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Abstract

We investigate the Hawkes processes on the positive real line exhibiting both self-
excitation and inhibition. Each point of such a point process impacts its future intensity
by the addition of a signed reproduction function. The case of a nonnegative repro-
duction function corresponds to self-excitation, and has been widely investigated in
the literature. In particular, there exists a cluster representation of the Hawkes process
which allows one to apply known results for Galton–Watson trees. We use renewal tech-
niques to establish limit theorems for Hawkes processes that have reproduction functions
which are signed and have bounded support. Notably, we prove exponential concentra-
tion inequalities, extending results of Reynaud-Bouret and Roy (2006) previously proven
for nonnegative reproduction functions using a cluster representation no longer valid in
our case. Importantly, we establish the existence of exponential moments for renewal
times of M/G/∞ queues which appear naturally in our problem. These results possess
interest independent of the original problem.
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1. Introduction and main results

Hawkes processes were introduced by Hawkes [18] and are now widely used in many appli-
cations, including modeling of earthquake occurrences [19], [27], finance [2], [1], [3], genetics
[31], and neuroscience [9], [14], [29]. Hawkes processes are random point processes on the real
line (see [10], [11], [21] for an introduction) where each atom is associated with a (possibly
signed) reproduction measure generating further atoms or adding repulsion.

When the reproduction measure is nonnegative, Hawkes and Oakes [20] have provided a
cluster representation of Hawkes processes based on immigration of ancestors, each of which
is at the head of the branching point process of its offspring. Exponential concentration inequal-
ities for ergodic theorems and tools for statistical applications have been developed, e.g., by
Reynaud-Bouret and Roy [30] using a coupling à la Berbee [4].
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For many applications, however, it is important to allow the reproduction measure to be
a signed measure. The positive part of the measure can be interpreted as self-excitation, and
its negative part as self-inhibition. For instance, in neuroscience this can be used to model
the existence of a latency period before the successive activations of a neuron; see e.g. [29].
Brémaud and Massoulié [5] have devised efficient techniques based on Poisson point process
thinning (or embedding) for this framework. The recent works [7] and [28] provide interesting
contributions from this perspective, which will be further discussed at the end of Section 1.

A large part of the literature on Hawkes processes for neuroscience uses large systems
approximations by mean-field limits (e.g. [8], [13], [12], [14]) or stabilization properties (e.g.
[15] using Erlang kernels). Here, we consider a single Hawkes process for which the repro-
duction measure is a signed measure and concentrate on extending the ergodic theorem and
concentration inequalities obtained in [30] for a nonnegative reproduction measure. Similarly
to [30], the reproduction measure is assumed to have bounded support.

A main issue here is that when inhibition is present, the cluster representation of [20] is no
longer valid. An important tool in our study is the construction of a coupling of the Hawkes
process with signed reproduction measure and a Hawkes process with a positive measure. The
former is shown to be a thinning of the latter, for which the cluster representation is valid.

We then define renewal times for these general Hawkes processes. For this purpose, we
introduce an auxiliary strong Markov process with states given by point processes. This allows
us to split the sample paths into the delay and the cycles, the latter being independent and
identically distributed (i.i.d.) excursions for which we use limit theorems for i.i.d. sequences.

In deriving concentration inequalities, a main difficulty is to obtain exponential bounds for
the tail distribution of the renewal times. In the case in which the reproduction function is
nonnegative, we associate to the Hawkes process an M/G/∞ queue. To our knowledge, this is
the first time that the connection with M/G/∞ queues has been made. This allows us to con-
trol the length of the excursions of the Hawkes process by using powerful Laplace transform
techniques from queuing theory. These results have independent interest in themselves. We
then extend our techniques to Hawkes processes with signed reproduction functions using the
coupling.

We shall explain in Remark 1.2 how the coupling method presented in this paper in a simple
framework can be extended to a much broader framework.

1.1. Definitions and notation

Measure-theoretic and topological framework. Throughout this paper, an appropriate fil-
tered probability space (�,F , (Ft)t≥0, P) satisfying the usual assumptions is given. All
processes will be assumed to be adapted.

Let N (R) denote the space of counting measures on the real line R= (− ∞, +∞) which
are boundedly finite; these are the Borel measures with values in N0 ∪ {+∞} (where N0 =
{0, 1, . . .}) which are finite on any bounded set. The space N (R) is endowed with the weak
topology σ (N (R), Cbs(R)) and the corresponding Borel σ -field, where Cbs denotes the space
of continuous functions with bounded support.

If N is in N (R) and I ⊂R is an interval, then N|I denotes the restriction of N to I, and N|I
belongs to the space N (I) of boundedly finite counting measures on I. By abuse of notation,
a point process on I is often identified with its extension which is null outside of I, and in
particular N|I ∈N (I) is identified with 1IN ∈N (R). Accordingly, N (I) is endowed with the
trace topology and σ -field.
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A random point process on I ⊂R will be considered as a random variable taking values
in the Polish space N (I). We shall also consider random processes with sample paths in the
Skorokhod space D(R+,N (I)).

All these spaces are Polish; see [10, Prop. A2.5.III, Prop. A2.6.III].

Hawkes processes. In this paper we study a random point process on the real line R=
(− ∞, +∞) specified by a stochastic evolution on the half-line (0, +∞) and an initial con-
dition given by a point process on the complementary half-line (− ∞, 0]. This is more general
than considering a stationary version of the point process (as was done in early papers [18],
[20]), does not require its existence, and can be used to prove the latter, as in [5]. The time
origin 0 can be interpreted as the start of some sort of action with regard to the process (e.g.
observation, or computation of statistical estimators).

