n

~ p!~x!, Fr, n
~ p!~x!, and OFr, n

~ p!~x! denote the respective density, distribution, and
survival functions ofDr, n

~ p! , r 5 1, + + + , n 2 p 1 1+ Clearly, f1, n
~ p!~x! 5 fX~ p, n,m, k!~x!

given by~2+2!+ From Lemma 3+5 of Kamps@18# , it follows that

fr, n
~ p!~x! 5

cr1p22, n

~r 2 2!!~ p 2 1!!

3 E
0

`

@ OF~u!# mf ~u!@gm~F~u!!# r22 @ OF~x 1 u!# gr1p21, n21

3 @gm~F~x 1 u!! 2 gm~F~u!!# p21f ~x 1 u! du (2.5)

and, hence,

OFr, n
~ p!~x! 5

cr1p22, n

~r 2 2!!~ p 2 1!!

3 E
0

`

@ OF~u!# mf ~u!@gm~F~u!!# r22 @ OF~x 1 u!# gr1p21, n

3 HE
0

1

@gm~12 OF~x 1 u!z! 2 gm~F~u!!# p21zgr1p21, n21 dzJ du (2.6)

for r 5 2, + + + , n 2 p 1 1 andx $ 0+
The next proposition states that under suitable restrictions on the parameters of

GOSs, the conditional distribution of one GOS given another lower-indexed one
based on a continuous distribution has the same distribution as some GOS based on
the truncated parent distribution+We denote by@Y6A# any rv whose distribution is
the conditional distribution ofY given eventA+

Proposition 2.1: Let X~r, n,m, k!, r 5 1, + + + , n, be GOSs based on a continuous
distribution function F. For each u[ Supp~F!, the support of F, denoteOFu~x! 5
OF~u 1 x!0 OF~u! for x $ 0. Then

@X~r 1 p 2 1, n,m, k! 2 X~r 2 1, n,m, k!6X~r 2 1, n,m, k! 5 u#

5
st

Xu~ p, n 2 r 1 1,m, k!,

where p$ 1 and r5 2, + + + , n 2 p 1 1, and Xu~ p, n 2 r 1 1,m, k! is a GOS based
on Fu.

Proof: The proof of the casem Þ 21 is the immediate consequence of Theo-
rem 3+2 in Keseling@19# + A limiting argument can establish the case ofm 5 21+

n

For the sake of brevity, the constantn in gr, n andcr, n is suppressed when there
is no confusion in the following context+
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2.2. Stochastic Orders and Aging Notions

Some stochastic orders and aging notions that will be used in this article are recalled
in the following two definitions respectively+

Definition 2.2: Let X and Y be two rv’s with respective survival functionsOF and
OG. We say that X is smaller than Y if the following hold:

• In the usual stochastic order, denoted by X#st Y or F #st G, if OF~t ! # OG~t !
for all t or, equivalently,IE@f~X !# # IE@f~Y!# for all increasing functionsf

• In the hazard rate order, denoted by X#hr Y or F #hr G, if OG~t !0 OF~t ! is
increasing in t for which the ratio is well defined

• In the likelihood ratio order, denoted by X#lr Y or F #lr G, if X and Y have
respective density functions (or mass functions) f and g and if g~t !0f ~t ! is
increasing in t for which the ratio is well defined.

The relationships among these orders are shown in the following diagram~see
Shaked and Shanthikumar@27# , and Müller and Stoyan@23# !:

X #lr Yn X #hr Yn X #st Y+

Definition 2.3: Let X be a nonnegative rv with distribution function F. X or F is
said to be

• ILR (increasing likelihood ratio) [DLR (decreasing likelihood ratio)] if its
density function f~x! exists and is logconcave [logconvex] in x[ R1

• IFR (increasing failure rate) [DFR (decreasing failure rate)] ifOF~x! is log-
concave [logconvex] in x[ R1

• DRHR (decreasing reversed hazard rate) [IRHR (increasing reversed hazard
rate)] if F ~x! is logconcave [logconvex] in x[ R1.

If f is logconcave, thenF and OF are also logconcave~see, e+g+, Chandra and
Roy @8# , Barlow and Proschan@4, p+ 77# !+ If f is logconvex, then OF is also logcon-
vex while F is logconcave~see Sengupta and Nanda@26# !+ Furthermore, Block,
Savits, and Singh@7# proved that if OF is logconvex thenF is logconcave+ Therefore,

ILR n IFR and DRHR,

DLR n DFRn DRHR+

2.3. Some Useful Lemmas

The following lemmas are useful in deriving the main results of this article+ Lemma
2+1 is due to Misra and van der Meulen@22# , hereafter referred to as MM+ Lemma
2+2 is the extension of Lemma 2+1 in MM+

Lemma 2.1: Let Q be a subset of the real lineR and let X be a nonnegative rv
having a distribution function belonging to the familyP 5 $G~{6u!,u [ Q%, which
satisfies that
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G~{6u1! #st @$st# G~{6u2! whenever u1,u2 [ Q andu1 , u2+

Let C~x,u! be a real-valued function defined onR 3 Q. Then the following hold:

(i) IEu @C~X,u!# is increasing inu if C~x,u! is increasing inu and increasing
[decreasing] in x+

(ii) IEu @C~X,u!# is decreasing inu if C~x,u! is decreasing inu and decreasing
[increasing] in x.

