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The modification of turbulent thermal wind
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The meridional component of the earth’s rotation is often neglected in geophysical
contexts. This is referred to as the ‘traditional approximation’ and is justified by the
typically small vertical velocity and aspect ratio of such problems. Ocean fronts are regions
of strong horizontal buoyancy gradient and are associated with strong vertical transport of
tracers and nutrients. Given these comparatively large vertical velocities, non-traditional
rotation may play a role in governing frontal dynamics. Here the effects of non-traditional
rotation on a front in turbulent thermal wind balance are considered using an asymptotic
approach. Solutions are presented for a general horizontal buoyancy profile and examined
in the simple case of a straight front. Non-traditional effects are found to depend strongly
on the direction of the front and may lead to the generation of jets and the modification of
the frontal circulation and vertical transport.
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1. Introduction

The so-called ‘traditional approximation’ (Eckart 1960; Gerkema et al. 2008; Lucas,
McWilliams & Rousseau 2017) describes the neglect of the meridional (north–south)
component of the planetary rotation vector. This approximation is justified by a scaling
argument and valid for flows in which the vertical length scales are small compared with
the horizontal length scales and the vertical velocities are small. While the traditional
approximation is generally accurate for oceanic and atmospheric flows, the effects of
the neglected rotation component – referred to here as non-traditional effects – can still
be important in some problems, particularly if the vertical velocities are large or the
traditional rotation vector vanishes.

For flows with strong vertical velocities, non-traditional rotation can have a variety of
effects such as introducing directional dependence in Ekman flows (Coleman, Ferziger
& Spalart 1990; McWilliams & Huckle 2006) and tilting convective plumes in deep
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convection (Garwood 1991; Sheremet 2004). Near the equator, the traditional Coriolis
parameter is small and non-traditional rotation dominates. This results in a different form
of geostrophic balance (de Verdière & Schopp 1994) in which horizontal density gradients
are balanced by the meriodionally sheared velocity and can lead to the emergence of new
phenomena such as the deep equatorial jets studied by Hua, Moore & Gentil (1997).

Non-traditional effects also play an important role in the dynamics of internal waves
(Gerkema & Shira 2005; Gerkema et al. 2008), particularly in the case of near-inertial
waves where they act as a singular perturbation, resulting in a qualitatively different
behaviour to the traditional system even when a scaling argument would suggest these
effects are small. This perturbation corresponds to the existence of a range of trapped
sub-inertial modes which vanish under the traditional approximation. Other effects include
increasing the critical latitude at which internal waves can no longer propagate and
modifying the reflection off a sloping bottom (Gerkema 2006).

Ocean fronts are regions of strong horizontal buoyancy gradient and are common
features in the upper ocean. These fronts typically occur on horizontal scales of around
1–10 km and exist in a state close to turbulent thermal wind (TTW) balance – the three
way balance between the Coriolis force, horizontal pressure gradients and the vertical
mixing of momentum (Cronin & Kessler 2009; Gula, Molemaker & McWilliams 2014;
McWilliams et al. 2015; Wenegrat & McPhaden 2016). Frontal systems are predominantly
hydrostatic so vertical pressure gradients are set by the fluid density. An important
dynamical feature of frontal systems is the secondary circulation (McWilliams 2017)
which is associated with an enhanced vertical velocity and acts to exchange heat and
nutrients (Garrett & Loder 1981; Ferrari 2011) between the surface and the ocean interior.
Due to this large vertical velocity, non-traditional effects may play a role in governing
frontal dynamics.

Crowe & Taylor (2018) considered a simple analytical model for a front in TTW balance.
Vertical mixing was shown to generate a leading-order cross-front flow which drives a
circulation around the front and, hence, strong up/downwelling at the frontal edges. The
circulation acts to restratify the front through the tilting of vertical buoyancy contours
and the induced vertical stratification is maintained through an advection–diffusion
balance. Over very long time scales, the correlation between the cross-front flow and
vertical stratification was shown to result in frontal spreading via shear dispersion. These
predictions were tested in Crowe & Taylor (2019b) and the model was extended to include
the effects of surface wind stress and buoyancy flux in Crowe & Taylor (2020) and used to
study the effects of vertical mixing on baroclinic instability in Crowe & Taylor (2019a).

Here, the effects of non-traditional rotation on a front in TTW balance are considered by
including these effects as a perturbation from the TTW solution of Crowe & Taylor (2018).
A small parameter representing the strength of the non-traditional rotation component is
introduced and asymptotic solutions for the velocity fields and induced stratification are
derived. The magnitude of the non-traditional correction terms is found to depend strongly
on the angle of the front with fronts aligned in the east–west direction being most strongly
affected by non-traditional rotation and fronts aligned in the north–south direction being
unaffected.

An important feature of the solution is the generation of vertical vorticity by the
horizontal component of the non-traditional Coriolis force. This vorticity appears as
along-front jets and results in temporal evolution of the system over much faster time scales
than the shear dispersion observed by Crowe & Taylor (2018). Additionally, it is found that
non-traditional effects can modify the circulation around the front leading to enhanced
vertical transport and regions of increased surface velocity convergence. This velocity
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convergence is frontogenetic (Hoskins 1982; Shakespeare & Taylor 2013; McWilliams
2017) – driving a sharpening of the horizontal buoyancy gradients – however, it should be
noted that the predicted sharpening is weak and non-traditional effects are unlikely to be a
dominant mechanism for frontogenesis.

In § 2 the problem set-up is described and the parameters and governing equations
introduced. General asymptotic solutions are derived in § 3 and summarised in § 4 with
reference to the special case of a straight front. A specific example is illustrated in § 5 and
the features of the solution are shown and discussed. Finally in § 7 the results are discussed
with reference to typical ocean parameters and areas for future work.

2. Set-up

Consider a horizontally infinite layer of fluid between two rigid, horizontal boundaries
with Cartesian coordinates (x, y, z). Here x describes the east–west direction, y describes
the north–south direction and z is the vertical coordinate representing depth.The system is
taken to be rotating with a constant angular velocity about the y and z axes. Evolution
is governed by the incompressible Boussinesq equations where density changes are
represented by a single scalar, buoyancy, with a single scalar equation describing its
evolution. The governing equations can now be written (Charney 1973; Crowe & Taylor
2018) as

Du
Dt

+ f × u = −∇p + bẑ + ν∇2u, (2.1a)

∇ · u = 0, (2.1b)

Db
Dt

= κ∇2b, (2.1c)

for

f =
⎛
⎝0

f̃
f

⎞
⎠ , ẑ =

⎛
⎝0

0
1

⎞
⎠ , (2.2a,b)

where f and f̃ describe the vertical and meridional components of rotation, respectively.
Due to the typically small horizontal scales of ocean fronts, the beta effect is not
considered and f and f̃ are taken to be constant. Using a typical horizontal length scale,
(x, y) ∼ L, typical buoyancy scale, b ∼ B, inertial time scale, t ∼ 1/f , and layer depth, H,
it is convenient to non-dimensionalise (u, v) by U = BH/( fL), w by BH2/( fL2) and p by
BH. The system is now described by five non-dimensional parameters; the Rossby number,
Ro = U/( fL), the Ekman number, E = ν/( fH2), the Prandtl number, Pr = ν/κ , the aspect
ratio, ε = H/L, and the ratio f̃ /f . It should be noted that ( f , f̃ ) = 2Ω(sin θ, cos θ), where
Ω is the rotation rate of the Earth and θ is the latitude. Therefore,

f̃
f

= 1
tan θ

, (2.3)

so non-traditional effects will be amplified near the equator where θ is small. The ratio f̃ /f
only appears multiplied by ε so a non-traditional parameter

δ = ε f̃
f

(2.4)
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is introduced for brevity. The governing equations can now be written as

∂u
∂t

+ Ro
[

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

]
+ δw − v = −∂p

∂x
+ E

∂2u
∂z2 , (2.5a)

∂v

∂t
+ Ro

[
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
+ u = −∂p

∂y
+ E

∂2v

∂z2 , (2.5b)

∂b
∂t

+ Ro
[

u
∂b
∂x

+ v
∂b
∂y

+ w
∂b
∂z

]
= E

Pr
∂2b
∂z2 , (2.5c)

−δu = −∂p
∂z

+ b, (2.5d)

∂u
∂x

+ ∂v

∂y
+ ∂w
∂z

= 0, (2.5e)

where all terms scaled by ε2 have been neglected. Therefore, the vertical momentum
equation reduces to quasi-hydrostatic balance and any horizontal mixing terms vanish. Top
and bottom boundaries are placed at z = ±1/2 where no-stress conditions are imposed on
the horizontal velocity, no-flow conditions on the vertical velocity and no-flux conditions
on the buoyancy. These conditions are taken for simplicity and may be replaced by a wind
stress or heat flux condition as considered by Crowe & Taylor (2020).