In the following definition of a Hawkes process with a signed reproduction measure, the
initial condition N0 is always assumed to be F0-measurable, and Nh|(0,+∞) is assumed to be
adapted to (Ft)t≥0. We refer to [10, Sec. 7.2] for the definition of the conditional intensity
measure, and for x ∈R we define x+ = max (x, 0), x− = max (−x, 0).

Definition 1.1. Let λ > 0, a signed measurable function h : (0, +∞) →R, and a boundedly
finite point process N0 on (− ∞, 0] with law m be given. The point process Nh on R is a
Hawkes process on (0, +∞) with initial condition N0 and reproduction measure μ(dt) � h(t) dt
if Nh|(−∞,0] = N0 and the conditional intensity measure of Nh|(0,+∞) with respect to (Ft)t≥0 is
absolutely continuous with respect to the Lebesgue measure and has density

�h : t ∈ (0, +∞) 	→ �h(t) =
(

λ +
∫

(−∞,t)
h(t − u) Nh(du)

)+
. (1.1)

This is a special case of the nonlinear Hawkes process defined in [5], corresponding to choosing
x 	→ (λ + x)+ as the function φ : R→R+ in a conditional intensity of the more general form
�h,φ(t) = φ

(∫
(−∞,t) h(t − u) Nh(du)

)
. We made this choice in order to streamline the mathe-

matical reasoning and keep formulas reasonably readable. We shall later detail in Remark 1.2
how to extend the results to the more general setting.

Hawkes processes can be defined for reproduction measures μ which are not absolutely
continuous with respect to the Lebesgue measure, but we shall consider here this case only.
This avoids in particular the issue of multiplicities of points in Nh. Since h is the density of μ,
the support of h is naturally defined as the support of the measure μ:

supp(h) � supp(μ) � (0, +∞) \
⋃

G open, |μ|(G)=0

G ,

where |μ|(dt) = |h(t)| dt is the total variation measure of μ. We assume without loss of
generality that h = h1supp(h) and define

L(h) � sup (supp(h)) � sup{t > 0, |h(t)| > 0} ∈ [0, +∞] .

The constant λ can be viewed as the intensity of a Poisson immigration phenomenon on
(0, +∞). The function h corresponds to self-excitation and self-repulsion phenomena: each
point of Nh increases, or respectively decreases, the conditional intensity measure wherever
the appropriately translated function h is positive (self-excitation), or respectively negative
(self-inhibition).
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In the sequel, the notation Pm and Em is used to specify that N0 has distribution m. In
the case where m= δν for some ν ∈N ((− ∞, 0]), we use the notation Eν and Pν . We often
consider the case when ν = ∅, the null measure for which there is no point on (− ∞, 0].

In Definition 1.1, the density �h of the conditional intensity measure of Nh depends on Nh

itself; hence existence and uniqueness results are needed. In Proposition 2.1, under the further
assumptions that ‖h+‖1 < 1 and that

∀t > 0,

∫ t

0
Em

( ∫
(−∞,0]

h+(u − s) N0(ds)

)
du < +∞ ,

we prove that Hawkes processes can be constructed as the solution of the equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nh = N0 +

∫
(0,+∞)×(0,+∞)

δu1{θ≤�h(u)} Q(du, dθ ) ,

�h(u) =
(

λ +
∫

(−∞,u)
h(u − s) Nh(ds)

)+
, u > 0,

(1.2)

where Q is an (Ft)t≥0-Poisson point process on (0, +∞) × (0, +∞) with unit intensity, char-
acterized by the fact that for every t, h, a > 0, the random variable Q((t, t + h] × (0, a]) is
Ft+h-measurable, independent of Ft, and Poisson of parameter h a. Such equations have been
introduced and studied in this context by Brémaud and Massoulié [5]; see also [6], [26].

Let us remark that the counting process (Nh
t )t≥0 with sample paths in D(R+,N) defined

by Nh
t = Nh((0, t]) satisfies a pure jump time-inhomogeneous stochastic differential equation

which is equivalent to the formulation (1.2).
If h is a nonnegative function satisfying ‖h‖1 < 1, then there exists an alternate existence

and uniqueness proof based on a cluster representation involving subcritical continuous-time
Galton–Watson trees (see [20]), which we shall describe and use later.

1.2. Main results

Our goal in this paper is to establish limit theorems for a Hawkes process Nh with general
reproduction function h. We aim at studying the limiting behavior of the process on a sliding
finite time window of length A. We therefore introduce a time-shifted version of the Hawkes
process. Using classical notation for point processes, for t ∈R we define

St : N ∈N (R) 	→ StN � N( · +t) ∈N (R) . (1.3)

Then StN is the image measure of N by the shift by t units of time, and if a < b then

StN((a, b]) = N((t + a, t + b]) ,

(StN)|(a,b] = St(N|(t+a,t+b]) = N|(t+a,t+b]( · +t)
(1.4)

(with abuse of notation between N|(t+a,t+b] and 1(t+a,t+b]N, etc.).
The quantities of interest will be of the form

1

T

∫ T

0
f ((StN

h)|(−A,0]) dt = 1

T

∫ T

0
f
(
Nh( · +t)|(−A,0]

)
dt, (1.5)

in which T > 0 is a finite time horizon, A > 0 is a finite window length, and f belongs to
the set Blb(N ((− A, 0])) of real Borel functions on N ((− A, 0]) which are locally bounded,
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i.e., uniformly bounded on {ν ∈N ((− A, 0]) : ν((− A, 0]) ≤ n} for each n ≥ 1. Such quantities
appear commonly in the field of statistical inference of random processes; by convention, time
is labeled so that observation has started by time −A.

