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The analogy between rotating shear flow and thermal convection suggests the existence of
plumes, inertial waves and plume currents in plane Poiseuille flow under spanwise rotation.
The existence of these flow structures is examined with the results of three-dimensional
and two-dimensional three-component direct numerical simulations. The dynamics of
plumes near the unstable side is embodied in a truncated exponential distribution of
turbulent fluctuations. For large rotation numbers, inertial waves are identified near the
stable side, and these can be used to explain the abnormal flow statistics, such as the large
root-mean-square of the streamwise velocity fluctuation and the nearly negligible Reynolds
shear stress. For small or medium rotation numbers, plumes generated from the unstable
side form large-scale plume currents and the patterns of the plume currents show different
capabilities in scalar transport.
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1. Introduction

Turbulence under system rotation often occurs in many geophysical, astrophysical
and engineering problems. In a rotating frame fixed with solid walls, such as a
turbomachine rotor, turbulence will be strongly influenced by the Coriolis force and exhibit
complex behaviours. Owing to the simple geometry and high similarity with various
turbomachinery flows, spanwise rotating plane Poiseuille flow (RPPF) has been regarded
as one of the most important canonical models of rotating wall-bounded shear flows
(Johnston 1998; Jakirlic, Hanjalic & Tropea 2002) and has been intensively investigated.
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Johnston, Halleent & Lezius (1972) first investigated the turbulent RPPF by experiments
and found that turbulence is enhanced near the pressure side, while suppressed near
the suction side. Here the definitions of the pressure and the suction side originated
from the difference of mean pressure between two walls caused by the Coriolis force
corresponding to the mean velocity (Johnston 1998). Following the thermal analogy
introduced by Bradshaw (1969), the region corresponding to unstable/stable stratification
is adjacent to the pressure/suction side and, straightforwardly, the pressure/suction side is
also called the unstable/stable side. In addition, a local linear mean streamwise velocity
profile with a slope of approximately twice that of the spanwise angular velocity Ω∗

z
as well as large-scale streamwise Taylor–Görtler vortices (roll cells) were observed near
the unstable side by Johnston et al. (1972). Matsubara & Alfredsson (1996) measured
the heat and momentum transfer in RPPF, and found that the rotation could strongly
increase the heat transfer by almost 100 %, while the classic Reynolds analogy between
momentum and heat transfer is no longer valid in RPPF. Nakabayashi & Kitoh (1996,
2005) also investigated RPPF at relatively lower Reynolds number (Re = U∗

bh∗/ν∗) and
rotation number (Ro = 2Ω∗

z h∗/U∗
b ) experimentally, and the measured turbulence statistics

were discussed with reference to the dimensional analysis. Here, U∗
b is the bulk mean

velocity, ν∗ is the kinematic viscosity and h∗ is the half-width of the channel. Other
experimental studies include, but are not limited to, Maciel et al. (2003) and Visscher
et al. (2011).

Owing to the difficulty of globally accurate experimental measurement of fully
developed turbulent RPPF, and the fast development of computer hardware and software,
direct numerical simulations (DNSs) are becoming prevalent tools for the investigation of
turbulent RPPF at low and medium Reynolds numbers. Kristoffersen & Andersson (1993)
first performed DNS to study the turbulent RPPF with weak to medium rotations, and
observed large-scale roll cells and the local 2Ω∗

z -slope linear mean velocity profile, which
were consistent with former experimental results. Since then, many DNS studies have
been carried out by the community to investigate the turbulent statistics and flow physics
in RPPF. Nagano & Hattori (2003) studied the heat transport in RPPF through DNS and
used the results to assess turbulence models. Grundestam, Wallin & Johansson (2008)
focused on DNSs with medium to high Ro at a fixed global friction Reynolds number
Reτ = u∗

τ h∗/ν∗ = 180 (u∗
τ is the global friction velocity), and found that the bulk flow

was monotonically increasing with Ro in the Ro range investigated and that the flow will
be fully relaminarized at the laminar limit Ro = 3.0. Brethouwer et al. (2014) conducted
DNSs with a wide range of Ro and Re = 20 000, and observed cyclic instabilities at large
Ro caused by the growth and breakdown of Tollmien–Schlichting (TS) waves. Xia, Shi &
Chen (2016) also performed DNSs with a wide range of Roτ = 2Ω∗

z h∗/u∗
τ at Reτ = 180,

and observed linear profiles for the Reynolds shear stress 〈u′v′〉 and the production term
of 〈u′u′〉, where the former has a unit slope and the latter has a −2Roτ slope. Hsieh &
Biringen (2016) investigated the influence of small computational domains on turbulence
statistics and flow structures, and found that a small spanwise size of computational
domain will change the shape of roll cells, which will make the turbulence statistics deviate
from those computed using large computational domains. Other DNS studies include,
but are not limited to, Liu & Lu (2007), Yang & Wu (2012), Wallin, Grundestam &
Johansson (2013), Dai, Huang & Xu (2016), Brethouwer (2016, 2017, 2018, 2019) and
Xia, Brethouwer & Chen (2018a).

Although RPPF is studied intensively, not all important flow structures in RPPF are well
identified and analysed. Despite the vortices, the streak structures and the Taylor–Görtler
vortices (roll cells) can generally be observed on the unstable side in many experimental
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and numerical studies of RPPF (Grundestam et al. 2008; Brethouwer 2017). Strong
evidence has shown that roll cells exist in RPPF at low Re when Ro � 0.6, and they
are less certain and much harder to detect owing to them being non-stationary in space
and smaller size at higher Ro (Brethouwer 2017). At higher Re and Ro, the roll cells
are hardly discernable, and oblique turbulent–laminar bands and cyclic turbulent bursts
have been reported recently (Brethouwer et al. 2014; Brethouwer 2016, 2017). These flow
structures were previously used to explain the observed flow phenomenon and statistics.
For examples, Brethouwer (2017) proposed that the roll cells can modulate the near-wall
dynamics on the unstable side according to the clustering of intense vortices in streamwise
near-wall streaks shown by the flow visualization, while Brethouwer (2016) attributed the
strong temporal fluctuations of the mean wall shear stress and volume-averaged turbulent
kinetic energy at high Re and Ro to the cyclic turbulent bursts. However, not all flow
phenomenon and statistics in RPPF can be explained by using the above-discussed flow
structures. It is well accepted that the turbulence would become progressively weaker
on the stable side with increasing rotation speed (Brethouwer 2017). Nevertheless, the
root-mean-square (r.m.s.) values of the streamwise velocity fluctuations near the stable
side at higher rotation speed do not disappear but have values which are very close to
those near the unstable side, as shown by figure 11(a) in Grundestam et al. (2008), figure 3
in Xia et al. (2016), figure 6 in Brethouwer (2017) and figure 8(a) in the present paper.
These results imply that some flow structures should exist near the stable side and they
have not been identified before.