In the following analysis the depth-dependent and depth-independent parts of fields are
often considered separately so it is convenient to define the depth average

∗̄ =
∫ 1/2

−1/2
∗ dz, (2.6)

and denote the deviation from this depth average by ∗′ = ∗ − ∗̄. Additionally, the
horizontal gradient vector is denoted by

∇H =
(
∂

∂x
,
∂

∂y
, 0
)
. (2.7)

An ocean front is represented here as an isolated region of non-zero horizontal buoyancy
gradient, ∇Hb, with b = −1 on the low buoyancy side and b = 1 on the high buoyancy
side. The cross-front direction is defined to be the direction aligned with ∇Hb and the
along-front direction to be aligned with ẑ × ∇Hb. Typically, variations in the along-front
direction occur over larger scales than cross-front variations and, hence, examples of fronts
with no along-front variation are used to illustrate these results. A typical frontal set-up is
shown in figure 1.

If the system is independent of y – corresponding to a front aligned in the north–south
direction – the non-traditional terms can be removed from (2.5) by replacing p by p + pδ ,
where pδ is defined using

∂pδ
∂x

= −δw and
∂pδ
∂z

= δu. (2.8a,b)

This definition is consistent as it can be easily shown to satisfy mass conservation. The
resulting system is equivalent to setting δ = 0 and, hence, non-traditional effects have no
effect beyond the addition of an extra term in the pressure field.
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z = 1/2

z = –1/2

x

b = 1
�Hbb = –1

y

z

ẑ

δŷ

Figure 1. Typical non-dimensional frontal geometry showing a front with horizontal buoyancy gradient, ∇Hb,
and buoyancy of b = −1 (resp. b = 1) on the low (resp. high) buoyancy side of the front. Top and bottom
boundary conditions are applied at z = ±1/2. In this non-dimensional set-up the system is rotating with angular
velocity δŷ + ẑ.

3. Asymptotic expansion

To proceed, the parameters δ and Ro are assumed small with δ � Ro. Taking Ro ∼ δ2,
quantities may be expanded using an asymptotic expansion in δ by writing

ϕ = ϕ0 + δϕ1 + δ2ϕ2 + · · · (3.1)

for some field ϕ. Substituting expansions of this form into (2.5) gives a system of equations
for each power of δ. Typically, Ekman numbers lie in the range of E ∼ 0.01–1 (Crowe &
Taylor 2018). However, it should be noted that even for E � 1, fields may be significantly
modified within the top and bottom Ekman layers (of depth O(

√
E)) so E is taken to be

an O(1) quantity throughout. Mathematically, this may be seen as retaining the highest
vertical derivatives in order to enforce the top and bottom boundary conditions.

Before proceeding with the analysis it is worth discussing the time derivative terms in
(2.5). Unlike the TTW solutions of Crowe & Taylor (2018, 2019b), steady solutions to
order O(Ro) do not exist; this unsteadiness results from the generation of depth-averaged
vorticity by non-traditional effects.

3.1. Generation of vorticity by non-traditional effects
Neglecting terms of order O(δ2) from (2.5) and depth averaging (2.5a), (2.5b) and (2.5e)
gives

∂ ū
∂t

+ δw̄ − v̄ = −∂ p̄
∂x
, (3.2a)

∂v̄

∂t
+ ū = −∂ p̄

∂y
, (3.2b)

∂ ū
∂x

+ ∂v̄

∂y
= 0, (3.2c)

which may be combined to give

∂

∂t

(
∂v̄

∂x
− ∂ ū
∂y

)
= δ

∂w̄
∂y
. (3.3)

Equation (3.3) states that the non-traditional component of the Coriolis force acts to
generate vorticity over long times, t ∼ O(1/δ). This suggests the inclusion of a second time
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scale, T = δt, corresponding to this vorticity generation. Using a multiple scales approach
the time derivative may be expanded as

∂

∂t
→ ∂

∂t
+ δ

∂

∂T
, (3.4)

where now the ∂/∂t term corresponds to transient inertial oscillations resulting from an
unbalanced initial condition. From Crowe & Taylor (2018), a longer time scale on the
order of t ∼ O(δ4) is also expected to be important. This slow scale corresponds to shear
dispersive spreading of the front and will be discussed in § 3.6.

From now on transient oscillations are neglected by setting the fast time derivative, ∂/∂t,
to zero. Therefore, the system is assumed to be balanced over the inertial time scale t and
only the slow evolution is considered.

3.2. The O(1) solution
At leading order in δ (2.5) gives

−v0 = −∂p0

∂x
+ E

∂2u0

∂z2 , (3.5a)

u0 = −∂p0

∂y
+ E

∂2v0

∂z2 , (3.5b)

0 = E
Pr
∂2b0

∂z2 , (3.5c)

0 = −∂p0

∂z
+ b0, (3.5d)

∂u0

∂x
+ ∂v0

∂y
+ ∂w0

∂z
= 0, (3.5e)

corresponding to the leading-order (in Ro) TTW system of Crowe & Taylor (2018). The
leading-order buoyancy equation may now be solved for

b0 = b0(x, y, T); (3.6)

hence, the layer is vertically well mixed to leading order in δ. The leading-order pressure
may now be solved as

p0 = p̄0 + zb0, (3.7)

where p̄0 balances the depth-averaged component of velocity through geostrophic balance.
This depth-averaged flow may be represented as a streamfunction by

ū0 = −∂ψ0

∂y
, v̄0 = ∂ψ0

∂x
, (3.8a,b)

where ψ0 = p̄0 so the depth-averaged pressure acts as a streamfunction for this horizontal
flow. The depth-dependent velocity fields, (u′

0, v
′
0,w0), may be calculated (see Crowe &
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Taylor 2018) by solving a fourth-order linear system to obtain solution

u′
0 = −

√
E
[

K′′(ζ )
∂b0

∂x
− K(ζ )

∂b0

∂y

]
, (3.9a)

v′
0 = −

√
E
[

K(ζ )
∂b0

∂x
+ K′′(ζ )

∂b0

∂y

]
, (3.9b)

w0 = E K′(ζ )∇2
Hb0, (3.9c)

where ζ = z/
√

E and K(ζ ) is an E dependent vertical structure function satisfying

⎧⎪⎨
⎪⎩

K(4)(ζ )+ K(ζ )+ ζ = 0 for ζ ∈ [−ζ0, ζ0],
K′(ζ ) = 0 at ζ = ±ζ0,

K′′′(ζ ) = 0 at ζ = ±ζ0,

(3.10)

where ζ0 = 1/(2
√

E) is the value of |ζ | on the top and bottom surfaces. Note that primes (′)
on K are taken to mean derivatives with respect to ζ rather than deviations from a vertical
average as used elsewhere. The full solution for K(ζ ) is given by K0(ζ ) in Appendix A of
Crowe & Taylor (2018). For E � 1, it can be shown that K(ζ ) ∼ −ζ and, hence, thermal
wind balance holds outside of thin boundary layers of width O(

√
E) near the top and

bottom boundaries.