Using renewal theory, we are able to obtain results without any nonnegativity assumption on
the reproduction function h. We first establish an ergodic theorem and a central limit theorem
for such quantities. We then generalize the concentration inequalities which were obtained
by Reynaud-Bouret and Roy [30] under the assumption that h is a nonnegative subcritical
reproduction law. This leads us to make the following hypotheses. Recall that h = h1supp(h)

and L(h) � sup (supp(h)) � sup{t > 0, |h(t)| > 0}.
Assumption 1.1. The signed measurable function h : (0, +∞) →R is such that

L(h) < ∞, ‖h+‖1 �
∫

(0,+∞)
h+(t) dt < 1 .

The distribution m of the initial condition N0 is such that

Em

(
N0(− L(h), 0]

)
< ∞. (1.6)

We consider only the case of bounded support, i.e. of L(h) < ∞, and focus on treating
the difficulties due to h being signed. The techniques we use exploit this bounded support
assumption, which is not very restrictive for the statistical estimation techniques that we have
in mind (e.g. [17], [24], [29]). The assumption

∫
(0,+∞) h+(t) dt < 1 will be used to exploit the

coupling we will construct between the process with reproduction function h and a dominating
process with reproduction function h+. Similar assumptions involving h+ or |h| are often made
in the literature; see [7, Assumption 1] and [28, p. 6], for example.

Under these assumptions, we may and will assume that the window A < ∞ is such that
A ≥ L(h). Then the quantities (1.5) actually depend only on the restriction N0|(−A,0] of the
initial condition N0 to (− A, 0]. Thus, in the sequel, by abuse of notation, we identify m with
its marginal on N ((− A, 0]). Note that even though (1.6) does not imply that Em

(
N0((− A, 0])

)
< ∞, our results hold under (1.6); see Remark 1.1 below.

The following important results for the Hawkes process Nh are obtained using its regenera-
tion structure, which will be investigated using a Markov process we now introduce.

In Proposition 3.1 we prove that if A ≥ L(h) then the process (Xt)t≥0 defined by

Xt � (StN
h)|(−A,0] � Nh|(t−A,t]( · +t)

is a strong Markov process which admits a unique invariant law denoted by πA; see
Theorem 3.1 below.

We define τ , the first return time to ∅ (the null point process) for this Markov process, by

τ � inf{t > 0 : Xt− �= ∅, Xt = ∅} = inf{t > 0 : Nh[t − A, t) �= 0, Nh(t − A, t] = 0} . (1.7)

The probability measure πA on N ((− A, 0]) can be classically represented as the intensity of
an occupation measure over an excursion: for any nonnegative Borel function f ,

πA f � 1

E∅(τ )
E∅

(∫ τ

0
f ((StN)|(−A,0]) dt

)
∈ [0, ∞] . (1.8)

Note that we may then construct a Markov process Xt in equilibrium on R+ and a time-
reversed Markov process in equilibrium on R+, with identical initial conditions (drawn
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according to πA) and independent transitions, and build from these a Markov process in
equilibrium on R. This construction yields a stationary version of Nh on R.

We now state our main results, whose proofs are postponed to Section 4.

Theorem 1.2. (Ergodic theorems.) Let Nh be a Hawkes process with immigration rate
λ > 0, reproduction function h : (0, +∞) →R, and initial condition N0 with law m, satisfy-
ing Assumption 1.1. Let A < ∞ be such that A ≥ L(h), and let πA be the probability measure
on N ((− A, 0]) defined by (1.8).

1. If f ∈Blb(N ((− A, 0])) is nonnegative or πA-integrable, then

1

T

∫ T

0
f ((StN

h)|(−A,0]) dt
Pm−a.s.−−−−→
T→∞ πA f .

2. Convergence to equilibrium for large times holds in the following sense:

Pm

(
(StN

h)|[0,+∞) ∈ ·) total variation−−−−−−−→
t→∞ PπA (Nh|[0,+∞) ∈ ·) .

The following result provides the asymptotics of the fluctuations around the convergence
result (1), and yields asymptotically exact confidence intervals for it. We define the variance

σ 2( f ) � 1

E∅(τ )
E∅

((∫ τ

0

(
f ((StN

h)|(−A,0]) − πA f
)

dt

)2)
. (1.9)

Theorem 1.3. (Central limit theorem.) Let Nh be a Hawkes process with immigration rate
λ > 0, reproduction function h : (0, +∞) →R, and initial law m, satisfying Assumption 1.1.
Let A < ∞ be such that A ≥ L(h), let the hitting time τ be given by (1.7), and let the probability
measure πA on N ((− A, 0]) be given by (1.8). If f ∈Blb(N ((− A, 0])) is πA-integrable and
satisfies σ 2( f ) < ∞, then

√
T

(
1

T

∫ T

0
f ((StN

h)|(−A,0]) dt − πA f

)
in law−−−→
T→∞ N (0, σ 2( f )) .

Laws of large numbers and central limit theorems for Hawkes processes, as T → +∞, have
been much investigated in the case of nonnegative reproduction functions h (e.g. [2], [22],
[23, 38]). The convergences in these papers concern the instantaneous values of the counting
process of the point measure Nh, and the proofs usually rely on martingale techniques. Here
the results concern sliding windows of arbitrary finite length of the point measure Nh, and
are obtained with the renewal approach that is also developed for establishing non-asymptotic
exponential concentration bounds, as explained below.

The first entrance time at ∅ is defined by

τ0 � inf{t≥0 : Nh(t − A, t] = 0} . (1.10)

Recall that x+ = max (x, 0) and x− = max (− x, 0) for x ∈R, and let (x)k± = (x±)k.