Lemma 2.2: Let X be a nonnegative rv with distribution function F. If X is DLR
[ILR] and if m $ 0, then the following hold:

(i) For each fixed u[ R1,

cu~x! [
gm~F~x 1 u!! 2 gm~F~u!!

gm~F~x!!

is increasing [decreasing] in x[ R1.

(ii) For fixed x2 . x1 . 0,

cx1, x2
~u! [

gm~F~x2 1 u!! 2 gm~F~u!!

gm~F~x1 1 u!! 2 gm~F~u!!

is increasing [decreasing] in u[ R1.

Proof: DenoteLm~x! 5 gm~F~x!!+ Observe that

Lm~x! 5E
0

F~x!

~12 u!m du5E
0

x

@ OF~u!# mf ~u! du (2.7)

holds for eachm [ R, wheref is the density ofF+ Since the logconvexity@logcon-
cavity# of f ~x! implies that OF~x! is logconvex@logconcave# in x, it follows that

log Lm
' ~x! 5 m log OF~x! 1 log f ~x!

is also logconvex@logconcave# in x for m $ 0+ The rest of the proof is the same as
that of Lemma 2+1 in MM+ n

Remark 2.1:Form5 0, Lemma 2+2 reduces to Lemma 2+1 in MM+ It is worthwhile
pointing out that Lemma 2+2 is, in general, not true whenm , 0, as illustrated by
the following counterexample: Let X be uniformly distributed on the interval~0,1!+
ThenX is ILR+ For each fixedu [ ~0,1! andx [ ~0,12 u!, we have

cu~x! 5
~12 u!m11 2 ~12 u 2 x!m11

12 ~12 x!m11 for mÞ 21

and

cu~x! 5
log~12 u 2 x! 2 log~12 u!

log~12 x!
for m5 21+
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Observe that

cu
'~x! 5

sgn

~m1 1!$@12 ~12 x!m11# ~12 u 2 x!m

2 @~12 u!m11 2 ~12 u 2 x!m11# ~12 x!m%

5 ~m1 1!~12 u 2 x!mF12 u~12 x!m 2
~12 u!m11~12 x!m

~12 u 2 x!m G
r 1` ~asx r 12 u!

for mÞ 21 andm , 0, where5
sgn

means equality in sign, and

cu
'~x! 5

sgn

2
1

12 u 2 x
log~12 x! 1 @ log~12 u 2 x! 2 log~12 u!#

1

12 x

5
sgn

2~12 x! log~12 x! 1 ~12 u 2 x!@ log~12 u 2 x! 2 log~12 u!#

. 0 ~asx r 12 u!+

Therefore, cu~x! is not decreasing inx; that is, Lemma 2+2~i! is not true in this
example+ Similarly, it can be checked that Lemma 2+2~ii ! does not hold in this
example+

Remark 2.2:Observe that~2+7! holds for eachm, and that~2+7! can be written as

Lm~x! 5E
0

x

@l~t !#2mf 11m~t ! dt, (2.8)

wherel~t ! 5 f ~t !0 OF~t ! is the failure rate function ofF+ Since the logconcavity of
l~t ! implies thatf ~t ! and2log OF~t ! are both logconcave~see Pellerey, Shaked, and
Zinn @25,Appendix# !, it follows that the integrand in~2+8! is logconcave whenm[
@21,0!+ Therefore, if l~t ! is logconcave andm [ @21,0!, thencu~x! is decreasing
in x [ R1 for each fixedu [ R1 andcx1, x2

~u! is decreasing inu [ R1 for fixed
x2 . x1 . 0+

To state Lemma 2+4, we first recall the following Prekopa’s theorem+

Lemma 2.3 ~see Eaton@11, Thm+ 5+1# !: Suppose that h:Rm 3 Rk r R1 is a
logconcave function and

h~x! 5E
Rk

h~x,z! dz

is finite for eachx [ Rm. Thenh~x! is logconcave inx [ Rm.

Lemma 2.4: Let X be a nonnegative rv with distribution function F. If X is ILR and
m $ 0, or if the failure rate function of F is logconcave and m[ @21,0!, then the
following hold:

(i) gm~F~x!! is logconcave in x[ R1.
(ii) gm~F~x 1 u!! 2 gm~F~u!! is logconcave in~x,u! [ R1

2 .
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Proof: The logconcavity ofgm~F~x!! follows from the proof of Lemma 2+2 and
Remark 2+2+ The same argument as that of the proof of Lemma 3+1 in MM yields
part ~ii ! by applying Lemma 2+3+ n

The next lemma gives conditions on the parameters to compare GOSs based on
two different distributions in the hazard rate order, which follows from Theo-
rem 3+6 in Franco et al+ @12# +