3.3. The O(δ) solution
At order O(δ) (2.5) gives

∂u0

∂T
+ w0 − v1 = −∂p1

∂x
+ E

∂2u1

∂z2 , (3.11a)

∂v0

∂T
+ u1 = −∂p1

∂y
+ E

∂2v1

∂z2 , (3.11b)

∂b0

∂T
= E

Pr
∂2b1

∂z2 , (3.11c)

−u0 = −∂p1

∂z
+ b1, (3.11d)

∂u1

∂x
+ ∂v1

∂y
+ ∂w1

∂z
= 0. (3.11e)

It can be shown that the only solutions satisfying (3.11c) along with no-flux boundary
conditions are

∂b0

∂T
= 0 and b1 = b1(x, y, T). (3.12a,b)

Therefore, b0 does not change over the time scale t = O(1/δ) and the buoyancy is
also depth independent to O(δ). The pressure may now be calculated using (3.9a) and
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(3.11d) as

p1 = p̄1 + (b1 + ū0)z − E
[(

K′(ζ )− K(ζ0)

ζ0

)
∂b0

∂x

+
(

K′′′(ζ )− K′′(ζ0)

ζ0
+ ζ 2

2
− ζ 2

0
6

)
∂b0

∂y

]
, (3.13)

where the final term arises from the integral of u′
0 and has been set to be depth independent.

3.3.1. The depth-averaged system
From (3.11a), (3.11b), and (3.11e), the depth-averaged velocity and pressure satisfy

∂ ū0

∂T
+ w̄0 − v̄1 = −∂ p̄1

∂x
, (3.14a)

∂v̄0

∂T
+ ū1 = −∂ p̄1

∂y
, (3.14b)

∂ ū1

∂x
+ ∂v̄1

∂y
= 0, (3.14c)

which may be combined to give

∂

∂T

(
∂v̄0

∂x
− ∂ ū0

∂y

)
= ∂w̄0

∂y
=⇒ ∂

∂T
∇2ψ0 = ∂w̄0

∂y
, (3.15)

which describes the generation of depth-averaged vorticity. Substituting for w̄0 gives that
∂ψ0

∂T
= 2

√
E3K(ζ0)

∂b0

∂y
=⇒ ψ0 = Ψ0 + 2

√
E3K(ζ0)

∂b0

∂y
T, (3.16)

where Ψ0 = Ψ0(x, y) is the value of ψ0 at T = 0. The depth-averaged geostrophic flow
can now be determined from ψ0. From (3.14c), the O(δ) depth-averaged flow may now be
written as

ū1 = −∂ψ1

∂y
, v̄1 = ∂ψ1

∂x
, (3.17a,b)

where, by (3.14a) and (3.14b), ψ1 is related to p̄1 through

p̄1 = ψ1 − 2
√

E3K(ζ0)
∂b0

∂x
. (3.18)

To determine the evolution of ψ1 it is necessary to consider the O(δ2) system.

3.3.2. The depth-dependent system
The depth-dependent quantities may now be considered by subtracting the depth-averaged
horizontal momentum equations in (3.14) from (3.11a) and (3.11b) to obtain

w′
0 − v′

1 = −∂p′
1

∂x
+ E

∂2u′
1

∂z2 , (3.19a)

u′
1 = −∂p′

1
∂y

+ E
∂2v′

1
∂z2 , (3.19b)

where the time derivative terms vanish as (u′
0, v

′
0) does not depend on T . Substituting

for w′
0 using (3.9c) and p′

1 using (3.13), this system may be solved (see Appendix A)
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for solution

u′
1 = −

√
E
[

K′′(ζ )
∂

∂x
− K(ζ )

∂

∂y

](
b1 − ∂ψ0

∂y

)
+ E

∂

∂y

[
A(ζ )

∂b0

∂x
− B(ζ )

∂b0

∂y

]
,

(3.20a)

v′
1 = −

√
E
[

K(ζ )
∂

∂x
+ K′′(ζ )

∂

∂y

](
b1 − ∂ψ0

∂y

)
+ E

∂

∂y

[
B(ζ )

∂b0

∂x
+ A(ζ )

∂b0

∂y

]
.

(3.20b)

Finally, w1 may be calculated using (3.11e) as

w1 = EK′(ζ )∇2
H

(
b1 − ∂ψ0

∂y

)
−
√

E3C(ζ )∇2
H
∂b0

∂y
, (3.21)

where C(ζ ) is the integral of A(ζ ). The functions A, B and C are complicated functions of
ζ , K(ζ ) and ζ0 and are given in Appendix B.

3.4. The O(δ2) solution
In Crowe & Taylor (2018) it was shown that an O(Ro) stratification is induced and
maintained by an advection–diffusion balance in the buoyancy equation. Here this effect is
expected to appear at orders O(δ2) = O(Ro) and O(δ3) and the O(δ2) system is considered
first.

3.4.1. The buoyancy field
Since it has been assumed that Ro = O(δ2), it is convenient to define Ro = R δ2, where
R is an O(1) number. The O(δ2) buoyancy equation is

∂b1

∂T
+ R

(
u0
∂b0

∂x
+ v0

∂b0

∂y

)
= E

Pr
∂2b2

∂z2 , (3.22)

and noting that b1 is depth independent, (3.22) may be depth averaged to obtain

∂b1

∂T
+ RJ(ψ0, b0) = 0, (3.23)

where J(φ, ϕ) = (∂xφ)(∂yϕ)− (∂yφ)(∂xϕ) is the Jacobian derivative. Substituting for ψ0
gives

b1 = −R
[

J(Ψ0, b0)T +
√

E3K(ζ0)J
(
∂b0

∂y
, b0

)
T2
]
, (3.24)

assuming that b1 = 0 at T = 0.
Subtracting (3.23) from (3.22) gives

R
(

u′
0
∂b0

∂x
+ v′

0
∂b0

∂y

)
= E

Pr
∂2b2

∂z2 . (3.25)

This equation was considered in Crowe & Taylor (2018) and describes the restratification
of the front by the TTW circulation. The solution is

b2 = b̄2(x, y, T)− RPr
√

E K(ζ )|∇Hb0|2. (3.26)
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3.4.2. The streamfunction for the depth-averaged flow
Depth-dependent velocity components of order higher than O(δ) are not required in
the subsequent calculations. However, higher-order components of ψ are required to
determine the higher-order depth-averaged buoyancy terms and may be determined by
considering the vertical vorticity.

The depth-averaged vertical vorticity equation may be derived by cross-differentiating
(2.5a) and (2.5b) and depth averaging to obtain

δ
∂η̄

∂T
+ Ro ∇H · [uHη − ωHw] = δ

∂w̄
∂y
. (3.27)

Here uH = (u, v, 0) is the horizontal velocity, η = ∂v/∂x − ∂u/∂y is the vertical vorticity
and

ωH =

⎛
⎜⎜⎜⎜⎜⎝

∂w
∂y

− ∂v

∂z
∂u
∂z

− ∂w
∂x

0

⎞
⎟⎟⎟⎟⎟⎠ (3.28)

is the horizontal vorticity. At O(δ2) (3.27) gives

∂∇2
Hψ1

∂T
+ R J[ψ0,∇2

Hψ0] = R∇H · [−u′
H0η

′
0 + ωH0w0] + ∂w̄1

∂y
, (3.29)

where the flux terms can be expressed in terms of b0 to give

∂∇2
Hψ1

∂T
+ RJ[ψ0,∇2

Hψ0] = R∇H · [P · ∇Hb0∇2
Hb0] + ∂w̄1

∂y
(3.30)

for

P = E

(
2K′2 K2 − K′′2

K′′2 − K2 2K′2

)
. (3.31)

The flux term in (3.30) corresponds to both the generation of vorticity due to vortex
stretching and the horizontal transport of vorticity due to a correlation between the
vertically sheared profiles for the horizontal velocity and the vertical vorticity. Over time
scales longer than T , these terms have been shown to generate along-front jets (Crowe &
Taylor 2019b) and play a role in baroclinic instability (Crowe & Taylor 2019a). Vorticity
is also generated by the non-traditional component of the Coriolis force through the y
variations in w̄1, as discussed in § 3.1.