Theorem 1.4. (Concentration inequalities.) Let Nh be a Hawkes process with immigration rate
λ > 0, reproduction function h : (0, +∞) →R, and initial law m, satisfying Assumption 1.1.
Let A < ∞ be such that A ≥ L(h). Consider the hitting time τ given by (1.7), the entrance
time τ0 given by (1.10), and the probability measure on N ((− A, 0]) defined in (1.8). Consider
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f ∈Blb(N ((− A, 0])) taking its values in a bounded interval [a,b], and define σ 2( f ) as in
(1.9) and

c±( f ) � sup
k≥3

(
2

k!
E∅

((∫ τ

0 ( f ((StNh)|(−A,0]) − πA f ) dt
)k
±
)

E∅(τ )σ 2( f )

) 1
k−2

,

c±(τ ) � sup
k≥3

(
2

k!
E∅

(
(τ −E∅(τ ))k±

)
Var∅(τ )

) 1
k−2

,

c+(τ0) � sup
k≥3

(
2

k!
Em

(
(τ0 −Em(τ0))k+

)
Varm(τ0)

) 1
k−2

.

Then, for all ε > 0, T > 0, and u ∈ [0, 1), we have

Pm

(∣∣∣∣ 1

T

∫ T

0
f ((StN

h)|(−A,0]) dt − πA f

∣∣∣∣≥ ε

)
≤ exp

(
− ((1 − u)Tε − |b − a|E∅(τ ))2

8Tσ 2( f ) + 4c+( f )((1 − u)Tε − |b − a|E∅(τ ))

)
+ exp

(
− ((1 − u)T)ε − |b − a|E∅(τ ))2

8Tσ 2( f ) + 4c−( f )((1 − u)Tε − |b − a|E∅(τ ))

)

+ exp

⎛⎝− ((1 − u)Tε − |b − a|E∅(τ ))2

8T|b − a|2 Var∅(τ )
E∅(τ ) + 4|b − a|c+(τ )((1 − u)Tε − |b − a|E∅(τ ))

⎞⎠
+ exp

⎛⎝− ((1 − u)Tε − |b − a|E∅(τ ))2

8T|b − a|2 Var∅(τ )
E∅(τ ) + 4|b − a|c−(τ )((1 − u)Tε − |b − a|E∅(τ ))

⎞⎠
+ exp

(
− (uTε − 2|b − a|Em(τ0))2

8|b − a|2Varm(τ0) + 4|b − a|c+(τ0)(uTε − 2|b − a|Em(τ0))

)
. (1.11)

If N|(−A,0] = ∅ then the last term of the right-hand side is null and the upper bound holds with
u = 0 in the other terms.

In the proof of this theorem, we split the integral from 0 to T into three parts: an initial
integral from 0 to τ0, a sum of a deterministic number converging to infinity of i.i.d. integrals
over cycles, and a last integral ending at T; see (4.5) below. The control of the first integral
requires us to control τ0, and the control of the last integral requires us to control τ0 and a
similar sum of i.i.d. random variables. We control the two sums of i.i.d. random variables
by separating the deviations above and below the mean for precision and using Bernstein’s
inequality, which explains the presence of four terms involving τ in the right-hand side of
(1.11). The fifth term is obtained from the control of τ0 and depends heavily on the initial
condition m. This explains the introduction of the constant u which can be chosen null when
τ0 = 0.

We now provide a tractable upper bound, using the fact that the hitting time τ admits an
exponential moment (see Proposition 3.3). For simplicity the process starts at ∅.
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Corollary 1.1. Under the assumptions and notation of Theorem 1.4, there exists α > 0 such
that E∅(eατ ) < ∞. Let

v = 2(b − a)2

α2

⌊ T

E∅(τ )

⌋
E∅(eατ )eαE∅(τ ) , c = |b − a|

α
.

Then for all T > 0, we have that for all ε > 0,

P∅
(∣∣∣∣ 1

T

∫ T

0
f ((StN

h)|(−A,0]) dt − πA f

∣∣∣∣≥ ε

)
≤ 4 exp

⎛⎜⎝−
(

Tε − |b − a|E∅(τ )
)2

4 (2v + c(Tε − |b − a|E∅(τ )))

⎞⎟⎠,

or equivalently, for all 1 ≥ η > 0,

P∅
(∣∣∣∣ 1

T

∫ T

0
f ((StN

h)|(−A,0]) dt − πA f

∣∣∣∣≥ εη

)
≤ η , (1.12)

where

εη = 1

T

(
|b − a|E∅(τ ) − 2c log

(η

4

)
+

√
4c2 log2

(η

4

)
− 8v log

(η

4

))
.

Remark 1.1. All these results hold under (1.6) even if Em(N0((− A, 0])) = +∞. Indeed,

1

T

∫ T

0
f
(
Nh( · +t)|(−A,0]

)
dt = 1

T

∫ A−L(h)

0
f
(
Nh( · +t)|(−A,0]

)
dt

+ 1

T

∫ T

A−L(h)
f
(
Nh(. + t)|(−A,0]

)
dt .

The first right-hand side term converges Pm-almost surely (Pm-a.s.) to zero, even when multi-
plied by

√
T . For the second right-hand side term, we can apply the Markov property at time

A − L(h) (which will be justified during the proof that (S.Nh)|(−A,0] is a Markov process) and
show that

E(SA−L(h)Nh)|(−A,0]
(N0((− A, 0])) < +∞.

Remark 1.2. As noted after Definition 1.1, the Hawkes process Nh is the special case for
φ(x) = (λ + x)+ of the more general setting in which a function φ : R→R+ is given and the
Hawkes process Nh,φ is required to have conditional intensity

�h,φ(t) = φ

(∫
(−∞,t)

h(t − u)Nh,φ(du)

)
. (1.13)

The results of this article can be extended to this more general setting under the growth
assumption that there exist λ and a in [0, ∞) such that

φ(x) ≤ λ + ax+ , x ∈R ,
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and the stability assumption that the compactly supported function h satisfies

a
∫

(0,+∞)
h+(t) dt < 1 , (1.14)

without any additional regularity or monotonicity assumption on φ. The main point for
this is to construct a thinning coupling Nh,φ ≤ Nh+

similar to the coupling Nh ≤ Nh+
in

Proposition 2.1(2) below, for which technical details can be found in Appendix A.2. We chose
to present this special case first since it contains all the difficulties and constitutes the case
where the loss of information by coupling is the lowest.