Lemma 2.5: Let X~r, n,m, k! and Y~r ', n',m, k! be two GOSs based on distribution
functions F and G, respectively. If F#hr G and m$ 21, then

X~r, n,m, k! #hr Y~r ', n',m, k! whenever r' $ r and r ' 2 r $ n' 2 n+

3. PRESERVATION OF LOGCONVEXITY AND LOGCONCAVITY
OF p -SPACINGS

For ordinary order statistics, Barlow and Proschan@3# established that if the parent
distributionF is DFR, then the corresponding simple spacingsDk, n

~1! , k51, + + + , n, are
also DFR, and MM @12# proved that ifF is DLR, then theDk, n

~1! are also DLR+ For
record values, Gupta and Kirmani@14# noticed that ifF is DFR, then theDk, n

~1! are
also DFR+ In the following theorem, we extend these results to the simple spacings
of GOSs+

Theorem 3.1: Let X~r, n,m, k!, r 5 1, + + + , n, be GOSs based on distribution func-
tion F.

(1) If F is DFR, then Dr, n
~1! , r 5 1, + + + , n, are also DFR.

(2) If F is DLR, then Dr, n
~1! , r 5 1, + + + , n, are also DLR.

Proof:

~1! It follows from ~2+1! that the survival function ofDr, n
~1! is given by

OFr, n
~1!~x! 5E

0

`F OF~x 1 y!

OF~ y!
Ggr

dFr21, n,m, k~F~ y!!, x $ 0, (3.1)

whereFr21, n,m, k~F~{!! is the distribution function ofX~r 2 1, n,m, k!+ The
DFR property ofF implies that@ OF~x 1 y!0 OF~ y!# gr is logconvex inx for
eachy [ R1+ Since the logconvexity is closed under mixture~see Barlow
and Proschan@4, p+ 103# !, it follows from ~3+1! that OFr, n

~1!~x! is logconvex in
x [ R1+ Hence, Dr, n

~1! is DFR+
~2! From ~2+2! and~2+3!, we have

log f1, n
~1!~x! 5 log c0 1 ~g1 2 1! log OF~x! 1 log f ~x!+

Since the logconvexity off implies that OF is logconvex, it follows thatf1, n
~1! is

also logconvex+ To consider the logconvexity offr, n
~1! for r 5 2, + + + , n, fix

d . 0 and consider the ratio
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D1~u! [
fr, n

~1!~u 1 d!

fr, n
~1!~u!

, u $ 0+

From ~2+5!, we get that

D1~u! 5 IEu @C1~U1,u!# ,

where

C1~u,u! 5 F OF~u 1 d 1 u!

OF~u 1 u!
Ggr21 f ~u 1 d 1 u!

f ~u 1 u!

is increasing in~u,u! [ R1
2 by using the DLR property ofF, and the non-

negative rvU1 has a distribution function belonging to the familyP1 5
$H1~{6u! : u $ 0% with corresponding densities given by

h1~u6u! 5 d1~u!@ OF~u!# mf ~u!gm
r22~F~u!!@ OF~u 1 u!# gr21f ~u 1 u!, u $ 0;

hered1~u! is the normalizing constant+ It is seen thatH1~{6u1! #lr H1~{6u2!
and, hence, H1~{6u1! #st H1~{6u2! wheneveru2 $ u1 $ 0 sincegr $ 1 and

h1~u6u2!

h1~u6u1!
5

d1~u2!

d1~u1! F OF~u 1 u2!

OF~u 1 u1! Ggr21 f ~u2 1 u!

f ~u1 1 u!

is increasing inu [ R1+ Therefore, D1~u! is increasing inu [ R1 by using
Lemma 2+1+ This completes the proof+ n

From the proof of Theorem 3+1~1!, we know that the conclusion is also true for
the simple spacings of the GOSs without restrictionm1 5 {{{ 5 mn21 5 m+ For
p $ 2, thep-spacings do not preserve the DFR or DLR property of the parent dis-
tribution ~see MM@22, Remark 3+1# !+

MM also established that the generalp-spacings~1# p # n! of ordinary order
statistics preserve the ILR property of the parent distribution+ This result is gener-
alized from ordinary order statistics to GOSs under some restriction on the param-
eters in the following theorem+

Theorem 3.2: Let X~r, n,m, k!, r 51, + + + , n, be GOSs based on a distribution func-
tion F. If F is ILR and m$ 0, then Dr, n

~ p! , r 5 1, + + + , n 2 p 1 1, are alsoILR for
p 5 1, + + + , n.

Proof: For r 5 1, the result follows from~2+2! and~2+3! by using Lemma 2+4~i!+
For r $ 2, a similar argument to that in the proof of Theorem 3+3 in MM yields the
desired result by applying Lemmas 2+3 and 2+4 in ~2+5!+ n

Notice that the epoch times of a nonhomogeneous Poisson process with inten-
sity functionl~t ! are the record values of a sequence of independent and identi-
cally distributed~i+i+d+! nonnegative rv’s with the failure rate beingl~t !, where
*t
` l~u! du5` for all t [ R1+ From Theorem 3+1 in Pellerey et al+ @25# , we know
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that if the hazard rate functionl~t ! of the underlying distribution is logconcave,
then the simple spacings of record values are ILR+ This result can be extended to
the general spacings of GOSs withm [ @21,0! under the same condition+

Theorem 3.3: Let X~r, n,m, k!, r 51, + + + , n, be GOSs based on a distribution func-
tion F. If the hazard rate functionl~t ! of F is logconcave and m[ @21,0!, then
Dr, n

~ p! , r 5 1, + + + , n 2 p 1 1, are ILR for p 5 1, + + + , n.