In our previous work, Zhang et al. (2019) introduced a two-dimensional
three-component (2D3C) model to simplify the three-dimensional (3-D) RPPF by
assuming that the velocity is invariant in the streamwise direction. The 2D3C model is
equivalent to a two-dimensional (2-D) penetrative convection mathematically based on
the thermal analogy. Hereafter, the RPPF with the 2D3C model will be called ‘2-D RPPF’
for simplicity. In the results, Zhang et al. (2019) observed a local Roτ -slope of the mean
streamwise velocity profile and a local unit slope of the Reynolds shear stress in 2-D
RPPF, which are the same as those observed in the fully 3-D RPPF, which indicates that
some important features in the fully 3-D RPPF could be dominated by 2-D mechanisms
in the 2-D RPPF. In 2-D penetrative convection problems, Wang et al. (2019a) observed
plumes in the flow field, while Lecoanet et al. (2015) and Toppaladoddi & Wettlaufer
(2018) showed that internal gravity waves exist in the stably stratified region. Therefore,
the local existence of plumes and waves in 2-D RPPF could be expected. Considering the
similarity between a 2-D RPPF and a fully 3-D RPPF, it is also intuitive to examine the
existence of plume and wave structures in fully 3-D RPPF. If plume structures exist in
RPPF, detailed investigation on such structures may inspire possible control strategies in
RPPF because the control of plumes is an effective strategy in thermal convection (Zhang
et al. 2018; Zhu et al. 2019; Zhang et al. 2021). Meanwhile, the existence of waves may
help clarify the mechanisms behind flow visualizations and statistics mentioned above. It
should be noted that near-wall plumes were once identified by Ostilla-Mónico et al. (2014),
van der Veen et al. (2016) and Sacco, Verzicco & Ostilla-Mónico (2019) in turbulent
Taylor–Couette flow (TCF) based on the analogy between rotating shear flows and thermal
convection.

In this paper, we will explore the flow structures on both stable and unstable sides in
RPPF with inspiration from the typical structures that exist in penetrative convection. The
remainder of the paper is organized as follows. The governing equations, thermal analogy
and numerical set-up of RPPF will be introduced in § 2. Based on theoretical analysis and
DNS results, discussions on important flow structures in RPPF will be presented in § 3.
Finally, the present work will be summarized in § 4.
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2. Governing equations and numerical description

2.1. Three-dimensional equations
As sketched in figure 1, the incompressible fluid is bounded by two parallel and infinite
plates located at y∗ = ±h∗. The flow is driven by a constant mean pressure gradient
dP∗/dx∗ along the x direction (streamwise direction). The whole system rotates with a
constant angular velocity Ω∗

z along the z direction (spanwise direction). In this paper,
Ω∗

z is assumed to be positive and the lower/upper wall is the pressure (unstable)/suction
(stable) side. A passive scalar φ∗ is defined in the fluid region, and has constant values φ∗

u
and φ∗

l at the upper and lower walls, respectively. The constant reference density is ρ∗;
the kinematic viscosity is ν∗; the scalar diffusivity is κ∗; the reference length scale is the
channel half-width h∗; the reference scale of φ∗ is Δφ∗ = φ∗

l − φ∗
u ; the reference velocity

scale is the global friction velocity u∗
τ in a statistically steady state, which is equal to√−dP∗/dx∗(h∗/ρ∗). Using these reference quantities, the non-dimensionalized governing

equations and boundary conditions can be written as follows:

∇ · u = 0,

∂u
∂t

+ u · ∇u = −∇p + Re−1
τ ∇2u − Roτ ez × u,

∂φ

∂t
+ u · ∇φ = Pr−1Re−1

τ ∇2φ,

y = −1 : u = 0, φ = 1,

y = +1 : u = 0, φ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Here, Reτ = u∗
τ h∗/ν∗ is the global friction Reynolds number; Roτ = 2Ω∗

z h∗/u∗
τ is the

global friction rotation number and Pr = ν∗/κ∗ is the Prandtl number.

2.2. Two-dimensional equations and thermal analogy
Following Zhang et al. (2019), the 2-D equations (2D3C model) are defined as the
governing equations with extra constraints ∂u/∂x = 0 and ∂φ/∂x = 0:

∂v

∂y
+ ∂w

∂z
= 0,

∂u
∂t

+ v
∂u
∂y

+ w
∂u
∂z

= −dP
dx

+ Re−1
τ

(
∂2u
∂y2 + ∂2u

∂z2

)
+ Roτ v,

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ Re−1

τ

(
∂2v

∂y2 + ∂2v

∂z2

)
− Roτ u,

∂w
∂t

+ v
∂w
∂y

+ w
∂w
∂z

= −∂p
∂z

+ Re−1
τ

(
∂2w
∂y2 + ∂2w

∂z2

)
,

∂φ

∂t
+ v

∂φ

∂y
+ w

∂φ

∂z
= Pr−1Re−1

τ

(
∂2φ

∂y2 + ∂2φ

∂z2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

with the same boundary conditions as (2.1).
Following Tanaka et al. (2000) and Zhang et al. (2019), by defining a new variable

θ = −u + Roτ y and letting p̂ = p + Ro2
τ y2/2, (2.2) can be written as the following
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x∗

y∗

z∗

Ωz
∗

Pressure (unstable) side

Suction (stable) side

Figure 1. Sketch of the three-dimensional spanwise rotating plane Poiseuille flow.

equivalent governing equations of a 2-D penetrative convection with an internal heat sink.
For simplicity, in the following, the new variable θ will be called ‘temperature’.

∂v

∂y
+ ∂w

∂z
= 0,

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂ p̂

∂y
+ Re−1

τ

(
∂2v

∂y2 + ∂2v

∂z2

)
+ Roτ θ,

∂w
∂t

+ v
∂w
∂y

+ w
∂w
∂z

= −∂ p̂
∂z

+ Re−1
τ

(
∂2w
∂y2 + ∂2w

∂z2

)
,

∂θ

∂t
+ v

∂θ

∂y
+ w

∂θ

∂z
= dP

dx
+ Re−1

τ

(
∂2θ

∂y2 + ∂2θ

∂z2

)
,

∂φ

∂t
+ v

∂φ

∂y
+ w

∂φ

∂z
= Pr−1Re−1

τ

(
∂2φ

∂y2 + ∂2φ

∂z2

)
,

y = −1 : v = w = 0, θ = −Roτ , φ = 1,

y = +1 : v = w = 0, θ = +Roτ , φ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

Apparently, the equivalent penetrative convection system has viscosity ν̂ = Re−1
τ , thermal

diffusivity α̂ = Re−1
τ , uniform heat sink q̂ = −dP/dx = 1, and the product of gravitational

acceleration and thermal expansion coefficient ĝβ̂ = Roτ . Behind the buoyancy term
ĝβ̂θey, the equation of state is (ρ̂ − ρ̂0)/ρ̂0 = −β̂θ , and hence the mean ‘density’ profile
is 〈ρ̂〉 = (1 − β̂θ)ρ̂0.

2.3. Numerical set-up
Both the 3-D and 2-D equations are solved using a second-order central-difference code
AFiD (Van Der Poel et al. 2015) with some modifications. Flow variables are defined on
a staggered grid. The Poisson equation of the pressure is decoupled using the discrete
Fourier transform in the x and z direction, and solved using a tridiagonal solver. The time
marching is realized with the explicit second-order Adams–Bashforth scheme. Because
AFiD is designed for simulating Rayleigh–Bénard convection, the φ equation could be
solved well. A 3-D simulation at Reτ = 180 and Roτ = 10 is performed to verify the
present modified code for RPPF simulation. Figure 2(a) shows that the viscous and
Reynolds shear stresses computed using the present code match very well with the results
in Zhang et al. (2019), which were obtained with a highly accurate Fourier–Chebyshev
pesudo-spectral method. In addition, two 3-D simulations are performed at the same Reτ =
180 and Roτ = 120 but with different grid resolutions. The one, which is considered as
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Figure 2. (a) Comparison of shear stresses in the 3-D and Roτ = 10 case with those in Zhang et al. (2019);
(b) comparison of the p.d.f.s of normalized streamwise velocity fluctuation at different y in the 3-D Roτ = 120
case with the basic resolution (symbols) and the refined resolution (lines). Each pair of line and symbols in
panel (b) is shifted upwards from its lower neighbour by a factor of 10.