Two other recent works also consider the case of signed reproduction functions. In [7], an
alternative approach for analyzing multidimensional Hawkes processes with self-inhibition is
proposed. The intensity functions are of the form

λj(t) = φj

(
μj +

p∑
k=1

∫ ∞

0
ωk,j(u)dNj(t − u)

)
, j = 1, . . . , p ,

under a number of assumptions, in particular that the φj are αj-Lipschitz, that the Perron–
Frobenius eigenvalue of the matrix (αj

∑
k

∫ ∞
0 |ωk,j(�)|d�)j,k is strictly less than 1, and that

either the functions φj have a common uniform bound or the signed functions ωk,j vanish
outside a common bounded interval [7, Assumption 1, Assumption 4]. In order to derive con-
centration inequalities for the Hawkes processes, the authors of [7] apply the theory of weakly
dependent sequences and therefore develop specific coupling techniques in order to control
time dependencies. The very recent work [28] provides renewal time points for rather gen-
eral one-dimensional Hawkes processes with self-inhibition, using technical splitting methods
requiring specific couplings.

Both papers [7] and [28] involve sets of assumptions on the reproduction functions that dif-
fer from the ones here. Note that (1.14) is the natural stability assumption involving the growth
bound at infinity for the dominating process, and that in the present paper we do not need reg-
ularity or monotonicity assumptions on φ. In contrast, [7] and [28], in the spirit of [5, Th. 1],
make Lipschitz assumptions on φ and a stability assumption involving the global Lispschitz
constant of φ which hence involves its worst local modulus of continuity. Additionally, [7] uses
the equivalent of |h| instead of h+, while [28] requires that φ be nondecreasing. Moreover,
the methods in [7] and [28] are drastically different from ours, and require other technical
assumptions which we do not need to make.

2. Hawkes processes

In this section, we first provide a constructive solution of Equation (1.2), which yields a
coupling between Nh and Nh+

satisfying Nh ≤ Nh+
. The renewal times on which the proofs

of our main results are based are the instants at which the intensity �h has returned and then
stayed at λ for a duration long enough to guarantee that the dependence on the past has van-
ished, which allows us to write the process in terms of i.i.d. excursions. The coupling will
allow us to control the renewal times for Nh using the renewal times for Nh+

.
When dealing with h+, we use the well-known cluster representation for a Hawkes process

with nonnegative reproduction function. This representation allows us to interpret the renewal
times as times at which an M/G/∞ queue is empty, and we use this interpretation to obtain tail
estimates for the interval between these times.
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FIGURE 1: (a) Hawkes process with a positive reproduction function h. (b) Hawkes process with a
general reproduction function h. The dots in the plane represent the atoms of the Poisson point process Q
used for the construction. The atoms of the Hawkes processes are the green dots on the abscissa axis. The
bold red curve corresponds to the intensity �h and the colored curves represent the partial cumulative
contributions of the successive atoms of the Hawkes process. In (b), the bold blue curve corresponds to
the intensity of the dominating Hawkes process with reproduction function h+.

2.1. Solving the equation for the Hawkes process

The result below follows from an algorithmic proof which will be given in Appendix A.1.
The algorithmic construction can be used for simulations, which are shown in Figure 1.

Proposition 2.1. Let Q be an (Ft)t≥0-Poisson point process on (0, +∞) × (0, +∞) with unit
intensity. Consider Equation (1.2), i.e.⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nh = N0 +
∫

(0,+∞)×(0,+∞)
δu1{θ≤�h(u)} Q(du, dθ ) ,

�h(u) =
(

λ +
∫

(−∞,u)
h(u − s) Nh(ds)

)+
, u > 0 ,

in which h : (0, +∞) →R is a signed measurable reproduction function, λ > 0 an immigration
rate, and N0 an initial condition in N ((− ∞, 0]) with law m. Consider the similar equation
for Nh+

in which h is replaced by h+. Assume that

‖h+‖1 < 1 (2.1)

and that the distribution m of the initial condition N0 satisfies

∀t > 0,

∫ t

0
Em

( ∫
(−∞,0]

h+(u − s) N0(ds)

)
du < +∞. (2.2)

1. Then there exists a pathwise unique strong solution Nh of Equation (1.2), and this
solution is a Hawkes process in the sense of Definition 1.1.

2. The same holds for Nh+
, and moreover Nh ≤ Nh+

a.s. (in the sense of measures).

The main novelty of this proposition is the coupling obtained in (2). Let us first note that
the coupling is very strong since the comparison between Nh and Nh+

holds in the sense of
measures: each atom of Nh is an atom of Nh+

. Moreover, even though couplings are easily
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derived for Hawkes processes associated with nonnegative reproduction functions, it is not so
when the reproductive functions are signed: if h and g are two signed functions such that h ≤ g,
then it is not always possible to couple Nh and Ng in such a way that atoms of Nh are atoms
of Ng as well. However, if h is signed and g is nonnegative, then our construction applies and
Nh ≤ Ng; see Appendix A.1 for details. We present the result above using h and h+ since h+ is
the least positive upper bound of h.