Proof: For r $ 2, rewrite ~2+5! as

fr, n
~ p!~x! 5

cr1p22, n

~r 2 2!!~ p 2 1!!

3 E
0

`

@l~u!#2mf 11m~u!@gm~F~u!!# r22 @ OF~x 1 u!# gr1p21, n21

3 @gm~F~x 1 u!! 2 gm~F~u!!# p21f ~x 1 u! du+

The desired result now follows from Remark 2+2 and Lemmas 2+3 and 2+4+
The proof of the caser 5 1 is trivial+ n

Remark 3.1:Choosingr 51 in Theorem 3+3, we obtain that if the hazard rate func-
tion l~t ! of F is logconcave, thenX~r, n,m, k!, r 51, + + + , n, are ILR form[ @21,0!+
Pellerey et al+ @25# considered the special casem5 21 in their Corollary 2+2+

4. STOCHASTIC COMPARISONS BETWEEN p -SPACINGS

For ordinary order statistics, the following are comparison results for general
p-spacings:

~P1! Dr, n
~ p!

#lr Dr11, n
~ p! for r 5 1, + + + , n 2 p if F is DLR ~see@22# !+

~P2! Dr, n11
~ p!

#lr Dr, n
~ p! for r 5 1, + + + , n 2 p 1 1 if F is DLR ~see@22# !+

~P3! Dr, n
~ p!

#lr @$lr # Dr11, n11
~ p! for r 5 1, + + + , n 2 p 1 1 if F is DLR @ILR# ~see

@16# !+

~P4! Dr, n
~ p!

#hr Dr11, n
~ p! for r 5 1, + + + , n 2 p if F is DFR ~see@22# !+

~P5! Dr, n11
~ p!

#hr Dr, n
~ p! for r 5 1, + + + , n 2 p 1 1 if F is DFR ~see@22# !+

~P6! Dr, n
~ p!

#hr @$hr# Dr11, n11
~ p! for r 5 1, + + + , n 2 p 1 1 if F is DFR @IFR# ~see

@15# !+

~P7! Dr, n
~ p!

#lr Dr21, n
~ p11! for r 5 2, + + + , n 2 p 1 1 if F is ILR ~see@16# !+

~P8! Dr, n
~ p!

#hr Dr21, n
~ p11! for r 5 2, + + + , n2 p11 if F is IFR and DRHR~see@16# !+

In this section, we investigate conditions on the parameters to extend the above
comparison results~P1!–~P7! from ordinary order statistics to GOSs+ Theorems 4+1
and 4+4 deal with the likelihood ratio ordering, whereas Theorems 4+2 and 4+3 deal
with the hazard rate ordering+
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Theorem 4.1: Let X~r, n,m, k!, r 51, + + + , n, be GOSs based on a distribution func-
tion F, where m$ 0. Then the following hold:

(a) Dr, n
~ p!

#lr Dr11, n
~ p! for r 5 1, + + + , n 2 p if F is DLR.

(b) Dr, n11
~ p!

#lr Dr, n
~ p! for r 5 1, + + + , n 2 p 1 1 if F is DLR.

(c) Dr, n
~ p!

#lr @$lr # Dr11, n11
~ p! for r 5 1, + + + , n 2 p 1 1 if F is DLR [ILR].

Proof:

~a! Suppose thatF is DLR+ It suffices to verify that for each fixedr 5 1, + + + ,
n 2 p,

D2~u! [
fr11, n

~ p! ~u!

fr, n
~ p!~u!

is increasing inu [ R1+We consider two cases+

Case 1: For r 5 2, + + + , n 2 p, it follows from ~2+5! that

D2~u! 5
cp1r21

cp1r22~r 2 1!
IEu @C2~U2,u!# ,

where

C2~u,u! 5 gm~F~u!!@ OF~u 1 u!#2~m11!,

and the nonnegative rvU2 has a distribution function belonging to the family
P2 5 $H2~{6u! : u $ 0% with corresponding densities given by

h2~u6u! 5 d2~u!@ OF~u!# mf ~u!gm
r22~F~u!!@gm~F~u 1 u!! 2 gm~F~u!!# p21

3 @ OF~u 1 u!# gp1r2121f ~u 1 u!, u $ 0;

here, d2~u! is the normalizing constant+ It is seen that, for m$ 0, the following
hold:

• C2~u,u! is increasing in~u,u! [ R1
2 +

• H2~{6u1! #lr H2~{6u2! for u2 $ u1 $ 0 since

h2~u6u2!

h2~u6u1!
5

d2~u2!

d2~u1! F gm~F~u2 1 u!! 2 gm~F~u!!

gm~F~u1 1 u!! 2 gm~F~u!! G p21

3 F OF~u2 1 u!

OF~u1 1 u! Ggp1r2121 f ~u2 1 u!

f ~u1 1 u!

is increasing inu [ R1 by using Lemma 2+2 and the fact that the logcon-
vexity of f implies the logconvexity of OF+

Then, by Lemma 2+1, we conclude thatD2~u! is increasing inu [ R1+
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Case 2: For r 5 1, it follows from ~2+2! and~2+5! that

D2~u! 5
cp

cp21
E

0

` f ~x! OF m~x!