Equation (3.30) may be solved for ∇2
Hψ1 by a simple integration in T . However, solving

for ψ1 requires inverting the Laplacian operator so it is not possible to present a simple
analytic solution. Solutions for (3.30) could be easily found numerically for given fields
b0, ψ0 and b1.

3.5. The O(δ3) solution
Now the order O(δ3) balance is considered to determine the stratification maintained by
the O(δ) velocity component. The O(δ3) vorticity equation will not be examined though it
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may be derived from (3.27) similarly to (3.30). The buoyancy equation is

∂b2

∂T
+ R

(
u1
∂b0

∂x
+ v1

∂b0

∂y
+ u0

∂b1

∂x
+ v0

∂b1

∂y

)
= E

Pr
∂2b3

∂z2 , (3.32)

which may be depth averaged to obtain

∂ b̄2

∂T
+ R[J(ψ1, b0)+ J(ψ0, b1)] = 0. (3.33)

This equation may be solved using the expression for ψ1 if required. Since the
depth-averaged buoyancy is known to the first two orders in δ and it is not possible to
find a simple analytic expression for ψ1, expressions for b̄ are not calculated explicitly at
O(δ2) or higher. Instead, the focus is on determining the vertical structure of b, denoted b′,
to the lowest two orders. Since the lowest-order term in b′ is b′

2 (see (3.26)), the next order
term, b′

3, must also be determined.
Subtracting (3.33) from (3.32) and noting that ∂b′

2/∂T = 0 gives the equation for the
depth-dependent buoyancy

R
(

u′
1
∂b0

∂x
+ v′

1
∂b0

∂y
+ u′

0
∂b1

∂x
+ v′

0
∂b1

∂y

)
= E

Pr
∂2b3

∂z2 , (3.34)

with solution

b3 = b̄3(x, y, T)+ RPr
[

E
(

D1(ζ )

2
∂

∂y
|∇Hb0|2 + D2(ζ )J

[
∂b0

∂y
, b0

])

+
√

E
(

K(ζ )
(

∇H
∂ψ0

∂y
· ∇Hb0 − 2∇Hb0 · ∇Hb1

)

−
(

K′′(ζ )+ ζ 3

6
− ζ ζ 2

0
2

)
J
[
∂ψ0

∂y
, b0

])]
, (3.35)

where the vertical structure functions D1(ζ ) and D2(ζ ) are given in Appendix B. The term
b̄4 can be determined by depth averaging the O(δ5) buoyancy equation, as noted above,
this calculation is not done here.

3.6. Higher-order terms and shear dispersive spreading
The asymptotic approach may be continued as above to O(δ4) and higher. However, from
Crowe & Taylor (2018, 2019b), slow frontal spreading is expected due to a buoyancy
flux resulting from the correlation between the leading-order velocity and the O(δ2)

stratification, u′
H0b′

2. This spreading is due to shear dispersion and was found to appear in
the equations at O(Ro2) = O(δ4) and occur over a time scale of t = O(1/Ro2) = O(1/δ4).
Similarly, the flux terms u′

H1b′
2 and u′

H0b′
3 resulting from non-traditional effects might

be expected to drive some buoyancy change at O(δ5). Therefore, new time scales are
introduced to examine the effects of this shear dispersion.

The time scale T = δt was shown in § 3.1 to be the time scale over which an O(1)
amount of depth-averaged vorticity is generated by non-traditional effects. Over time
scales longer than T , many of the terms in b̄ and ψ demonstrate secular growth and
as such it is necessary to introduce additional slow time scales corresponding to this
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slow frontal spreading. This is done by equating the size of the time derivative of the
leading-order buoyancy, b0, with the shear dispersion terms

∂b0

∂t
∼ δ4R∇H · [u′

H0b′
2] and

∂b0

∂t
∼ δ5R∇H · [u′

H1b′
2 + u′

H0b′
3], (3.36a,b)

to get two time scales, T4 = δ4t and T5 = δ5t, and letting b0 depend on T4 and T5. Here
T4 corresponds to the slow spreading time scale from Crowe & Taylor (2018) while T5
corresponds to a longer time scale on which the evolution of depth-averaged buoyancy
occurs due to non-traditional effects. Determining a closed system in full generality
requires knowing how ψ evolves over the slow scales T4 and T5 which requires examining
high-order equations for the depth-averaged vorticity (Crowe & Taylor 2019a,b). Instead,
the simplifying assumption of a straight front is made. Under this assumption, the ψ
dependent terms vanish and equations purely in terms of b0 are recovered as

∂b0

∂T4
= R2 Pr ∇H · [Q · ∇Hb0|∇Hb0|2], (3.37)

and

∂b0

∂T5
= R2 Pr ∇H ·

[
R1 · ∂∇Hb0

∂y
|∇Hb0|2 + R2 · ∇Hb0

∂

∂y
|∇Hb0|2

]
, (3.38)

where

Q(E) = E

(
K′2 K2

−K2 K′2

)
, (3.39)

and

R1(E) = E
√

E

(
AK −BK

BK AK

)
, R2(E) = E

√
E

2

(
AK −D1K

D1K AK

)
. (3.40a,b)

Equation (3.37) is identical to the result derived in Crowe & Taylor (2018) and
describes the spreading of a front due to a horizontal buoyancy flux resulting from the
correlation between the induced stratification and the cross-front flow. Equation (3.38)
similarly describes a horizontal buoyancy flux, with terms arising from the non-traditional
corrections to the stratification and cross-front flow.

It is worth noting that over long time scales the generation of significant background
vorticity is expected, both by non-traditional effects as discussed in § 3.1 and due to the
correlation between along-front and cross-front velocity fields as shown in (3.30) and
discussed in Crowe & Taylor (2019b). These correlation terms appear as a consequence
of vertical mixing driving a cross-front flow and do not appear in the limit of E → 0.
The generated vorticity manifests as along-front jets and can become large enough to
significantly modify the absolute vorticity of the system resulting in a modification of
the TTW velocity solution and, hence, a modified stratification and frontal spreading.
Additionally, frontal systems are susceptible to baroclinic instability (Stone 1966; Crowe
& Taylor 2019a) which may lead to a breakdown of the straight front assumption.

4. Summary of solution

Here the solution of § 3 is summarised and results are presented and discussed for a simple
frontal geometry.
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4.1. The velocity fields
Correct to O(δ), the velocity fields are given by

uH = −∇ × [(ψ0 + δψ1)ẑ] −
√

EK · ∇H

(
b0 + δ b1 − δ

∂ψ0

∂y

)

+ δEA · ∇H
∂b0

∂y
+ O(δ2), (4.1)

and

w = EK′(ζ )∇2
H

(
b0 + δ b1 − δ

∂ψ0

∂y

)
− δ

√
E3C(ζ )∇2

H
∂b0

∂y
+ O(δ2), (4.2)

where

K(ζ ) =
(

K′′(ζ ) −K(ζ )
K(ζ ) K′′(ζ )

)
and A(ζ ) =

(
A(ζ ) −B(ζ )
B(ζ ) A(ζ )

)
. (4.3a,b)

The depth-averaged velocity is described by a streamfunction where

ψ0 = Ψ0 + 2
√

E3δtK(ζ0)
∂b0

∂y
, (4.4)

for some initial streamfunction ψ0 = Ψ0 at t = 0. It should be noted that t = O(1/δ) so all
terms here are leading order. The O(δ) streamfunction component, ψ1, satisfies (3.30).

The leading-order flow can be split into components in the cross-front direction
(described by the diagonal terms in K ) and along-front direction (described by the
off-diagonal terms in K ). However, the O(δ) terms are aligned relative to gradients of
the north–south (y) derivatives of b0 and ψ0 which do not necessarily correspond to the
direction of ∇Hb0.

Two special cases are b0 = b0(x) and b0 = b0( y). The case of b0 = b0(x) describes a
front with the along-front direction aligned north–south. In this case all y derivatives can
be neglected and the non-traditional terms have no effect on the front as discussed in § 2.
Conversely, b0 = b0( y) describes a front with the along-front direction aligned east–west.
In this case non-traditional effects are maximised and the gradients of b0 are aligned with
the gradients of ∂b0/∂y so the horizontal velocity terms driven by the non-traditional
rotation can be easily split into cross-front and along-front components similarly to the
leading-order flow.