Remark 2.1. In order to prove the strong existence and pathwise uniqueness of the solution of
Equation (1.2), we propose a proof based on an algorithmic construction similar to the Poisson
embedding of [5], also referred to in [11] as thinning. Since this construction is rather classical,
we postpone the proof to Appendix A.1. A similar result is also proved in these references using
Picard iteration techniques, with the assumption (2.2) replaced by the stronger hypothesis that
there exists Dm > 0 such that

∀t > 0, Em

( ∫
(−∞,0]

|h(t − s)| N0(ds)

)
< Dm . (2.3)

When h is nonnegative, the result can be deduced from the cluster representation of the self-
exciting Hawkes process, since Nh([0, t]) is bounded above by the sum of the sizes of a Poisson
number of subcritical Galton–Watson trees; see [20], [30].

Remark 2.2. Proposition 2.1 does not require that L(h) be finite. When L(h) < ∞, the
assumption (2.2) can be rewritten as∫ L(h)

0
Em

( ∫
(−L(h),0]

h+(u − s) N0(ds)

)
du < +∞ . (2.4)

A sufficient condition for (2.4) to hold is that Em(N0(− L(h), 0]) < +∞. Indeed, using the
Fubini–Tonelli theorem, the left-hand side of (2.4) can be bounded by ‖h+‖1 Em(N0(−
L(h), 0]). Therefore, the results of Proposition 2.1 hold under Assumption 1.1.

2.2. The cluster representation for nonnegative reproduction functions

In this subsection, we consider the case in which the reproduction function h is nonnegative.
The intensity process of a corresponding Hawkes process can be written, for t > 0, as

�h(t) = λ +
∫

(−L(h),t)
h(t − u) Nh(du) .

The first term can be interpreted as an immigration rate of ancestors. Let (Vk)k≥1 be the
corresponding sequence of arrival times, forming a Poisson process of intensity λ.

The second term is the sum of all the contributions of the atoms of Nh before time t and
can be seen as self-excitation. If U is an atom of Nh, it contributes to the intensity by the
addition of the function t 	→ h(t − U), hence generating new points regarded as its descendants
or offspring. Each individual has a lifelength L(h) = sup (supp(h)), the number of its descen-
dants follows a Poisson distribution with mean ‖h‖1, and the ages at which it gives birth to
them have density h/‖h‖1, all this independently. This induces a Galton–Watson process in
continuous time; see [20], [30], and Figure 2.

To each ancestor arrival time Vk we can associate a cluster of times composed of the times
of birth of its descendants. The condition ‖h‖1 < 1 is a necessary and sufficient condition for
the corresponding Galton–Watson process to be subcritical, which implies that the cluster sizes
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FIGURE 2: Cluster representation of a Hawkes process with positive reproduction function. The abscissas
of the dots give its atoms. Offspring are colored according to their ancestor, and their ordinates correspond
to their generation in this age-structured Galton–Watson tree.

are finite a.s. More precisely, if we define Hk by saying that Vk + Hk is the largest time in the
cluster associated with Vk, then the (Hk)k≥1 are i.i.d. random variables independent from the
sequence (Vk)k≥1.

Reynaud-Bouret and Roy [30] proved the following tail estimate for H1.

Proposition 2.2. ([30, Prop. 1.2]) Let us define

γ � ‖h‖1 − log (‖h‖1) − 1

L(h)
> 0 . (2.5)

Under Assumption 1.1, we have that

∀x ≥ 0, P(H1 > x) ≤ exp (1 − ‖h‖1) exp (− γ x) ,

which provides a lower bound for the rate of decay of the cluster length.

When h is nonnegative, it is possible to associate to the Hawkes process an M/G/∞ queue.
For A ≥ L(h), we consider that the arrival times of ancestors (Vk)k≥1 correspond to the arrivals
of customers in the queue and associate to the kth customer a service time H̃k(A) � Hk + A. We
assume that the queue is empty at time 0, and then the number Yt of customers in the queue at
time t ≥ 0 is given by

Yt =
∑

k : Vk≤t

1{Vk+H̃k(A)>t} . (2.6)

Let T0 = 0, and let the successive hitting times of 0 by the process (Yt)t≥0 be given by

Tk = inf{t ≥ Tk−1, Yt− �= 0, Yt = 0}, ∀k ≥ 1. (2.7)

The time interval [V1, T1) is called the first busy period, and is the first time interval during
which the queue is never empty. Note that the Tk are times at which the conditional intensity
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of the underlying Hawkes process has returned to λ and there is no remaining influence of its
previous atoms, since H̃k(A) � Hk + A ≥ Hk + L(h).

Thus the Hawkes process after Tk has the same law as the Hawkes process with initial
condition the null point process ∅ ∈N ((− A, 0]), translated by Tk. This allows us to split the
random measure Nh into i.i.d. parts. We will prove all this in the next section.

We end this part by giving tail estimates for the Tk, which depend on λ and on γ given in
(2.5), which respectively control the exponential decays of P(V1 > x) and P(H1 > x).

Proposition 2.3. Let Assumption 1.1 hold, and let γ be given by (2.5). Then for all x ≥ 0, if
λ < γ then P(T1 > x) = O(e−λx), and if 0 < α < γ ≤ λ then P(T1 > x) = O(e−αx). In particular,
if 0 < α < min (λ, γ ) then E(eαT1 ) is finite.

Proof of Proposition 2.3. The proof follows from Proposition 2.2, from which we deduce
that the service time H̃1 = H1 + A satisfies

P(H̃1 > x) = P(H1 > x − A) ≤ exp (− (x − A)γ + 1 − ‖h‖1) = O(e−γ x) . (2.8)

We then conclude by applying Theorem A.1 to the queue (Yt)t≥0 defined by (2.6).
Theorem A.1 in the appendix establishes the decay rates for the tail distributions of T1 and

of the length of the busy period [V1, T1). This result is of interest in itself, independently of the
results for Hawkes processes considered here.