@ OF~u!# m11 F gm~F~u 1 x!! 2 gm~F~x!!

gm~F~u!! G p21

3 F OF~u 1 x!

OF~u!
Ggp1121 f ~u 1 x!

f ~u!
dx

is increasing inu [ R1 by using Lemma 2+2+ This completes the proof of
part ~a!+

~b! Suppose thatF is DLR+ It suffices to verify that for each fixedr 51, + + + , n2
p 1 1,

D3~u! [
fr, n11

~ p! ~u!

fr, n
~ p!~u!

is decreasing inu [ R1+ For r 5 1, from ~2+2!, we get that

D3~u! 5
cp21, n11

cp21, n

@ OF~u!# gp, n1121

@ OF~u!# gp, n21 5
cp21, n11

cp21, n
@ OF~u!# m11

is decreasing inu [ R1+ For r $ 2, from ~2+5!, we get that

D3~u! 5
cp1r22, n11

cp1r22, n
IEu @ OF m11~u 1 U2!#

is also decreasing inu [ R1 by Lemma 2+1, where the nonnegative rvU2

has a distribution function belonging to the familyP2+ This completes the
proof of part~b!+

~c! Suppose thatF is DLR @ILR# + It suffices to verify that for each fixed
r 5 1, + + + , n 2 p 1 1,

D4~u! [
fr11, n11

~ p! ~u!

fr, n
~ p!~u!

is increasing@decreasing# in u [ R1+ For r 5 1, from ~2+2! and~2+5!, we
get that

D4~u! 5
cp, n11

cp21, n
E

0

`

OF m~x! f ~x!F gm~F~u 1 x!! 2 gm~F~x!!

gm~F~u!! G p21

3 S OF~u 1 x!

OF~u!
Dgp, n21 f ~u 1 x!

f ~u!
dx
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is increasing@decreasing# in u [ R1 by Lemma 2+2+ For r $ 2, from ~2+5!,
we get that

D4~u! 5
cp1r21, n11

cp1r22, n~r 2 1!
IEu @C4~U2,u!# ,

where

C4~u,u! 5 gm~F~u!!@ OF~u 1 u!# gp1r, n112gp1r21, n 5 gm~F~u!!

does not depend onu and is increasing inu [ R1 sincegp1r, n11 5 k 1
~n 1 1 2 p 2 r !~m1 1! 5 gp1r21, n, andU2 has the distribution belonging
to the familyP2+ It can be checked thatH2~{6u1! #lr @$lr # H2~{6u2! for u2 $
u1 $ 0 if F is DLR @ILR# + Therefore, applying Lemma 2+1 yields thatD4~u!
is increasing@decreasing# in u [ R1+ This completes the proof+ n

Remark 4.1:In views of Remark 2+2, the proof of Theorem 4+1~c! is still valid for
m [ @21,0! under the stronger condition that the failure rate ofF is logconcave+
Therefore, for GOSs, if m [ @21,0! and the failure rate ofF is logconcave, then
Dr, n

~ p!
$lr Dr11, n11

~ p! for r 5 1, + + + , n 2 p 1 1+

An immediate consequence of Theorem 4+1 is the following corollary+

Corollary 4.1: Let X~r, n,m, k!, r 5 1, + + + , n, be GOSs based on a distribution
function F. If F is DLR and m$ 0, then

Dr, n
~ p!

#lr Ds, l
~ p! whenever s$ r and s2 r $ l 2 n+

Choosingm5 21 in Remark 4+1, we have the following corollary+

Corollary 4.2: Let XL~1!,XL~2!, + + + be record values based on a sequence of i.i.d.
rv’s with distribution function F. If the failure ratel~t ! of F is logconcave, then

XL~ p1r ! 2 XL~r ! $lr XL~ p1s! 2 XL~s! whenever 0 # r # s+

In Theorem 4+1, if , instead, F is assumed to be DFR@IFR# , then the results can
be weakened from the likelihood ratio order to the hazard rate order~see Theo-
rems 4+2 and 4+3!+

Theorem 4.2: Let X~r, n,m, k!, r 51, + + + , n, be GOSs based on a distribution func-
tion F. If F is DFR and m$ 21, then the following hold:

(a) Dr, n
~ p!

#hr Dr11, n
~ p! for r 5 1, + + + , n 2 p.

(b) Dr, n11
~ p!

#hr Dr, n
~ p! for r 5 1, + + + , n 2 p 1 1.