4.2. The buoyancy field
The buoyancy field can be split into depth-averaged and depth-dependent components.
Correct to the lowest two orders in δ the solutions are

b̄ = b0 + δb1 + O(δ2) = b0 − Ro tJ
[
Ψ0 +

√
E3δtK(ζ0)

∂b0

∂y
, b0

]
+ O(δ2), (4.5)

where Ro t = O(δ). The depth-dependent buoyancy is given by

b′ = Ro Pr
√

E
[(

−K(ζ )+ δ
√

E
D1(ζ )

2
∂

∂y

)
|∇Hb0|2 + δ

(√
ED2(ζ )J

[
∂b0

∂y
, b0

]

+ K(ζ )∇H

(
∂ψ0

∂y
− 2b1

)
· ∇Hb0 −

(
K′′(ζ )+ ζ 3

6
− ζ ζ 2

0
2

)
J
[
∂ψ0

∂y
, b0

])]

+ O(δ4). (4.6)
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Similarly to the velocity fields, if b0 = b0(x) then the non-traditional rotation has no effect
on the front and the solution reduces to the results of Crowe & Taylor (2018). From b′ the
vertical buoyancy gradient, N2, may be determined as

N2 = ∂b′

∂z
= Ro Pr

[(
−K′(ζ )+ δ

√
E

D′
1(ζ )

2
∂

∂y

)
|∇Hb0|2 + δ

(√
ED′

2(ζ ) J
[
∂b0

∂y
, b0

]

+ K′(ζ )∇H

(
∂ψ0

∂y
− 2b1

)
· ∇Hb0 −

(
K′′′(ζ )+ ζ 2

2
− ζ 2

0
2

)
J
[
∂ψ0

∂y
, b0

])]

+ O(δ4). (4.7)

The horizontal buoyancy gradient may be similarly calculated using

M2 = ∇Hb = ∇Hb̄ + ∇Hb′, (4.8)

where the first term on the right-hand side is leading order and depth independent while
the second term is order O(Ro) and depth dependent.

4.3. Frontal spreading and shear dispersion
Over very long times the front is expected to evolve through shear dispersion. Equations
(3.37) and (3.38) may be combined to give

∂b0

∂t
= Ro2 Pr ∇H ·

[(
Q · ∇Hb0 + δ R1 · ∇H

∂b0

∂y
+ δ R2 · ∇Hb0

∂

∂y

)
|∇Hb0|2

]
, (4.9)

which is valid for a straight front provided the vorticity generated by non-traditional effects
and vertical mixing is less than the background vorticity. Expressions for Q, R1 and R2
are given in (3.39) and (3.40a,b). It should be noted that (4.9) reduces to the results of
Crowe & Taylor (2018) for b0 = b0(x), similarly to the results for velocity and buoyancy.
If b0 = b0( y) is an odd function of y, then solutions to (4.9) will remain odd in y for all
time for the case of δ = 0. However, for δ /= 0, the addition of an extra y derivative in the
non-traditional correction terms leads to an asymmetry and, hence, different evolution on
each side of the front.

5. A simple frontal geometry

To illustrate the results given in § 4, solutions are plotted for the simple case of

b0 = tanh y. (5.1)

As noted in the previous section, this corresponds to a front with the along-front direction
(here the x direction) aligned east–west so that non-traditional effects are maximised. From
(4.5), it can be seen that b1 = 0 since the Jacobian terms vanish. Similarly, higher-order
depth-averaged buoyancy terms, such as b̄2 and b̄3, will evolve through advection by
Jacobian terms so may also be set to zero. Therefore, b0 may be taken to describe the
full depth-averaged buoyancy.
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Figure 2. The streamfunction (a) and velocity (b) of the along-front jets. Solutions are shown correct to O(δ)
for E = 0.1, δ = 0.2, δ t = 1 and R = 1.

5.1. Depth-independent jets
Taking the initial streamfunction of Ψ0 = 0, the depth-averaged velocity is given by

ψ0 = 2
√

E3δtK(ζ0)sech2y =⇒ (ū0, v̄0) = 4
√

E3δtK(ζ0)(sech2y tanh y, 0), (5.2)

corresponding to two jets running in opposite directions along the edges of the front. As
expected, motion is confined to the frontal region. Since the Jacobian terms vanish for
b0 = b0( y), (3.30) may be solved for ψ1 as

ψ1 = REδtK′2
(
∂b0

∂y

)2

− 2 E3(δt)2[K(ζ0)]2 ∂
3b0

∂y3 . (5.3)

The first term of ψ1 in (5.3) describes the vorticity generated by the correlation between
the cross-front and along-front TTW velocities (Crowe & Taylor 2019b), while the second
term describes the generation of vorticity through the action of the non-traditional Coriolis
force on the O(δ) vertical velocity. The streamfunction and along-front velocity of the
depth-independent jets are shown in figure 2 correct to O(δ) as a function of y for E = 0.1,
δ = 0.2, δ t = 1 and R = 1. These jets grow with time and are expected to become large
for T � 1.

5.2. Frontal circulation
For an x independent front, the cross-front velocity (v) and vertical velocity (w) satisfy the
mass conservation equation

∂v′

∂y
+ ∂w
∂z

= 0, (5.4)

and, hence, the circulation around the front in the y − z plane can be represented by a
circulation streamfunction, φ, defined using

v′ = ∂φ

∂z
, w = −∂φ

∂y
. (5.5a,b)

Note that there is no depth-independent flow in the y direction as ψ = ψ( y) so v = v′
here. The circulation components, φ0 and φ1, are given by

φ0 = −EK′(ζ )
∂b0

∂y
, φ1 =

√
E3C(ζ )

∂2b0

∂y2 + EK′(ζ )
∂2ψ0

∂y2 . (5.6a,b)
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Figure 3. Comparison between the TTW and modified TTW solutions for E = 0.01 and T = 1; (a) φ for
δ = 0, (b) φ for δ = 0.4, (c) v for δ = 0, (d) v for δ = 0.4, (e) w for δ = 0 and ( f ) w for δ = 0.4. Solutions are
shown correct to O(δ).

The two terms of φ1 in (5.6a,b) each arise due to different components of the
non-traditional Coriolis force. The horizontal component appears directly in the horizontal
momentum balance resulting in the first term of (5.6a,b) while the vertical component
drives the system out of hydrostatic balance, modifying the pressure field and giving the
second term.

Figure 3 shows a comparison between the TTW solutions of Crowe & Taylor (2018)
(corresponding to δ = 0) and the modified TTW solutions presented here with δ = 0.4.
Solutions are given correct to O(δ) using ϕ = ϕ0 + δ ϕ1 for a given field ϕ and shown
for E = 0.01 and T = 1. The TTW solution consists of a flow from the high buoyancy
side of the front to the low buoyancy side near the top surface and the opposite on the
bottom surface. This results in upwelling on the high buoyancy side and downwelling on
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Figure 4. (a) The first term of the O(δ) circulation streamfunction component, φ1, from (5.6a,b). (b) The
second term of φ1 from (5.6a,b). Panels (c) and (d) show the cross-front velocity (v) components associated
with the streamfunction components shown in panels (a) and (b), respectively. Results are shown for E = 0.1
and T = 1.

the low buoyancy side resulting in a anti-clockwise net circulation (shown by positive
φ). This behaviour was discussed in Crowe & Taylor (2018) and is consistent with
previous results and observations (Eliassen 1962; Orlanski & Ross 1977; McWilliams
2017). Non-traditional effects act to tilt the circulation cell and drive a flow in the centre
of the layer. This flow may lead to a topological change in the structure of the circulation
with a streamline in figure 3(c) seen to split into two separate cells.