3. An auxiliary Markov process

When the reproduction function h has bounded support, Nh|(t,+∞) depends on Nh|(−∞,t]
only through Nh|(t−L(h),t]. The process t 	→ Nh|(t−L(h),t] will be seen to be strong Markov, which
yields regenerative properties for Nh. It is the purpose of this section to formalize this idea by
introducing an auxiliary Markov process.

3.1. Definition of a strong Markov process

We suppose that Assumption 1.1 holds and consider the Hawkes process Nh that is the
solution of the corresponding Equation (1.2) constructed in Proposition 2.1. We recall that
L(h) < ∞. Then, for any t > 0 and u ∈ (− ∞, −L(h)], we have h(t − u) = 0, and thus

�h(t) =
(

λ +
∫

(−∞,t)
h(t − u) Nh(du)

)+
=

(
λ +

∫
(−L(h),t)

h(t − u) Nh(du)

)+
. (3.1)

In particular, Nh|(0,+∞) depends only on the restriction N0|(−L(h),0] of the initial condition.
Recall the shift operator St defined in (1.3) and (1.4). Note that if t, s ≥ 0 then Ss+tNh =

StSsNh = SsStNh. Let A < ∞ be such that A ≥ L(h). Consider the (Ft)-adapted process X =
(Xt)t≥0 defined by

Xt = (StN
h)|(−A,0] = Nh|(t−A,t]( · +t) , (3.2)

i.e.,
Xt : B((− A, 0]) → R+

B 	→ Xt(B) = Nh|(t−A,t](B + t).

The measure Xt is the point process Nh in the time window (t − A, t], shifted back to (− A, 0].
This is a function of Nh|(−A,+∞). Using Equation (3.1) and the remark below it, we see that
the law of Nh|(−A,+∞) depends on the initial condition N0 only through N0|(−A,0]. Therefore,
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with abuse of notation, when dealing with the process (Xt)t≥0 we shall use the notation Pm

and Em even when m is a law on N ((− A, 0]), and Pν and Eν even when ν is an element of
N ((− A, 0]).

Note that X depends on A, and that we omit this in the notation.

Proposition 3.1. Let Assumption 1.1 hold. Let A < ∞ be such that A ≥ L(h). Then (Xt)t≥0
defined in (3.2) is a strong (Ft)t≥0-Markov process with initial condition X0 = N0|(−A,0] and
sample paths in the Skorokhod space D(R+,N ((− A, 0])).

Proof. This follows from the fact that Nh is the unique solution of Equation (1.2). Indeed,
let T be a stopping time. On {T < ∞}, by definition

XT+t = (ST+tN
h)|(−A,0] = (StSTNh)|(−A,0] .

Using that Nh satisfies Equation (1.2) driven by the process Q, we have

STNh = ST (Nh|(−∞,T]) + ST (Nh|(T,+∞))

= (STNh)|(−∞,0] +
∫

(T,+∞)×(0,+∞)
δu−T1{θ≤�h(u)}Q(du, dθ )

= (STNh)|(−∞,0] +
∫

(0,+∞)×(0,+∞)
δv1{θ≤�̃h(v)} STQ(dv, dθ ),

where STQ is the (randomly) shifted process with bivariate cumulative distribution function
given by

STQ((0, t] × (0, a]) = Q((T, T + t] × (0, a]) , t, a > 0, (3.3)

and where for v > 0,

�̃h(v) = �h(v + T) =
(

λ +
∫

(−∞,v)
h(v − s)STNh(ds)

)+
.

This shows that STNh satisfies Equation (1.2) driven by STQ with initial condi-
tion (STNh)|(−∞,0]. Since A ≥ L(h), moreover STNh|(0,+∞) actually depends only on
(STNh)|(−A,0] � XT .

Let us now condition on {T < ∞} and on FT . Since Q is an (Ft)t≥0-Poisson point process
with unit intensity, STQ is an (FT+t)t≥0-Poisson point process with unit intensity; see Lemma
A.2 for this classic fact. In particular it is independent of the FT -measurable random variable
XT . Additionally, XT satisfies the assumption (2.2), which becomes in this case the following:
for all r > 0, ∫ r

0

∫
(−A,0]

h+(u − s)(STNh)(ds) du < +∞ Pm-a.s.
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We have indeed that∫ r

0

∫
(−A,0]

h+(u − s)(STNh)(ds)du

=
∫ r

0

∫
(−A+T,T]

h+(T + u − s)Nh(ds) du

=
∫ T+r

T

∫
(−A+T,T]

h+(v − s)Nh(ds) dv

≤
∫ T+r

T

∫
(−∞,0]

h+(v − s)N0(ds) dv +
∫ T+r

T

∫
(0,T]

h+(v − s)Nh(ds) dv

≤
∫ T+r

T

∫
(−∞,0]

h+(v − s)N0(ds) dv + ‖h+‖1Nh(0, T]

< +∞ Pm-a.s.,

since the distribution m of N0 satisfies (2.2), and since we have shown at the end of the proof
of Proposition 2.1 that Em(Nh(0, t]) < +∞ for all t > 0.

Thus the assumptions of Proposition 2.1 are satisfied, which yields that (XT+t)t≥0 is the
pathwise unique, and hence weakly unique, strong solution of Equation (1.2) started at XT and
driven by the (FT+t)t≥0-Poisson point process STQ. Hence, it is a process started at XT which
is an (FT+t)t≥0-Markov process with same transition semi-group as (Xt)t≥0. If we wish to be
more specific, for every bounded Borel function F on D(R+,N ((− A, 0])) we set

�F(x) �Ex(F((Xt)t≥0))

and note that existence and uniqueness in law for (1.2) yield that

Ex(F((Xt)t≥0) | T < ∞,FT ) = �F(XT ) .