Dim Reτ Roτ Pr Lx Lz Nx Ny Nz Δ+
x Δ+

y Δ+
z

3-D 180 0 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 1 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 5 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 10 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 20 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 30 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 40 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 80 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
3-D 180 120 1 4π 2π 256 192 256 8.84 [0.52, 2.46] 4.42
2-D 180 1 1 — 2π — 192 256 — [0.52, 2.46] 4.42
2-D 180 5 1 — 2π — 192 256 — [0.52, 2.46] 4.42
2-D 180 10 1 — 2π — 192 256 — [0.52, 2.46] 4.42
2-D 180 20 1 — 2π — 192 256 — [0.52, 2.46] 4.42
2-D 180 30 1 — 2π — 192 256 — [0.52, 2.46] 4.42
2-D 180 40 1 — 2π — 192 256 — [0.52, 2.46] 4.42
2-D 180 80 1 — 2π — 192 256 — [0.52, 2.46] 4.42
2-D 180 120 1 — 2π — 192 256 — [0.52, 2.46] 4.42

Table 1. Basic physical and computational parameters of 3-D and 2-D simulation cases. The wall units are
defined using u∗

τ .

the basic grid resolution, has grid size Nx × Ny × Nz = 256 × 192 × 256, and the other
is refined to Nx × Ny × Nz = 384 × 256 × 384. Figure 2(b) shows the probability density
functions (p.d.f.s) of the normalized streamwise velocity fluctuation at three different y
from the two cases, and it is seen that the p.d.f.s with different resolutions match with
each other very well at all three locations, which suggests that the basic resolution is fine
enough for high Roτ simulations at Reτ = 180. The basic parameters of all 3-D and 2-D
simulations are listed in table 1, which shows that the present grid resolution is much finer
than that used by Kristoffersen & Andersson (1993) in wall units.
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1
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u′ –1 10 2 3 4 5–3–5 –2–4u′

0 0.4 0.8–0.8 –0.4u′0 21 43–4 –3 –2 –1u′

(a) (b)

(c) (d)

Figure 3. Contours of u′ in y–z planes of instantaneous fields from 2-D simulations: (a) Roτ = 1; (b) Roτ = 5;
(c) Roτ = 40; (d) Roτ = 120. The dashed and dash–dotted lines denote the horizontal locations at y = y1 and
y = y2 with Nb( y1) = 0.1Nb(−1) and Nb( y2) = 0.1Nb(1), respectively.

3. Results

3.1. Plumes
In penetrative convection, plumes are one kind of the typical structures (Lecoanet et al.
2015; Toppaladoddi & Wettlaufer 2018; Wang et al. 2019a). As shown in § 2.2, where 2-D
RPPF is mathematically equivalent to a penetrative convection with internal heat sink,
plumes should exist in 2-D RPPF. Such existence can be examined with flow visualizations
and statistical analysis.

Figure 3 shows the contours of u′ in the y–z plane from the 2-D RPPF simulations at
different Roτ (see also the supplementary movie 1 and movie 2 available at https://doi.org/
10.1017/jfm.2021.1073 for Roτ = 5 and 40, respectively). Here, a′ = a − 〈a〉 denotes the
fluctuation of any field a with 〈a〉 denoting the average of a in homogeneous directions
and t. To view the structures more clearly, the dashed and dash–dotted lines are shown
to denote the horizontal locations y1 and y2 with Nb( y1) = 0.1Nb(−1) and Nb( y2) =
0.1Nb(1), respectively. Here, Nb( y) = [−Roτ (d〈u〉/dy − Roτ )]1/2, with its imaginary part
Im[Nb] ≤ 0 chosen, is the complex characteristic frequency of the simplified system (see
§ 3.2 for more information). Using y1 and y2 to divide the fluid domain has strong physical
significance. First, the flow below the plane y = y1 can be strongly destabilized because a
characteristic growth rate |Im[Nb]| there is above 10 % of its maximum value |Im[Nb(−1)]|
over the channel. Second, the flow above the plane y = y2 may be rapidly oscillating
because a characteristic oscillation frequency Re[Nb] there is above 10 % of its maximum
value Re[Nb(1)] over the channel (Re[·] denotes taking the real part). From figure 3 it is
evident that there are plume-like structures generated from the unstable side below the
dashed lines in 2-D RPPF, which carry negative u′ (positive θ ′).

To study the statistical characteristics of flow structures in RPPF near the unstable
side, the p.d.f. of turbulence fluctuations should be analysed. Figure 4(a–c) shows the
p.d.f.s of normalized θ ′ = −u′ at different heights in 2-D RPPF. It can be seen that all
p.d.f.s obtained below the plane y = y2 significantly deviate from the symmetric Gaussian
distribution and may show locally exponential behaviours (linear in logarithmic vertical
coordinate). Inspired by the statistical theory of Rayleigh–Bénard convection introduced
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Figure 4. The p.d.f.s of normalized −u′ and v′ at different heights in 2-D cases: (a–c) −u′/u′
rms; (d–f ) v′/v′

rms.
The sampling planes are chosen with Nb( y) equal to (a,d) 0.3Nb(−1); (b,e) 0; (c, f ) 0.3Nb(1). Symbols
represent simulation data; lines in (a,b,d,e) represent the fitting curves using the theoretical model (3.5); lines
in (c, f ) represent the normalized Gaussian distribution. For clarity, each dataset has been shifted upwards from
its lower neighbour by a factor of 10.

by Wang, He & Tong (2019b), where turbulent fluctuations in Rayleigh–Bénard convection
can be decomposed into the contribution from a homogeneous background turbulence and
the contribution from the thermal plumes, the p.d.f.s of normalized θ ′ = −u′ near the
unstable region (below the plane y = y2) can be modelled.