Figure 4 shows separately the two terms of φ1 from (5.6a,b) for E = 0.1 and T = 1.
The associated cross-front velocities are also shown. The first term consists of four
counter-rotating cells resulting in regions of convergence near the top and bottom
boundaries and acting to tilt the leading-order circulation cell. The second term consists
of three counter-rotating cells and results from the along-front jets modifying the vertical
pressure gradient away from hydrostatic balance. As these jets grow, the second term of φ1
grows linearly with time for T = O(1). Over very long time scales, it is predicted that these
jets can become large enough to modify the absolute vertical vorticity in the frontal region.
Therefore, while small in figure 3(b), this circulation component may become large at late
times leading to further topological changes in the structure of the frontal circulation.

Additionally, by depth integrating the vertical velocities corresponding to the two terms
in (5.6a,b) the net vertical transport of fluid may be calculated. The first term depth
averages to zero so does not correspond to any vertical transport, instead this term
describes a tilting of the circulation cell as noted above. The second term does, however,
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Figure 5. Comparison of the along-front velocities for the TTW and modified TTW systems showing
(a) u′ for δ = 0 and (b) u′ for δ = 0.4. Parameters are E = 0.01 and T = 1 and solutions are given correct
to O(δ).

have a non-zero depth average which suggests that the circulation cells in figure 4(b) may
act to enhance the vertical exchange of tracers through the surface mixed layer.

The O(δ) cross-front velocities shown in figure 4 contain regions of surface
convergence. This velocity convergence can lead to a sharpening of surface buoyancy
gradients resulting in frontogenesis (Hoskins 1982; Shakespeare & Taylor 2013) and,
hence, non-traditional effects may be frontogenetic. The asymptotic framework used here
assumes Ro � 1 so this model is not strictly valid for studying frontogenesis where the
Rossby number is typically order 1. However, for Ro = O(1), the frontal sharpening
predicted here will be an O(δ) effect, therefore, away from the equator, non-traditional
effects are unlikely to be a dominant frontogenetic mechanism when compared with other
mechanisms such as external strain, spontaneous adjustment and the secondary circulation
induced by finite Rossby number effects (Hoskins & Bretherton 1972; Blumen 2000;
Gula et al. 2014; McWilliams 2017). Non-traditional frontogenesis may be relevant in a
small region around the equator where δ ≥ O(1), though, since TTW is unlikely to be
the dominant balance in this region, it is not possible to draw any conclusions from this
analysis.

5.3. The along-front flow
The depth-dependent along-front velocity components are given by

u′
0 =

√
EK(ζ )

∂b0

∂y
, u′

1 = −EB(ζ )
∂2b0

∂y2 −
√

EK(ζ )
∂2ψ0

∂y2 , (5.7a,b)

where the two terms of u′
1 arise from the modified horizontal momentum balance and the

modified hydrostatic balance similarly to the terms of φ1 in (5.6a,b).
Figure 5 shows the depth-dependent along-front velocity correct to O(δ) for the cases

of δ = 0 and δ = 0.4 with T = 1. The along-front flow is dominated by a thermal wind
shear modified by vertical mixing (Crowe & Taylor 2018) and non-traditional effects are
seen to be small. Therefore, the most significant effect of non-traditional rotation on the
along-front flow is the development of the depth-independent jets shown in figure 2 though
if the jets become large, significant modification of the depth-dependent flow may occur
through the second term of (5.7a,b).
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5.4. Buoyancy and stratification
As noted above, the depth-averaged buoyancy remains equal to b0 for the simple
case of b0 = tanh y. However, the vertical structure of the buoyancy field and the
associated stratification are determined by the frontal circulation so are still affected by
non-traditional rotation. These terms appear at orders O(δ2) and O(δ3) and from (4.6) are
given by

b2 = −RPr
√

EK(ζ )
(
∂b0

∂y

)2

,

b3 = RPr
(

ED1(ζ )
∂b0

∂y
∂2b0

∂y2 +
√

EK(ζ )
∂b0

∂y
∂2ψ0

∂y2

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.8)

The lowest-order buoyancy term with vertical structure, b2, describes the stratification
maintained by an advection–diffusion balance between the advection of buoyancy by the
leading-order circulation, φ0, and the vertical mixing of buoyancy (Crowe & Taylor 2018).
A similar balance occurs at O(δ3) so the first (second) term of b3 in (5.8) describes the
stratification maintained by the first (second) term of φ1.

Figure 6 shows the depth-dependent buoyancy, b′, and vertical stratification, N2 =
∂b/∂z, correct to O(δ3) for E = 0.01 and T = 1. Solutions are shown for δ = 0 and δ =
0.4. Since b′ and N2 are linear in Ro Pr through the factor of Rδ2 Pr, results are plotted for
b′/(Ro Pr) and N2/(Ro Pr) to remove this dependence. The advection–diffusion balance
is seen to drive a stable restratification of the front and modification by non-traditional
effects is small unless ψ0 becomes large.

From (5.8), the order O(δ3) horizontal buoyancy gradient may be calculated as

M2
3 = ∂b3

∂y
= RPr

(
ED1(ζ )

∂

∂y

[
∂b0

∂y
∂2b0

∂y2

]
+

√
E K(ζ )

∂

∂y

[
∂b0

∂y
∂2ψ0

∂y2

])
. (5.9)

The two terms of (5.9) are plotted in figure 7 for E = 0.01, RPr = 1 and T = 1. Regions
of positive horizontal buoyancy gradient are observed for both terms in M2

3, these regions
correspond to frontal sharpening due to the cross-front velocity convergence seen in
figure 4.

5.5. Shear dispersive spreading
For b0 = b0( y), (4.9) becomes

∂b0

∂t
= Ro2 Pr

∂

∂y

[
c3

(
∂b0

∂y

)3

+ δ c4

(
∂b0

∂y

)2
∂2b0

∂y2

]
(5.10)

for

c3(E) = E K′2 and c4(E) = 2
√

E3 AK. (5.11a,b)

This equation is derived using the ψ0 independent terms from b′
3 and u′

H1 and corresponds
to the case of weak vorticity generation, ψ0 = 0. Over the long time scale of shear
dispersive spreading, t = O(1/δ4), significant vorticity generation is expected. However,
the case of ψ0 = 0 is considered here to isolate the effect of the ψ independent terms.
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Figure 6. Comparison between the TTW and modified TTW solutions for E = 0.01 and T = 1; (a) b′/(Ro Pr)
for δ = 0, (b) b′/(Ro Pr) for δ = 0.4, (c) N2/(Ro Pr) for δ = 0 and (d) N2/(Ro Pr) for δ = 0.4. Solutions are
shown correct to O(δ).
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Figure 7. (a) The first term of M2
3 from (5.9). (b) The second term of M2

3 from (5.9). Results are shown for
E = 0.01, RPr = 1 and T = 1.

As δ → 0, (5.10) reduces to the result of Crowe & Taylor (2018) where the front
approaches a self-similar solution and spreads as y ∼ t1/4. This self-similar solution is
odd in y, hence, the high buoyancy and low buoyancy sides evolve in the same way.
However, the c4 term breaks this y symmetry due to an odd number of y derivatives
so both sides are expected to evolve differently for non-zero δ. To test this prediction,
(5.10) is solved numerically using the Dedalus framework (Burns et al. 2020). The units
of time are rescaled such that Ro2Pr c3 = 1 leaving r = δc4/c3 as the only free parameter.
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Figure 8. (a) The buoyancy field, b0, from numerically solving (5.10). Solutions are calculated for r =
δc4/c3 = 0 (red) and r = 0.2 (blue) and shown for Ro2Pr c3t ∈ [0, 2.5, 5, 7.5, 10] with steeper solutions
corresponding to earlier times. (b) The difference in b0 between the r = 0 results and the r = 0.2 results for
the same time values as (a).

Simulations are run for r = 0 and r = 0.2 and initialised using the profile b0(t = 0) =
tanh y. Sixth-order hyperdiffusion with a hyperdiffusivity of ν6 = 3 × 10−9 is included
for numerical stability and simulations are run until Ro2Pr c3t = 10 using a third-order
implicit–explicit Runge–Kutta scheme and a domain of y ∈ [−5, 5] with Ny = 256 grid
points.