Proof: We give the proof of the case thatm . 21; the proof of the casem5 21
follows from the closure property of the hazard rate order under weak convergence+
Let lr, n

~ p! ~t ! denote the hazard rate function ofDr, n
~ p! , and set OFu~x! 5 OF~u 1 x!0 OF~u!

for x $ 0 andu [ Supp~F!+
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~a! First considerr [ Q1 [ $2,3, + + + , n 2 p 1 1% + From ~2+5! and~2+6!, we get
that

lu, n
~ p! ~x! 5 IEu @C5~U3,u!# , u [ Q1, (4.1)

where

C5~u,u! 5
f ~x 1 u!

OF~x 1 u!

@12 ~ OFu~x!!m11# p21

E
0

1

@12 ~ OFu~x!z!m11# p21zgu1p2121 dz

,

and the nonnegative rvU3 has a distribution function belonging to the familyP3 5
$H3~{6u! : u $ 0% with corresponding densities given by

h3~u6u! 5 d3~u!@ OF~u!# ~m11!p21f ~u!gm
u22~F~u!!@ OF~u 1 x!# gu1p21

3 E
0

1

@12 ~ OFu~x!z!m11# p21zgu1p2121 dz, u $ 0;

here, d3~u! is the normalizing constant+ Observe the following:

• C5~u,u! is decreasing in~u,u! [ R1
2 since~12 s1z!0~12 s2z! is increasing

in z [ R1 whens2 . s1 . 0+
• H3~{6u1! #lr H3~{6u2! for u1,u2 [ Q1 andu2 $ u1+ To see it, it suffices to

prove that

h3~u6u 1 1!

h3~u6u!
is increasing inu [ R1 for u 5 2, + + + , n 2 p+ (4.2)

Note that

h3~u6u 1 1!

h3~u6u!
5

d3~u 1 1!

d3~u!
gm~F~u!!@ OF~u 1 x!#2~m11! IEu @Z1

2~m11! # ,

where the nonnegative rvZ1 has a distribution function belonging to the fam-
ily P4 5 $H4~{6u! : u $ 0% with corresponding densities given by

h4~z6u! 5 d4~u!@12 ~ OFu~x!z!m11# p21zgu1p2121, 0 , z , 1+

From the DFR property ofF, it follows thath4~z6u'!0h4~z6u! is decreasing
in z[ ~0,1! wheneveru'$ u $ 0 and, hence, H4~{6u! $lr H4~{6u'! whenever
u' $ u $ 0+ Applying Lemma 2+1 yields~4+2!+

Again, applying Lemma 2+1 in ~4+1! yields thatlu, n
~ p! ~x! is decreasing inu [ Q1

for each fixedx [ R1+ This means thatDr, n
~ p!

#hr Dr11, n
~ p! for r [ Q1+
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It remains to show thatD1, n
~ p!

#hr D2, n
~ p!+ For this, consider

OF2, n
~ p!~x!

OF1, n
~ p!~x!

5E
0

` IP@D2, n
~ p! . x6X~1, n,m, k! 5 u#

IP@X~ p, n,m, k! . x#
f1, n

~1!~u! du

5E
0

` IP@Xu~ p, n 2 1,m, k! . x#

IP@X~ p, n,m, k! . x#
f1, n

~1!~u! du, (4.3)

where the last equality follows from Proposition 2+1, and Xu~ p, n 2 1,m, k! is a
GOS based onFu+ Since the DFR property ofF, F #hr Fu+ By Lemma 2+5, we get
thatX~ p, n,m, k! #hr Xu~ p, n21,m, k! for u [ R1, which, in turn, implies that the
ratio in the integrand in~4+3! is increasing inx [ R1+ Therefore, D1, n

~ p!
#hr D2, n

~ p!+
This completes the proof of part~a!+

~b! For r 5 1, the desired resultD1, n11
~ p! 5 X~ p, n 1 1,m, k! #hr X~ p, n,m, k! 5

D1, n
~ p! follows from Lemma 2+5+ Now, considerr $ 2, and letp andr be fixed+ From

~2+5! and~2+6!, the failure rate function ofDr,u
~ p! is given by

lr, u
~ p! ~x! 5 IEu @C6~U5,u!# , u [ Q2 [ $r 1 p 2 1, r 1 p, + + + %, (4.4)

where

C6~u,u! 5
f ~x 1 u!

OF~x 1 u!