For a specific scalar fluctuation ξ with 〈ξ〉 = 0, the background turbulence could be
quantified by a Gaussian distribution:

Pb(ξ) =
(

2πσ 2
)−1/2

exp
(

− ξ2

2σ 2

)
, (3.1)

with σ being the standard deviation of the Gaussian distribution. The contribution of
plumes could be quantified by an exponential distribution with some modifications:

P̃p(ξ) = (1 − α)δ(ξ) + αβ

1 − e−βM e−βξ [H(ξ) − H(ξ − M)] . (3.2)

Here, δ is the Dirac delta function; H is the Heaviside function; β is the coefficient
controlling the exponential decay; 0 ≤ α ≤ 1 quantifies the intermittency of plumes;
and M is the maximum amplitude possible for ξ with respect to the plumes, which is
introduced based on the physical consideration that the plumes cannot induce an infinite
amplitude of ξ . There are two modifications in (3.2) based on the classical exponential
distribution β e−βξ H(ξ). The first one is adding the term (1 − α)δ(ξ) (Wang et al. 2019b),
which means that during some time and in some places, plumes are absent and the
instantaneous plume strength should be zero. The second modification is substituting
H(ξ) with H(ξ) − H(ξ − M) (newly introduced in the present work), which means that
in addition to being non-negative, ξ should also be less than M. Because the distribution
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Flow structures in RPPF

(3.2) has a non-zero expectation,

μ = α
[
1 − e−βM(βM + 1)

]
β
(
1 − e−βM

) , (3.3)

the exponential distribution with zero expectation should be

Pp(ξ) = P̃p(ξ + μ)

= (1 − α)δ(ξ + μ) + αβ e−βμ

1 − e−βM e−βξ [H(ξ + μ) − H(ξ + μ − M)] . (3.4)

Therefore, the total distribution of ξ should be the convolution of Pb and Pp (Wang et al.
2019b):

P(ξ) = Pb ∗ Pp

=
∫ ∞

−∞
Pb(s)Pp(ξ − s) ds

= 1 − α√
2πσ

exp
(

−(ξ + μ)2

2σ 2

)

+ 1
2

αβ exp
(

σ 2β2

2
− βμ

)
1 − e−βM e−βξ

[
erf
(

ξ + μ − σ 2β√
2σ

)

−erf
(

ξ + μ − σ 2β − M√
2σ

)]
. (3.5)

We fit the p.d.f.s of θ ′ = −u′ from different Roτ at different locations with y < y2 using
the above theoretical distribution (3.5) (the detailed parameters are listed in Appendix A)
and the fitted curves are shown in figure 4(a,b). It can be seen that the above theoretical
model (3.5) with appropriate fitting parameters can match the p.d.f.s of θ ′ = −u′ very
well, revealing the statistical feature of plumes found in Wang et al. (2019b). The p.d.f.s
of θ ′ = −u′ above y = y2 show different behaviours and cannot be fitted with the present
model.

We also show the p.d.f.s of v′ from different Roτ at the corresponding locations in
figure 4(d–f ). It is interesting to see that the p.d.f.s of v′ also show a similar behaviour as
θ ′ = −u′, and we can also use the above theoretical model (3.5) to fit them (the detailed
parameters are listed in Appendix A). Nevertheless, the fitting results are not so good as
those for θ ′. Combining the results in figures 3 and 4, it is reasonable to claim that plumes
exist near the unstable side in 2-D RPPF.

For 3-D RPPF, we can also visualize the instantaneous contours of u′ in y–z plane at
four corresponding Roτ and the results are shown in figure 5 (see also the supplementary
movie 3 and movie 4 for Roτ = 5 and 40, respectively). Again, we can observe the
plume-like structures near the unstable wall. Furthermore, we can fit the p.d.f.s of −u′
and v′ below y = y2 with the theoretical distribution (3.5) (the detailed parameters are
listed in Appendix A), and the p.d.f.s and the corresponding fitting curves are shown in
figure 6. The results shown in figures 5 and 6 suggest that plumes also exist in 3-D RPPF,
which indicates the high similarity between 2-D and 3-D RPPF.
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Figure 5. Contours of u′ in y–z planes of instantaneous fields from 3-D simulations: (a) Roτ = 1; (b) Roτ = 5;
(c) Roτ = 40; (d) Roτ = 120. The dashed and dash–dotted lines denote the horizontal locations at y = y1 and
y = y2 with Nb( y1) = 0.1Nb(−1) and Nb( y2) = 0.1Nb(1), respectively.
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Figure 6. The p.d.f.s of normalized −u′ and v′ at different heights in 3-D cases: (a–c) −u′/u′
rms; (d–f ) v′/v′

rms.
The sampling planes are chosen with Nb( y) equal to (a,d) 0.3Nb(−1); (b,e) 0; (c, f ) 0.3Nb(1). Symbols
represent simulation data; lines in panels (a,b,d,e) represent the fitting curves using the theoretical model (3.5);
lines in panels (c, f ) represent the normalized Gaussian distribution. For clarity, each dataset has been shifted
upwards from its lower neighbour by a factor of 10.

However, although plumes also exist in 3-D RPPF, they become much weaker after
crossing the plane y = y1, while the plumes in 2-D RPPF can maintain their strength even
in y1 < y < y2, as shown in figures 3 and 5. This is probably because when variance in
the x direction is allowed in 3-D RPPF, plumes in the y–z plane will be very unstable
and vulnerable to the disturbance of background turbulence. It should be emphasized that
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Flow structures in RPPF

the plume structures discussed in 3-D RPPF are actually 2-D because they are identified
through the 2-D thermal analogy. Many 2-D neighbouring plumes will form the plume
currents, which will be discussed later in § 3.3.

3.2. Inertial waves
Internal gravity waves are also one kind of the typical structures in penetrative convection
(Lecoanet et al. 2015; Toppaladoddi & Wettlaufer 2018). Owing to the equivalence
between 2-D RPPF and penetrative convection, the existence of waves in RPPF should
also be examined.

As shown in figures 3 and 5(b–d), wave-like structures exist near the stable side in
2-D RPPF and 3-D RPPF at large Roτ (see also the supplementary movies 1–4). This
also indicates the similarity between 2-D and 3-D RPPF, and the existence of another
flow structure in common. The dynamics of such structures can be analysed following
the procedure used by Turner (1979). For both 2-D and 3-D RPPF, we can simplify the
equations of u′ into

∂v′

∂y
+ ∂w′

∂z
= 0, (3.6a)

∂u′

∂t
= −

(
d〈u〉
dy

− Roτ

)
v′, (3.6b)

∂v′

∂t
= −∂p′

∂y
− Roτ u′, (3.6c)

∂w′

∂t
= −∂p′

∂z
, (3.6d)

and derive a wave equation

∂2

∂t2

(
∂2v′

∂y2 + ∂2v′

∂z2

)
+ N2

b
∂2v′

∂z2 = 0, (3.7)

with Nb = [−Roτ (d〈u〉/dy −Roτ )]1/2 (detailed derivations are shown in Appendix B).
This directly confirms the existence of waves (wave dynamics) in RPPF where N2

b > 0.
Although Nb was derived before by Bradshaw (1969) as a frequency of a specific fluid
motion vertical to the rotation axis, the frequency of a general wave motion depends
on both Nb and the direction of its wavenumber. For the present 2-D RPPF, which is
equivalent to a 2-D penetrative convection, Nb can be viewed as the buoyancy frequency
(Brunt–Väisälä frequency) (Turner 1979). From the anisotropic nature of (3.7), which is
similar to that of inertial waves in isotropic turbulence (Greenspan 1968, 1969; Waleffe
1993), the corresponding waves in RPPF can also be called inertial waves. Similar as
the generation mechanism of internal gravity waves (Toppaladoddi & Wettlaufer 2018;
Wang et al. 2019a), the inertial waves in RPPF are excited by the plumes and turbulent
fluctuations penetrating into the stable region. However, in 3-D RPPF with small Roτ , the
stabilizing effect of rotation is relatively weak, such that the large turbulent fluctuations
will still dominate over the inertial waves in the stable region (see figure 5a,b). This could
explain why the existence of inertial waves is identifiable in 3-D RPPF only with large Roτ