Figure 8 shows the numerical solutions for b0 for r = 0 and r = 0.2 at a range of times.
The difference between these two solutions is plotted in panel (b) allowing the expected
asymmetry due to non-traditional effects to be observed. The effect of the non-traditional
term is found to be small and of greatest importance near the frontal edges where the
curvature, ∂2b0/∂y2, is large. Therefore, it is expected that non-traditional effects will not
play a significant role in the shear dispersive spreading of a front without the inclusion of
strong vorticity generation.

Over long times, a large amount of vorticity is expected to be generated by both vertical
mixing (Crowe & Taylor 2019b) and non-traditional effects. This vorticity manifests
as depth-independent jets and can act to modify the total vorticity of the system. If
this vorticity is sufficiently strong, local vorticity terms can appear in the leading-order
TTW balance. These terms will modify the Coriolis force, resulting in a modified
depth-dependent velocity and, hence, a modified circulation. Therefore, it is predicted that
the generation of vorticity will play a more important role in the evolution of b0 than the
ψ0 independent circulation considered here. The effects of large ψ0 could be considered
using the approach of Crowe & Taylor (2019b); however, such solutions are expected to
be complicated and provide no new insight into the problem so will not be considered
here.

6. The finite Rossby number regime

Throughout we have taken Ro = O(δ2). This assumption is predominantly for
mathematical convenience as it results in linear equations for the velocity at the first two
orders in δ. However, frontal systems in which non-traditional effects are important are
unlikely to have small Rossby numbers. Here, typical frontal parameters are discussed
and numerical simulations are presented for parameters outside of the regime considered
above.
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6.1. Typical frontal parameters
The small parameter describing non-traditional effects is the ratio of the vertical and
horizontal components of the rotation vector scaled by the aspect ratio and is given by

δ = H
L

1
tan θ

(6.1)

for latitude θ , layer depth H and typical frontal width L. The requirement that Ro = O(δ2)
therefore implies that

B ∼ Hf̃ 2, (6.2)

where B is the typical buoyancy difference across the front. Taking typical values of f̃ ≈
10−4 s−1 and H = 100 m gives a buoyancy difference which is much smaller than the
typical values of B ≈ 10−4 ms−2. Therefore, for this asymptotic regime to hold, the frontal
velocities and, hence, the Rossby number would have to be much smaller than would be
expected physically.

To determine more physical values of the relevant parameters, note that non-traditional
effects are most important in the tropical and subtropical regions where tan θ < 1. Here,
fronts with small horizontal scales, L ∼ 1 km, may have order 1 values of δ; however, the
Rossby number would also be order 1 for these small-scale fronts. This case of Ro = O(1)
and δ = O(0.1–1) is likely to be the most physically relevant regime. Previous studies
(Crowe & Taylor 2019b) have noted that TTW balance can remain valid even for the
case of finite Rossby numbers so numerical simulations are now performed to test if the
phenomenon described above are relevant to this regime.

6.2. Numerical simulations for Ro = 1
Here, (2.5) is solved subject to no-stress and no-flux boundary conditions using the
Dedalus package (Burns et al. 2020). These numerical simulations are two dimensional;
the cross-front direction is taken to align with the y axis where non-traditional effects are
maximised and ∂/∂x is set to zero. Fields are expanded in terms of a Fourier basis in
the horizontal ( y) direction and a Chebyshev basis in the vertical (z) direction and time
stepped using a third-order implicit–explicit Runge–Kutta scheme. Horizontal mixing with
a viscosity of 10−4 is included for numerical stability. Simulations are initialised using the
O(1) TTW solution for velocity and buoyancy given in § 4 for b0 = tanh y and ψ0 = 0.

Figure 9 shows numerical results for Ro = 0.1, δ = 1 and E = 0.1. Figure 9(a) shows
the development of the along-front jets through the growth of the streamfunction of the
depth-averaged flow, ψ , with time. These profiles for ψ are consistent with the analytical
predictions shown in figure 2(a), differing by less than 3 % from the theory despite the use
of an order 1 value of δ in an asymptotic expression that is known only to O(δ). Figure 9(b)
shows the O(δ) component of the streamfunction of the frontal circulation, φ1, at t = 2.
Here φ1 is calculated as the difference between the total value of φ and the value of φ0
calculated using (5.6a,b). Again the results are well described by the theory as the structure
of these circulation cells can be seen to be a sum of the components shown in figures 4(a)
and 4(b). The accuracy of the theoretical predictions for order 1 values of δ suggests that
the solutions of § 4 are valid, even outside of the asymptotic regime considered.

Figure 10 shows numerical results for Ro = 1, δ = 1 and E = 0.1. Here, the effects
of nonlinearity become significant and it is necessary to separate the effects of finite
Ro from the effects of finite δ. This may be done by running another simulation with
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Figure 9. Results from a numerical simulation with (Ro, δ,E) = (0.1, 1, 0.1) showing (a) the streamfunction,
ψ , describing the depth-averaged along-front flow and (b) the circulation component φ1 at t = 2.
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Figure 10. Results from a numerical simulation with (Ro, δ,E) = (1, 1, 0.1) showing (a) the difference in
streamfunction,�ψ , between the results for δ = 1 and δ = 0, and (b) the difference in frontal circulation,�φ,
at t = 2.

(Ro, δ,E) = (1, 0, 0.2) and calculating the difference

�ϕ = ϕ|δ=1 − ϕ|δ=0 (6.3)

for some field ϕ. Figure 10(a) shows the value of �ψ for a range of values of t. Similarly
to the case of Ro = 0.1, the along-front flow is found to be well described by the
theoretical predictions with a difference of around 4 % between �ψ and the prediction
for ψ0 + δψ1. The difference in frontal circulation, �φ, is shown in figure 10(b). While
qualitatively similar to theoretical predictions and the case of Ro = 0.1, the nonlinearity
and non-traditional components appear to interact nonlinearly resulting in some deviation
from the predictions. In particular, the centre of the middle circulation cell in figure 10(b)
is seen to split in two. Nonetheless, even for cases far outside the asymptotic regime
considered analytically, the effects of including non-traditional rotation appear to be
qualitatively the same as discussed above, with the generation of along-front jets and a
modification of the frontal circulation.

7. Discussion and conclusions

Here the effects of the non-traditional component of rotation on a front in TTW balance
have been considered. Solutions are calculated as a perturbation of the TTW solutions
of Crowe & Taylor (2018, 2019b) using an asymptotic approach. The magnitude of the
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non-traditional correction terms is found to depend strongly on the direction of the front.
Fronts where the along-front direction is aligned north–south are found to be unaffected
by the non-traditional rotation terms. Conversely, non-traditional effects are maximised
for fronts aligned east–west.

A primary effect of the non-traditional rotation is the generation of vertical vorticity
by the horizontal component of the non-traditional Coriolis force, f̃w. This vorticity is
generated in regions of strong vertical velocity and manifests as along-front jets. Over time
scales of t ∼ 1/(δf ) strong vorticity generation is expected, resulting in a modification of
the total vertical vorticity of the system once the generated vorticity is of similar magnitude
to the planetary vorticity, f . In this case, relative vorticity terms must be included in the
leading-order balance (Wenegrat & Thomas 2017; Crowe & Taylor 2019b) resulting in a
modified leading-order solution.

Additionally, the vertical component of the non-traditional Coriolis force, −f̃u, acts
to drive the system out of hydrostatic balance resulting in a new pressure component
and, hence, a new horizontal pressure gradient. Since the velocity, u, may be split into
a component corresponding to the background vorticity and a component corresponding
to the TTW flow, two new velocity contributions are obtained. Firstly, the background
vorticity drives a modification to the leading-order TTW flow by changing the horizontal
pressure gradients. Secondly, the action of both non-traditional components of the Coriolis
force on the leading-order TTW solution drives a small correction flow consisting of
several circulation cells. The combined effect of these contributions may lead to a
change in the topographic structure of the total frontal circulation, which, for vanishing
non-traditional effects, consists of a single cell. Furthermore, the modification of this
circulation may act to enhance the exchange of tracers through the mixed layer.