@12 ~ OFu~x!!m11# p21

E
0

1

@12 ~ OFu~x!z!m11# p21zgr1p21,u21 dz

,

and the nonnegative rvU5 has a distribution function belonging to the familyP5 5
$H5~{6u! : u $ 0% with corresponding densities given by

h5~u6u! 5 d5~u!@ OF~u!# ~m11!p21f ~u! gm
r22~F~u!!@ OF~x 1 u!# gr1p21,u

3 E
0

1

@12 ~ OFu~x!z!m11# p21zgr1p21,u21 dz, u $ 0;

here, d5~u! is the normalizing constant+ Observe that the following hold:

• C6~u,u! is decreasing inu [ R1 and increasing inu [ Q2+
• H5~{6u1! $lr H5~{6u2! for u1,u2 [ Q2 andu2 $ u1+ To see it, it suffices to

prove that

h5~u6u 1 1!

h5~u6u!
is decreasing inu [ R1 for u [ Q2+ (4.5)
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Note that

h5~u6u 1 1!

h5~u6u!
5

d5~u 1 1!

d5~u!
@ OF~u 1 x!# m11

3

E
0

1

@12 ~ OFu~x!z!m11# p21zgr1p21,u1121 dz

E
0

1

@12 ~ OFu~x!z!m11# p21zgr1p21,u21 dz

5
d5~u 1 1!

d5~u!
@ OF~u 1 x!# m11IEu @C7~Z2,u!# ,

whereC7~z,u! 5 zm11 is increasing inz [ ~0,1!, not depending onu, and
the nonnegative rvZ2 has a distribution function belonging to the family
P6 5 $H6~{6u! : u $ 0% with corresponding densities given by

h6~z6u! 5 d6~u!@12 ~ OFu~x!z!m11# p21zgr1p21,u21, 0 , z , 1;

here, d6~u! is the normalizing constant+ Since

h6~z6u' !

h6~z6u!
5

d6~u' !

d6~u! F 12 ~ OFu' ~x!z!m11

12 ~ OFu~x!z!m11 G p21

is decreasing inz [ ~0,1! for u' $ u $ 0 by using DFR property ofF, it
follows from Lemma 2+1 that~4+5! holds+

Again, applying Lemma 2+1 in ~4+4! yields thatlr,u
~ p! ~x! is increasing inu [ Q2

for each fixedx [ R1+ Therefore, Dr, n11
~ p!

#hr Dr, n
~ p! for r $ 2+ This completes the

proof of the theorem+ n

Remark 4.2:The reversed inequalities in Theorem 4+2 do not, in general, hold when
F is IFR, as shown by a counterexample in Hu and Zhuang@16# +Hence, the inequal-
ities in parts~a! and~b! of Theorem 4+1 cannot be reversed whenF is ILR+

Remark 4.3:Theorem 4+2 is not true form , 21, as illustrated by the following
counterexample+ Let X~r, n,m, k!, r 51,2, + + + , n, be GOSs based on the exponential
distributionF~x! 5 1 2 e2x, x $ 0, wherem , 21+ Thengr, n , gr11, n for r 5
1, + + + , n2 p, andgr, n11 , gr, n for r 51, + + + , n2 p11+DenoteYr, n5 gr, n Dr, n

~1! for r 5
1, + + + , n+ From Theorem 3+10 in Kamps@18# , we know thatF is also the distribution
function ofYr, n+ Hence,

IE@Dr, n
~ p! # . IE@Dr11, n

~ p! # for r 5 1, + + + , n 2 p

and

IE@Dr, n11
~ p! # . IE@Dr, n

~ p! # for r 5 1, + + + , n 2 p 1 1+
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Therefore, Theorem 4+2 cannot be true in this example~even in the usual stochastic
order!+

In the next theorem, there is no further restriction~like m$ 21! on the param-
eterm+

Theorem 4.3: Let X~r, n,m, k!, r 51, + + + , n, be GOSs based on a distribution func-
tion F. If F is DFR [IFR], then Dr, n

~ p!
#hr @$hr# Dr11, n11

~ p! for r 5 1, + + + , n 2 p 1 1.

Proof: We give the proof of the casem . 21; the proof of the casem , 21 is
similar and the proof of the casem 5 21 follows by a limiting argument+ From
~2+5! and~2+6!, the failure rate function ofDr1u, n1u

~ p! , u [ Q3 [ $0,1% , r 51, + + + , n2
p 1 1, is given by

lr1u, n1u
~ p! ~x! 5 IEu @C8~U7,u!# ,

where

C8~u,u! 5
f ~x 1 u!

OF~x 1 u!

@12 ~ OFu~x!!m11# p21

E
0

1

@12 ~ OFu~x!z!m11# p21zgr1p211u, n1u21 dz

5
f ~x 1 u!

OF~x 1 u!

@12 ~ OFu~x!!m11# p21

E
0

1

@12 ~ OFu~x!z!m11# p21zgr1p21, n21 dz

,

and the nonnegative rvU6 has a distribution function belonging to the familyP7 5
$H7~{6u! : u [ Q3% with corresponding densities given by

h7~u6u! 5 d7~u!@ OF~u!# ~m11!p21f ~u! gm
r221u~F~u!!@ OF~x 1 u!# gr1p21, n

3 E
0

1

@12 ~ OFu~x!z!m11# p21zgr1p21, n21 dz;

here, d7~u! is the normalizing constant, and we use the identity thatgr1p211u, n1u 5
gr1p21, n for u [ Q3+ Observe the following:

• C8~u,u! does not depend onu and is decreasing@increasing# in u [ R1 if F
is DFR @IFR#+

• H7~{60! #lr H7~{61! since

h7~u61!

h7~u60!
5

d7~1!

d7~0!
gm~F~u!! is increasing inu [ R1 +

By Lemma 2+1, we obtain thatlr1u, n1u
~ p! ~x! is decreasing@increasing# in u [ Q3+ So

we prove the desired result forr $ 2+
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It remains to verify thatD1, n
~ p!