(see figure 5c,d).
Figure 7 shows the frequency spectrum of u′( y, z, t) of the 2-D case and u′(0, y, z, t)

of the 3-D case at Roτ = 40. In both 2-D and 3-D cases, there are regions with large Φuu
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(averaged in the z direction) in the ω–y plane where y > y2, which indicates the distribution
of inertial waves in wall-normal location and frequency space. It is shown that Φuu in the
2-D RPPF can be large for a small ω < 2 near y = 0.3, while Φuu in the 3-D RPPF is
relatively small for small ω. This is because the background turbulence in the 2-D case is
not so strong (see figures 3c and 5c), and the slowly varying plumes in the 2-D case can
penetrate into the stable region and cause positive u′ on the top of these plumes. It is shown
in figure 7(b) that there are several separated regions with large Φuu in the ω–y plane. This
is because although u′(x, y, z, t) in 3-D RPPF is supposed to follow the 2-D dynamics of
inertial waves in the y–z plane, it has variations in the x direction and could influence the
frequency spectrum of u′(0, y, z, t) through a streaming effect. To analyse the streaming
effect, the evolution of u′(0, y, z, t) can be decomposed into the inertial wave dynamics
and the evolution caused by the streaming effect of U( y) = 〈u〉:

f ( y, z, t) = u′(0, y, z, t) = f̂ ( y, z, t;−U( y)t), (3.8)

with f̂ ( y, z, t; x) defined by removing the streaming effect. If the time evolution of f ( y, z, t)
is only caused by the streaming effect, f̂ ( y, z, t; x) will be invariant with t and this is exactly
the Taylor’s frozen-flow hypothesis (Taylor 1938; He, Jin & Yang 2017). However, the
characteristic time scale 2π/Nb of inertial waves is comparable or even smaller than the
characteristic time scale Lx/〈u〉 of the streaming effect, breaking the condition of Taylor’s
frozen-flow hypothesis (the evolution of flow structures is much slower than the streaming
effect of the mean flow). Therefore, f̂ ( y, z, t; x) should have a Fourier expansion in both
the t and x directions:

f̂ ( y, z, t; x) =
∞∑

N′=−∞

{∫ ∞

−∞

[
Ftxf̂

]
( y, z, ω′; N′) exp(i2πN′L−1

x x + iω′t) dω′
}

. (3.9)

Consequently f ( y, z, t) has a Fourier expansion in the t direction:[Ftf
]
( y, z, ω) = 1

2π

∫ ∞

−∞
f ( y, z, t) e−iωt dt

= 1
2π

∫ ∞

−∞
f̂ ( y, z, t;−U( y)t) e−iωt dt

= 1
2π

∫ ∞

−∞

∞∑
N′=−∞

{∫ ∞

−∞

[
Ftxf̂

]
( y, z, ω′; N′)

× exp
(

i
(
ω′ − ω − 2πN′L−1

x U( y)
)

t
)

dω′
}

dt

=
∞∑

N′=−∞

{∫ ∞

−∞

[
Ftxf̂

]
( y, z, ω′; N′)δ

(
ω′ − ω − 2πN′L−1

x U( y)
)

dω′
}

=
∞∑

N′=−∞

[
Ftxf̂

]
( y, z, ω + 2πN′L−1

x U( y); N′)

=
[
Ftxf̂

]
( y, z, ω; 0) +

[
Ftxf̂

]
( y, z, ω ± 2πL−1

x U( y);±1) + · · · .

(3.10)

Apparently, the first term in the last line of (3.10) represents the evolution of inertial
waves without the streaming effect, which corresponds to the first region above the
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Figure 7. Spanwise-averaged frequency spectrum of u′ in a fixed y–z plane in Roτ = 40 cases: (a) 2-D,
u′( y, z, t); (b) 3-D, u′(0, y, z, t). The dashed and dash–dotted lines denote the horizontal locations with y = y1
and y = y2, respectively. Dash–dot–dot lines in panel (b) indicate the right boundaries of the regions with large
Φuu and are generated from the first one on the left with horizontal shifts Δω = 2πNL−1

x U( y), N ∈ Z
+.

dash–dotted line y = y2 with large Φuu on the left of figure 7(b). From left to right, the
regions with large Φuu above y = y2 are becoming more inclined, owing to the shifts of
Δω = 2πNL−1

x U( y), N ∈ Z
+ in the ω direction (the rest of the terms in the last line of

(3.10)). This can be indicated by the dash–dot–dot lines shown in figure 7(b).
Figure 7(b) also shows a peak of Φuu at ω = 12.76, which is caused by the TS wave and

is in good accordance with ω = 12.82 calculated using linear stability analysis following
Wallin et al. (2013). However, because Reτ and Roτ are not very large in the present
simulations, the TS waves are prevented from reaching very large amplitude by the 3-D
turbulence, and are unable to cause the cyclic bursts which were reported by Brethouwer
et al. (2014).

The existence of inertial waves near the stable side in RPPF at large Roτ can be used to
explain the behaviours of flow statistics mentioned in § 1. In the N2

b � 0 region at large
Roτ , the fluctuating velocity fields can be regarded as the linear combination of random
plane waves (inertial waves) which are statistically independent,

u′ =
∑

m

û(m),

〈∑
m /= n

û(m)û(n)

〉
t

= 0, (3.11a,b)

with 〈·〉t denoting the temporal average and the plane waves û(m) are assumed to have the
approximate expression

û(m) = Re
[
û(m)

0 exp(i(ω(m)t − k(m)
y y − k(m)

z z))
]
, (3.12)

with wavenumber k(m) =(0, k(m)
y , k(m)

z ) and complex coefficients û(m)
0 =(û(m)

0 , v̂
(m)
0 , ŵ(m)

0 ).
From (3.6), the anisotropic dispersion relation

ω(m) = Nb
k(m)

z

|k(m)| , (3.13)

can be derived approximately by neglecting dω(m)/dy, and the relation

û(m)
0 = i

ω(m)

(
d〈u〉
dy

− Roτ

)
v̂

(m)
0 (3.14)
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between the coefficients û(m)
0 and v̂

(m)
0 can also be derived. With the above notation and

assumptions, the flow statistics near the stable side at high Roτ can be discussed. First,
according to (3.13) and (3.14), each plane wave should have

|û(m)
0 |

|v̂(m)
0 |

=
√

Roτ − d〈u〉/dy
Roτ

|k(m)|
|k(m)

z |
≥
√

1 − Ro−1
τ d〈u〉/dy. (3.15)

Equation (3.11a,b) gives

〈u′u′〉t =
∑

m

〈û(m)û(m)〉t +
∑

m /= n

〈û(m)û(n)〉t = 1
2

∑
m

|û(m)
0 |2 ≥ 0,

〈v′v′〉t =
∑

m

〈v̂(m)v̂(m)〉t +
∑

m /= n

〈v̂(m)v̂(n)〉t = 1
2

∑
m

|v̂(m)
0 |2 ≥ 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.16)

which show the contribution to u′
rms and v′

rms from the plane waves. It is easy to see
from (3.14) and (3.16) that 〈u′u′〉t = 0 is valid only when the coefficients û(m)

0 = v̂
(m)
0 = 0

for any plane wave because Roτ − d〈u〉/dy /= 0 in the N2
b � 0 region at large Roτ .