As observed in Crowe & Taylor (2018), the TTW velocity field consists of a
leading-order circulation around the front. This circulation acts to restratify the front and
the stratification is maintained through an advection–diffusion balance in the buoyancy
equation. Since non-traditional effects modify this circulation, the stratification is modified
by the appearance of terms which depend both on the background buoyancy gradient and
the background vorticity. Some circulation components are observed to be frontogenetic,
driving a sharpening of horizontal buoyancy gradients. However, outside of a small region
around the equator where the analysis is not valid, this frontogenesis is expected to be
weak when compared with other mechanisms (Hoskins & Bretherton 1972; Shakespeare
& Taylor 2013; McWilliams 2017).

The correlation between the cross-front flow and the vertical buoyancy gradient
may drive the evolution of the background buoyancy field through shear dispersion.
Non-traditional effects are expected to affect this process predominantly via the
modification of the velocity and buoyancy fields by the generated background vorticity. It
should be noted that an important feature of fronts is the presence of baroclinic instability
(Stone 1966) which can also modify the background buoyancy field. Since baroclinic
instability would be expected to act over faster time scales than shear dispersive spreading
and can exist in the presence of strong vertical mixing (Crowe & Taylor 2019a), these
instabilities should be considered when studying the long-term behaviour of the front.

Using typical frontal parameters of H = 100 m and L = 10 km, the value of δ is
expected to be very small (δ ≤ 0.01) away from the tropical and subtropical regions.
Therefore, the non-traditional component of rotation is unlikely to play a significant role in
general frontal dynamics. However, in the low latitude regions near the equator it may be
possible to get δ ∼ 0.1–1 so fronts in these regions may have dynamics which are strongly
affected by non-traditional effects. An order 1 value of δ requires a fairly small frontal
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width of L ∼ 1 km so fronts in this regime are also expected to have order 1 values of the
Rossby number with nonlinear advection playing an important role. While the asymptotic
results presented in § 4 are not strictly valid outside of the regime Ro � δ � 1, numerical
simulations indicate that the same phenomenon occurs and that these solutions can provide
accurate predictions for the case of finite Rossby numbers and finite non-traditional
parameters even if they are not formally valid.

Another limitation of the asymptotic model is the idealised set-up with turbulent mixing
represented by a constant turbulent Ekman number and any large-scale geostrophic flow
components being neglected. The inclusion of a more realistic turbulence parametrisation
and a background flow field require a numerical approach and is a topic for future work.
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Appendix A. The O(δ) depth-dependent velocity

Here (3.19) is solved for the depth-dependent component on the O(δ) velocity field.
Substituting for w′

0 using (3.9c) and p′
1 using (3.13) gives

v1 + ∂2u1

∂ζ 2 = E
∂

∂y

[
K1(ζ )

∂b0

∂y
− K2(ζ )

∂b0

∂x

]
+ z

[
∂b1

∂x
+ ∂ ū0

∂x

]
, (A1a)

u1 − ∂2v1

∂ζ 2 = E
∂

∂y

[
K1(ζ )

∂b0

∂x
+ K2(ζ )

∂b0

∂y

]
− z

[
∂b1

∂y
+ ∂ ū0

∂y

]
, (A1b)

where

K1(ζ ) = K′(ζ )− K(ζ0)

ζ0
, K2(ζ ) = K′′′(ζ )− K′′(ζ0)

ζ0
+ ζ 2

2
− ζ 2

0
6
, (A2a,b)

and ζ = z/
√

E as before. The right-hand sides of (A1) consist of two forcing terms in
square brackets, these can now be treated separately by linearity and a superscript ({1}
and {2}) will be used to denote which forcing term a solution corresponds to. The second
forcing term resembles that of the leading-order system, −∇Hp0 = −z∇Hb0, so can be
solved similarly for solution

u′{2}
1 = −

√
E
[

K′′(ζ )
∂

∂x
− K(ζ )

∂

∂y

](
b1 − ∂ψ0

∂y

)
, (A3a)

v
′{2}
1 = −

√
E
[

K(ζ )
∂

∂x
+ K′′(ζ )

∂

∂y

](
b1 − ∂ψ0

∂y

)
, (A3b)

where ū0 has been replaced using ū0 = −∂ψ0/∂y. The first forcing term is more
complicated but the system may be solved by taking

u′{1}
1 = E

∂

∂y

[
A(ζ )

∂b0

∂x
− B(ζ )

∂b0

∂y

]
, (A4a)
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v
′{1}
1 = E

∂

∂y

[
B(ζ )

∂b0

∂x
+ A(ζ )

∂b0

∂y

]
, (A4b)

based on the form of the equations. The functions A(ζ ) and B(ζ ) satisfy

A − B′′ = K′(ζ )− K(ζ0)

ζ0
and − B − A′′ = K′′′(ζ )− K′′(ζ0)

ζ0
+ ζ 2

2
− ζ 2

0
6
, (A5a,b)

which may be solved with no-stress boundary conditions to obtain solutions for A and B.
The solutions for each forcing term may now be summed to give the final solution for
(u′

1, v
′
1).

Appendix B. Vertical structure functions

The vertical structure functions, A(ζ ) and B(ζ ), are determined as solutions of (A5a,b).
The first rows of the following solutions give the particular solution required to solve
(A5a,b) while the second rows give the complementary function component required to
satisfy no-stress boundary conditions on the top and bottom boundaries. Solutions are

A(ζ ) = −ζK′′(ζ )+ 4
2

− K(ζ0)

ζ0

+ (4ζ 2
0 + 5ζ0K(ζ0)+ (K(ζ0))

2 + (K′′(ζ0))
2)(K′(ζ )+ 1)+ 3ζ0K′′(ζ0)K′′′(ζ )

2[(K′′(ζ0))2 + (K(ζ0)+ ζ0)2]
,

(B1)

and

B(ζ ) = −ζK(ζ )+ 2ζ 2

2
+ K′′(ζ0)

ζ0
+ ζ 2

0
6

− (4ζ 2
0 + 5ζ0K(ζ0)+ (K(ζ0))

2 + (K′′(ζ0))
2)K′′′(ζ )− 3ζ0K′′(ζ0)(K′(ζ )+ 1)

2[(K′′(ζ0))2 + (K(ζ0)+ ζ0)2]
.

(B2)

The function C(ζ ) describes the vertical velocity and is calculated as a single vertical
integral of A by mass conservation. The integration constant is taken such that C is zero
on the top and bottom boundaries so C is given by

C(ζ ) = 2(ζ − ζ0)+ 1
2
(K(ζ )+ K(ζ0))− ζK′(ζ )

2
− K(ζ0)ζ

ζ0

+ (4ζ 2
0 + 5ζ0K(ζ0)+ (K(ζ0))

2 + (K′′(ζ0))
2)(K(ζ )+ ζ − K(ζ0)− ζ0)

2[(K′′(ζ0))2 + (K(ζ0)+ ζ0)2]

+ 3ζ0K′′(ζ0)(K′′(ζ )− K′′(ζ0))

2[(K′′(ζ0))2 + (K(ζ0)+ ζ0)2]
. (B3)

The structure functions which determine the structure of the vertical stratification are
D1(ζ ) and D2(ζ ) which are determined as solutions of D′′

1(ζ ) = A(ζ ) and D′′
2(ζ ) = B(ζ )

with boundary conditions of no flux on the top and bottom boundaries (corresponding to
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a vanishing first derivative on ζ = ±ζ0). Solutions are

D1(ζ ) = B(ζ )−
[

K′′′(ζ )− K′′(ζ0)

ζ0

]
−
(

K(ζ0)

2ζ0
+ 1

2

)(
ζ 2 − 1

3
ζ 2

0

)
, (B4a)

D2(ζ ) = −A(ζ )−
[

K′(ζ )− K(ζ0)

ζ0

]
+
(

K′′(ζ0)

2ζ0
+ ζ 2

0
12

)

×
(
ζ 2 − 1

3
ζ 2

0

)
− 1

24

(
ζ 4 − 1

5
ζ 4

0

)
. (B4b)
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