#hr D2, n11
~ p! + For this, consider

OF2, n11
~ p! ~x!

OF1, n
~ p!~x!

5E
0

` IP@D2, n11
~ p! . x6X~1, n,m, k! 5 u#

IP@X~ p, n,m, k! . x#
f1, n11

~1! ~u! du

5E
0

` IP@Xu~ p, n,m, k! . x#

IP@X~ p, n,m, k! . x#
f1, n11

~1! ~u! du, (4.6)

where the last equality follows from Proposition 2+1, andXu~ p, n,m, k! is a GOS
based onFu+ Note that the DFR@IFR# property ofF implies thatF #hr @$hr# Fu+ By
Lemma 2+5, we get thatX~ p, n,m, k! #hr @$hr# Xu~ p, n,m, k! for u [ R1, which, in
turn, implies that the ratio in the integrand in~4+6! is increasing@decreasing# in
x [ R1+ Therefore, D1, n

~ p!
#hr @$hr#D2, n11

~ p! + This completes the proof of the theorem+
n

In views of Theorems 4+2 and 4+3, we have the following two corollaries+

Corollary 4.3: Let X~r, n,m, k!, r 5 1, + + + , n, be GOSs based on a distribution
function F. If F is DFR and m$ 21, then

Dr, n
~ p!

#hr Ds, l
~ p! whenever s$ r and s2 r $ l 2 n+

Corollary 4.4: Let XL~1!,XL~2!, + + + be the same as in Corollary 4.2. If the failure
rate l~t ! of F is decreasing [increasing], then

XL~ p1r ! 2 XL~r ! #hr @$hr# XL~ p1s! 2 XL~s! whenever0 # r # s+

Finally, the following theorem extends~P7! from ordinary order statistics to
GOSs+

Theorem 4.4: Let X~r, n,m, k!, r 51, + + + , n, be GOSs based on a distribution func-
tion F with failure rate functionl~t !. If m $ 0 and F is ILR, or if m[ @21,0! and
l~t ! is logconcave, then

Dr, n
~ p!

#lr Dr21, n
~ p11! for r 5 2, + + + , n 2 p 1 1 (4.7)

or, equivalently,

X~ j, n,m, k! 2 X~i, n,m, k! #lr X~ j, n,m, k! 2 X~l, n,m, k!

whenever0 # l # i , j # n+ (4.8)

Proof: The equivalence of~4+7! and ~4+8! is trivial+ We give the proof of~4+7!
only+ It suffices to prove that forr 5 2, + + + , n 2 p 1 1,

Lr ~u! 5
fr21, n

~ p11!~u!

fr, n
~ p!~u!

is increasing inu [ R1 +

~i! For r 5 3, + + + , n 2 m1 1, Lr ~u! can be written as

Lr ~u! 5
r 2 2

p
IEu @C9~U2,u!# , u $ 0, (4.9)
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where

C9~u,u! 5
gm~F~u 1 u!!

gm~F~u!!
2 1

is increasing inu [ R1 and decreasing inu [ R1 for m$ 21 by Lemma
2+4, and the rvU2 is defined as in Theorem 4+2+ SinceH2~{6u1! $lr H2~{6u1!
for u2 . u1 $ 0, applying Lemma 2+1 in ~4+9! yields thatLr ~u! is increas-
ing in u [ R1+

~ii ! For r 5 2, it follows from ~2+2! and~2+5! that

1

L2~u!
5 pE

0

` OF m~u! f ~u!

gm~F~u!!
F OF~u 1 u!

OF~u!
Ggp1121

3 F gm~F~u 1 u!! 2 gm~F~u!!

gm~F~u!! G p21 f ~u 1 u!

f ~u!
du,

which is decreasing inu [ R1 by using Lemma 2+2 and Remark 2+2+ This
thus completes the proof+ n

Theorem 4+4 cannot be, in general, true whenF is DLR, as shown by Example
3+1 in Hu and Zhuang@16# +

Choosingm5 21 in Theorem 4+4, we have the following corollary+

Corollary 4.5: Let XL~1!,XL~2!, + + + be the same as in Corollary 4.2. If the failure
rate l~t ! of F is logconcave, then

XL~ j ! 2 XL~i ! #lr XL~ j ! 2 XL~l ! whenever0 # l # i , j # n+

In Corollaries 4+2, 4+4, and 4+5, $XL~1!,XL~2!, + + + % can be interpreted as the epoch
times$T1,T2, + + + % of a nonhomogeneous Poisson process with intensity functionl~t !
~see the paragraph before Theorem 3+3!+ For various comparison results of non-
homogeneous Poisson processes, one can refer to Belzunce, Lillo ,Ruiz, and Shaked
@5# and references therein+

It is still an open problem whether~P8! holds for GOSs+
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