Straightforwardly, it can be derived that

u′
rms

v′
rms

=
√

〈u′u′〉t

〈v′v′〉t
≥
√

1 − Ro−1
τ d〈u〉/dy. (3.17)

It is easy to see from (3.16) and (3.17) that at large Roτ , the waves near the stable side
will cause non-zero u′

rms and v′
rms, and the ratio between u′

rms and v′
rms should be larger

than
√

1 − Ro−1
τ d〈u〉/dy. These theoretical results can be verified by our DNS data, as

depicted in figure 8. Figure 8(a) shows that at large Roτ , u′
rms near the stable side can have

a relatively large amplitude (see also the results in Grundestam et al. 2008; Xia et al. 2016;
Brethouwer 2017), although there are no discernable turbulent vortex structures as shown
in Grundestam et al. (2008) and Brethouwer (2017) owing to the suppression of the rapid
rotation. As shown in figures 3(c,d) and 5(c,d), the inertial waves have relatively large
scales, and thus the induced velocity fluctuations are not easily dissipated by viscosity and
can maintain a large amplitude. It is interesting to see from figure 8(a) that slightly above
the line y = y2, a local maximum of u′

rms can be identified, especially for the 2-D cases.
We attribute this local peak to the combined contributions from the inertial waves and the
intermittent plume penetration from the unstable side. Figure 8(b) shows that the relation
(3.17) is satisfied in the y > y2 region at Roτ = 40 for both 2-D and 3-D RPPF.

Second, it can be derived from (3.14) that all plane waves û(m) satisfy

〈û(m)v̂(m)〉t = ω(m)

2π

∫ 2π/ω(m)

0
û(m)v̂(m) dt = 0. (3.18)

Using (3.11a,b), there is

〈u′v′〉t =
∑

m

〈û(m)v̂(m)〉t +
∑

m /= n

〈û(m)v̂(n)〉t = 0. (3.19)

This is in good consistency with the observation of the Reynolds stress profile with
〈u′v′〉 ≈ 0 near the stable side at high Roτ , while u′

rms and v′
rms in this region are not

negligible (Xia et al. 2016; Brethouwer 2017; Zhang et al. 2019).
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Figure 8. (a) Profiles of u′
rms for the 2-D and 3-D cases at Roτ = 40 and 120; (b) plots of u′

rms/v
′
rms and√

1 − Ro−1
τ d〈u〉/dy from the 2-D and 3-D cases at Roτ = 40. Dotted lines denote y = y2 of the corresponding

cases.

3.3. Plume currents
Although the height and strength of plumes in 3-D RPPF are very limited, plumes may
gather to form large-scale currents. Figure 9 shows the time evolution of wall-normal
velocity v′ along the z axis at x = y = 0 in 3-D RPPF with Roτ = 1. It is seen that the
ascending currents are rather unstable across a time scale T ∼ O(50) (see figure 9a,b),
although they seems to be stable in a much shorter time scale T ∼ O(5) (see figure 9c–e).
Here, T is normalized using u∗

τ and h∗. We call these ascending currents as the plume
currents. It is likely that plume currents can induce the large-scale roll cells, which
gather the nearby plumes and makes them join (feed) the plume currents themselves.
The similar self-sustaining mechanism of large-scale structures is well known in turbulent
Rayleigh–Bénard convection and also revealed in turbulent TCF (Sacco et al. 2019).

According to the results shown in figure 9, the number and spanwise locations of plume
currents will continuously vary with time and there may be 1–3 ascending plume currents
within a spanwise period of Lz = 2π in the Roτ = 1 case. This is quite different from the
large-scale properties in other similar rotating shear flows, such as TCF (Huisman et al.
2014; Wen et al. 2020) and RPCF (Xia et al. 2018b; Huang et al. 2019), where the number
and locations of large-scale streamwise vortices can be so stable that there may be multiple
stable patterns corresponding to different initial conditions. The main reason can be seen
from figure 10, which shows the different self-sustaining mechanisms in TCF and RPPF.
In TCF, plumes are generated on both walls and form plume currents in two opposite
directions, which drives the large-scale Taylor rolls (figure 10a). Figure 10(a) also indicates
that the plumes (red) close to the point O on wall A are, at the same time, ‘pulled’ towards
point O by the plume current flowing from wall A to wall B (see the red vertical arrow) and
‘pushed’ towards point O by the two nearby impinging plume currents flowing from wall
B to wall A (see the blue arrows). However, in RPPF, plumes are only generated on the
unstable side and form rising plume currents (see figure 10b), which makes the large-scale
rolls weaker. In addition, figure 10(b) indicates that the plumes close to the point O on the
stable side are only ‘pulled’ towards point O by the ascending plume current (see the red
vertical arrow). Therefore, the self-sustaining mechanism of large-scale roll cells in RPPF
is less robust than that in TCF. This could also be used to explain the spanwise unevenly
distributed roll cells in RPPF, as shown in figure 10(b) of Kristoffersen & Andersson
(1993).
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Figure 9. Contour of v′(0, 0, z, t) in the 3-D and Roτ = 1 case. The origin of time is chosen after the system
reaches a statistically steady-state. Panel (b) is a zoomed-in view of panel (a), and panels (c–e) are zoomed-in
views of panel (b).
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Figure 10. Sketch of the self-sustaining mechanisms of large-scale rolls in (a) TCF and (b) RPPF.

Because the plume currents are continuously splitting, merging and moving in the
z direction, it is inappropriate to analyse them by simply averaging the flow fields in
the x and t directions. The cross-section slices of the flow fields at different x and t
may show different patterns. In the following, we would like to investigate the flow
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Flow structures in RPPF

statistics of the slices under different patterns. To do that, we need to group the slices into
different clusters first, and the idea of the K-means clustering algorithm (Jain 2010), pattern
recognition algorithms instead of the mode decomposition methods (such as the proper
orthogonal decomposition (Berkooz, Holmes & Lumley 1993), complex/spectral proper
orthogonal decomposition (Wallace & Dickinson 1972; Towne, Schmidt & Colonius 2018)
and dynamic mode decomposition (Schmid 2010)) is adopted with some modifications.
In the new method, the 2-D slices ǔ′( y, z; x, t) ≡ u′(x, y, z, t) of the 3-D DNS data at
different x and t will be viewed as the ‘sample points’, and two resulted patterns will
be viewed as the same if they coincide with each other after a certain translation in
the spanwise direction. The detailed algorithm for the K-means clustering in RPPF is
shown in Appendix C, and we may obtain the different patterns of the plume currents
at different Roτ corresponding to the resulting clusters. The results show that there are
only clusters C∗

1–C∗
3 for the Roτ = 1 case and clusters C∗

1–C∗
5 for the Roτ = 5 case. The

finally converged cluster centroids of 3-D RPPF with Roτ = 1 and Roτ = 5 are shown in
figure 11. It is evident that roll cells are driven by plume currents. If we use dR to denote
the distance between the neighbour roll cells, it is interesting to see that dR of the two roll
cells driven by the same plume current is smaller than that of the two roll cells driven by
two different plume currents (see the first, second and third roll cells from left to right
shown in figure 11b–h).

According to figure 11(a–c), there are mainly three large-scale patterns in Roτ = 1,
and each cluster C∗

N with N ∈ {1, 2, 3} corresponds to the pattern with N plume currents,
respectively. In addition, with the increase in the number of plume currents, the averaged
height and strength of plume currents become relatively smaller. This is probably because
a larger distance between plume currents can allow each plume current to collect more
plumes to drive itself. For Roτ = 5, as shown in figure 11(d–h), there are N plume currents
corresponding to cluster C∗

N with N ∈ {2, 3, 4, 5}. What is different from the Roτ = 1 case
is that cluster C∗

1 corresponds to three plume currents. This is mainly because the plumes
in the Roτ = 5 case are more active and it is easy for them to form new plume currents,
so it is hard to find a time period with only one plume current. Although both cluster C∗

1
and cluster C∗

3 for Roτ = 5 correspond to three plume currents, their patterns are different.
The centroid ψ∗

3 of cluster C∗
3 has a period of 2π/3 in the spanwise direction, while the

centroid ψ∗
1 of cluster C∗

1 only has a period of 2π. Furthermore, different from ψ∗
3 where

the rising currents (red parts in figure 11) have the same strength and spanwise distance,
ψ∗

1 has a strongest rising current in the middle and this current has a relatively larger
distance from the other two currents. This indicates that C∗

3 mainly contains ǔ′ slices with
three plume currents being similar in strength, while C∗

1 mainly contains ǔ′ slices with one
strong plume current and two weaker ones. A possible reason for the existence of the C∗

1
pattern for Roτ = 5 is that the two weaker plume currents in cluster C∗

1 are relatively closer
(see figure 11d) and this reduces the plumes available to the weaker plume currents, which
maintains the difference in strength between the weak plume currents and the strong one.

Figure 12 shows the wall-normal profiles 〈v′v′〉 (non-dimensionalized by u∗2
τ ) and

〈v′φ′〉 (non-dimensionalized by u∗
τΔφ∗) which are averaged over all data or conditionally

averaged within each cluster at Roτ = 5. It is seen that the conditional averages within
clusters C∗

1 and C∗
3 are very close to the average over all data, while the conditional

averages within clusters C∗
2, C∗

4 and C∗
5 apparently deviate from the average over all data.

Furthermore, as demonstrated in figure 12(a), the peak location of 〈v′v′|ǔ′ ∈ C∗
N〉 gets

closer to the unstable wall if the number of plume currents is larger. This is consistent
with the distributions of the roll cells shown in figure 11(d–h), where the height of the roll
cells decreases with the increase of the number of plume currents.
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Figure 11. Velocity vectors in the y–z plane and contours of the wall-normal component of cluster centroids:
(a–c) Roτ = 1, clusters C∗

1–C∗
3 with the occurrence possibilities 75.1 %, 17.1 % and 7.8 %; (d–h) Roτ = 5,

clusters C∗
1–C∗

5 with the occurrence possibilities 44.2 %, 26.2 %, 16.6 %, 9.7 % and 3.3 %.

A more interesting thing is about the transport capability of the plume currents, as
depicted in figure 12(b), where 〈v′φ′|ǔ′ ∈ C∗

2〉 is generally larger than 〈v′φ′〉, while
〈v′φ′|ǔ′ ∈ C∗

4〉 and 〈v′φ′|ǔ′ ∈ C∗
5〉 are generally smaller than 〈v′φ′〉 in the range −0.5 �

y � 0.7. This indicates that the transport capability is stronger if the number of plume
currents is smaller. There may be two possible reasons. First, plume currents with larger
distance can reach higher (penetrate deeper) into the stable region (see figures 11 and
12a). Second, it is likely that plume currents with larger width and distance can reduce
the spanwise diffusion of the passive scalar φ by reducing its spanwise gradient, which
allows for large φ′ to be carried closer to the upper wall by plume currents. Based on the
results and possible mechanisms listed above, we may conclude that a pattern with sparser
plume currents is more efficient in scalar transport. Therefore, increasing the distances
between neighbouring plume currents could be a promising control strategy to promote
scalar transport.
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〈v′v′ |ǔ′ ε C5
∗〉

〈v′φ′ |ǔ′ ε C2
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Figure 12. Turbulent statistics (a) 〈v′v′〉 (non-dimensionalized by u∗2
τ ) and (b) 〈v′φ′〉 (non-dimensionalized

by u∗
τ Δφ∗) of the 3-D case at Roτ = 5. The solid lines show the average over all data while the other lines

with/without symbols show the corresponding conditional average within the clusters C∗
1–C∗

5 .

4. Conclusion

In this paper, we investigate the flow structures in RPPF by using the thermal analogy,
simplified analysis and direct numerical simulations. We newly identified three important
flow structures in RPPF, namely the plumes, inertial waves and plume currents. The
plumes are near the unstable side and have the similar dynamics as thermal plumes.
We proposed a semi-empirical expression for the p.d.f. of the velocity fluctuation in the
streamwise and wall-normal direction, which contains contributions from the background
turbulence and the intermittently emitting plumes. The inertial waves exist near the stable
side, and they are triggered by the plumes and turbulent fluctuations penetrating into the
stable region. However, they are identifiable in 3-D RPPF only with large Roτ . With the
inertial waves, we could explain several abnormal flow statistics near the stable side at
large Roτ , such as the large r.m.s. of the streamwise velocity fluctuation and the nearly
negligible Reynolds shear stress. The plume currents, which are fed by plumes, should
be regarded as the driving source of roll cells in 3-D RPPF. With a modified K-means
clustering algorithm, different patterns of plume currents are classified and they are found
to have significant influence on the scalar transport. This result may inspire the control
strategies for scalar transport in RPPF.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1073.
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Appendix A. Parameters of fitting curves corresponding to the p.d.f.s of −u′ and v′

The parameters of fitting curves corresponding to the p.d.f.s of normalized −u′ and v′ in
figures 4(a,b,d,e) and 6(a,b,d,e) are shown in table 2.
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−u′ v′

Dim Roτ Nb y σ β M α σ β M α

2-D 1 0.3Nb(−1) −0.85 0.26 0.49 4.00 0.41 0.77 0.00 2.38 0.33
2-D 1 0 −0.38 0.43 0.94 5.23 0.59 0.56 0.72 3.37 1.00
3-D 1 0.3Nb(−1) −0.86 0.33 0.75 3.81 0.88 1.10 0.00 3.38 0.01
3-D 1 0 −0.24 0.45 1.08 4.93 0.80 0.59 1.01 4.31 0.54
2-D 10 0.3Nb(−1) −0.91 0.33 0.35 3.54 0.37 0.92 0.00 1.77 0.32
2-D 10 0 −0.29 0.62 1.03 5.12 0.48 0.53 0.59 3.11 0.93
3-D 10 0.3Nb(−1) −0.92 0.53 0.00 2.82 0.36 0.96 0.00 1.55 0.27
3-D 10 0 −0.65 0.91 0.00 2.53 0.11 0.69 0.01 2.31 0.46
2-D 120 0.3Nb(−1) −0.95 0.42 0.00 2.83 0.45 0.53 0.00 2.51 0.68
2-D 120 0 −0.80 0.65 0.56 3.66 0.30 0.39 0.53 3.31 0.78
3-D 120 0.3Nb(−1) −0.95 0.85 0.00 1.68 0.40 0.72 0.00 2.09 1.00
3-D 120 0 −0.88 1.06 0.00 3.00 0.01 0.58 0.00 2.45 0.62

Table 2. Parameters of fitting curves of the p.d.f.s of normalized −u′ and v′ in figures 4 and 6.

Appendix B. Derivations of inertial wave equation (3.7)

First, ∂(3.6c)/∂y + ∂(3.6d)/∂z and (3.6a) give

∂2p′

∂y2 + ∂2p′

∂z2 = ∂

∂y

(
−∂v′

∂t
− Roτ u′

)
+ ∂

∂z

(
−∂w′

∂t

)

= − ∂

∂t

(
∂v′

∂y
+ ∂w′

∂z

)
− Roτ

∂u′

∂y

= −Roτ

∂u′

∂y
. (B1)

Second, ∂2(3.6c)/∂y2 + ∂2(3.6c)/∂z2 and (B1) give

∂

∂t

(
∂2v′

∂y2 + ∂2v′

∂z2

)
= − ∂

∂y

(
∂2p′

∂y2 + ∂2p′

∂z2

)
− Roτ

(
∂2u′

∂y2 + ∂2u′

∂z2

)

= Roτ

∂2u′

∂y2 − Roτ

(
∂2u′

∂y2 + ∂2u′

∂z2

)

= −Roτ

∂2u′

∂z2 . (B2)

Third, ∂(B2)/∂t and (3.6b) give

∂2

∂t2

(
∂2v′

∂y2 + ∂2v′

∂z2

)
= −Roτ

∂2

∂z2
∂u′

∂t

= Roτ

(
d〈u〉
dy

− Roτ

)
∂2v′

∂z2 ,

= −N2
b
∂2v′

∂z2 (B3)

with Nb = [−Roτ (d〈u〉/dy −Roτ )]1/2.
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Appendix C. Modified K-means clustering algorithm for 3-D RPPF

We are considering the fluctuation velocity fields in 3-D RPPF and they will be
divided into 2-D slices ǔ′( y, z; x, t) ≡ u′(x, y, z, t) = u′(x, y, z, t)ex + v′(x, y, z, t)ey +
w′(x, y, z, t)ez with three components but defined in y–z plane at certain x and t. This
notation is constructed by simply rearranging the spatial variables of u′(x, y, z, t) and
adding a semicolon, which emphasizes that x and t are regarded as indices of the slices.
Correspondingly, some basic operations should be defined.

(1) Averaging in a specific direction q among x, y, z, t can be denoted as 〈·〉q
and averaging in more than one direction can be expressed by combining the
corresponding subscripts. For example, the average in y, z directions can be written
as 〈·〉y,z.

(2) The angle characterizing the similarity between two slices (considering them as
infinite-dimensional vectors)

β (v1, v2) = cos−1

(
〈v1 · v2〉y,z√〈v1 · v1〉y,z〈v2 · v2〉y,z

)
. (C1)

It is obvious that if β(v1, v2) = 0, there exists an a ∈ R satisfying v2 = av1.
(3) Symmetrization operator with N ∈ Z

+

SN(v) = 1
2N

N−1∑
k=0

⎧⎨
⎩
⎡
⎣vx ( y, z + kLz/N)

vy ( y, z + kLz/N)
vz ( y, z + kLz/N)

⎤
⎦+

⎡
⎣ vx ( y, −z + kLz/N)

vy ( y, −z + kLz/N)
−vz ( y, −z + kLz/N)

⎤
⎦
⎫⎬
⎭ . (C2)

For any 2-D slice v( y, z) with spanwise period Lz, the symmetrization operator SN
can reduce its period to Lz/N and make it invariant under the reflection about the
plane z = 0.

To categorize the slices into different patterns and consider the spanwise symmetry
of the system, the concept of K-means clustering should be considered. Originally, the
K-means clustering method targets at dividing sample points into different clusters and
each with a cluster centroid. If a sample point has the smallest distance to one cluster
centroid than other cluster centroids, this sample point is temporarily categorized into
the corresponding cluster. After all sample points are temporarily categorized into certain
clusters, each cluster centroid is updated with the average of the sample points included
in the corresponding cluster. The categorization continues until all the cluster centroids
remain unchanged after an update. In the present work, we would like to further emphasize
that each 2-D slice ǔ′( y, z; x0, t0) (three-component vector field with two spatial variables
y and z) is regarded as a sample point (infinite-dimensional vector). Accordingly, clusters
are sets of those 2-D slices and cluster centroids are also three-component vector fields
defined in the y–z plane. With the basic operations defined above, the procedure of cluster
partitioning is as follows.

(I) Define an initial set Q = {1, 2, . . . , 10} (here, the initial size of the set should be
large enough and 10 is sufficient for the present data). For any number N ∈ Q, the
corresponding spanwise period is Lz/N and we can define the initial centroid ψ (0)

N
of each cluster CN as

ψ
(0)
N ( y, z) = 0ex − (1 + cos(πy)) cos

2Nπz
Lz

ey − Lz

2N
sin(πy) sin

2Nπz
Lz

ez. (C3)

It can be seen that ψ (0)
N represents a pattern with N rising currents.
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(II) Consider an iteration index k (k ≥ 0) and the corresponding cluster centroids ψ (k)
N .

For a 2-D slice ǔ′( y, z; x0, t0), we allow arbitrary spanwise shift ξ and find out the
shift ξ

(k)
N which makes ǔ′( y, z; x0, t0) have a minimum angle with each ψ (k)

N ,

β
(k)
N (x0, t0) = min

ξ∈[0,Lz]

[
β
(

ǔ′( y, z + ξ ; x0, t0),ψ
(k)
N ( y, z)

)]
,

ξ
(k)
N (x0, t0) = arg min

ξ∈[0,Lz]

[
β
(

ǔ′( y, z + ξ ; x0, t0),ψ
(k)
N ( y, z)

)]
.

⎫⎪⎪⎬
⎪⎪⎭ (C4)

Obviously, for certain x and t, β
(k)
N quantifies how close a sample point (a 2-D slice)

is from a cluster centroid ψ (k)
N , with the symmetry of spanwise translation taken into

account.
(III) For each N ∈ Q, define cluster C(k)

N that includes all sample points (2-D slices) that
are closer to ψ (k)

N than any other ψ (k)
M with M ∈ Q\{N},

ǔ′( y, z; x0, t0) ∈ C(k)
N ⇔ N = arg min

M∈Q

[
β

(k)
M (x0, t0)

]
. (C5)

(IV) For cluster centroids ψ (k)
N with iteration index k (k ≥ 0), compute the new cluster

centroids with iteration index k + 1,

ψ
(k+1)
N ( y, z) = SN

{〈
ǔ′
(

y, z + ξ
(k)
N (x, t); x, t

)∣∣∣ ǔ′( y, z; x, t) ∈ C(k)
N

〉
x,t

}
. (C6)

This contains the consideration that, based on the conditional average of shifted ǔ′,
the new centroid of cluster N should be further symmetrized.

(V) Ifψ (k+1)
N is not close enough toψ (k)

N for every N ∈ Q, we need to go back to step II; if
allψ (k+1)

N are close enough toψ (k)
N , the iteration II–IV can be regarded as convergent,

and the superscript ‘(k)’ can be replaced with superscript ‘∗’. However, if there exist
some clusters ψ∗

N with N ∈ Q that only include less than 2 % of all ǔ′ slices, they
should be regarded as unimportant and discarded, and the corresponding N should
be removed from Q. If some clusters are discarded, iteration II–IV should continue
to be performed until convergence. In a word, the whole procedure is complete only
when the cluster centroids converge and each C∗

N with N ∈ Q includes more than
2 % of all the ǔ′ samples.
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