This is the strong Markov property we set out to prove.

3.2. Renewal of X at ∅
Using (Xt)t≥0 and Proposition 3.1, we obtain that if T is a stopping time such that

Nh|(T−A,T] = ∅, then Nh|(T,+∞) is independent of Nh|(−∞,T] and behaves the same as Nh started
from ∅ and translated by T . Such renewal times lead to an interesting decomposition of Nh

which illuminates its dependence structure.
The successive hitting times of ∅ ∈N ((− A, 0]) for the Markov process X are such renewal

times. This subsection is devoted to the study of their properties. Recall that we have introduced
in (1.7) the first hitting time of ∅ ∈N ((− A, 0]) for X, given by

τ � inf{t > 0 : Xt− �= ∅, Xt = ∅} = inf{t > 0 : Nh[t − A, t) �= 0, Nh(t − A, t] = 0} .

It depends on A, but this is omitted in the notation. It is natural to study whether τ is finite or
not. When the reproduction function h is nonnegative, we introduce the queue (Yt)t≥0 defined
by (2.6), and its return time to zero, T1, defined in (2.7). The following result will yield the
finiteness of τ .

Lemma 3.1. Let Assumption 1.1 hold. Let A < ∞ be such that A ≥ L(h). Let τ and T1 be as
defined in (1.7) and (2.7). If h is nonnegative then P∅(τ = T1) = 1.
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Proof. We use the notation defined in Section 2.2. To begin with, we remark that τ > V1.
First, let us consider t such that V1 < t < T1. By definition, there exists i ≥ 1 such that

Vi ≤ t ≤ Vi + H̃i(A) = Vi + Hi + A.

Since the interval [Vi, Vi + Hi] corresponds to the cluster of descendants of Vi, there exists a
sequence of points of Nh in [Vi, Vi + Hi] which are distant by less than L(h) and thus by less
than A. Therefore, if t ∈ [Vi, Vi + Hi], then Nh(t − A, t] > 0.

If t ∈ [Vi + Hi, Vi + Hi + A], then Nh(t − A, t] > 0 as well, since Vi + Hi ∈ Nh (it is the
last birth time in the Galton–Watson tree stemming from Vi, by definition of Hi). Since this
reasoning holds for any t ≤ T1, it follows that τ ≥ T1.

Conversely, for any t ∈ [V1, τ ), by definition of τ , necessarily Nh(t − A, t] > 0. Thus there
exists an atom of Nh in (t − A, t], and from the cluster representation, there exists i ≥ 1 such
that this atom belongs to the cluster of Vi, hence to [Vi, Vi + Hi]. We easily deduce that

Vi ≤ t ≤ Vi + Hi + A

and thus Yt ≥ 1, for all t ∈ [V1, τ ). This proves that τ ≤ T1 and concludes the proof. �
To extend the result concerning the finiteness of τ to the case where no assumption is made

on the sign of h, we use the coupling between Nh and Nh+
stated in Proposition 2.1(2).

Proposition 3.2. Let Assumption 1.1 hold. Let A < ∞ be such that A ≥ L(h). Let τ be as defined
in (1.7), and let τ+ be defined similarly with h+ instead of h. Then Pm(τ ≤ τ+) = 1.

Proof. We use the coupling (Nh, Nh+
) of Proposition 2.1(2), which satisfies Nh ≤ Nh+

. If
τ = +∞, since the immigration rate λ is positive, for any t ≥ 0 we necessarily have Nh(t −
A, t] > 0 and thus Nh+

(t − A, t] > 0, which implies that τ+ = +∞ also, a.s.
Now, it is enough to prove that τ ≤ τ+ when both times are finite. In this case, since Nh+

is
locally finite a.s., τ+ − A is an atom of Nh+

such that Nh+
(τ+ − A, τ+] = 0. This implies that

Nh(τ+ − A, τ+] = 0. If τ+ − A is also an atom of Nh, then τ ≤ τ+.
Otherwise, we first prove that Nh(− A, τ+ − A) > 0. The result is obviously true if N0 �= ∅.

When N0 = ∅, the first atoms of Nh and Nh+
coincide because �h

0 = �h+
0 , where these

functions are as defined in (A.1). This first atom is necessarily before τ+ − A, and hence
Nh(− A, τ+ − A) > 0. The last atom U of Nh before τ+ − A is thus well defined, and nec-
essarily satisfies Nh(U, U + A] = 0 and Nh[U, U + A) �= 0, so that τ ≤ U + A ≤ τ+. We have
thus proved that τ ≤ τ+, Pm-a.s., as needed. �

We now prove that the regeneration time τ admits an exponential moment which ensures
that it is finite a.s. The results will rely on the coupling between Nh and Nh+

and on the results
obtained in Section 2.1. Let us define

γ + � ‖h+‖1 − log (‖h+‖1) − 1

L(h+)
> 0 .

Proposition 3.3. Let Assumption 1.1 hold. Let A < ∞ be such that A ≥ L(h), and assume that
Em(N0(− A, 0]) < +∞. Then τ given by (1.7) satisfies

∀α < min (λ, γ +) , Em(eατ ) < +∞ .

In particular τ is finite, Pm-a.s., and Em(τ ) < +∞.
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Proof. By Proposition 3.2, it is sufficient to prove this for τ+. When m is the Dirac measure
at ∅, the result is a direct consequence of Lemma 3.1 and Proposition 2.3. We now turn to the
case when m is different from δ∅. The proof is separated into three steps. �

Step 1: Analysis of the problem. To control τ+, we distinguish the points of Nh coming
from the initial condition from the points coming from ancestors that arrived after zero. We thus
let K = N0((− A, 0]) denote the number of atoms of N0, (V0

i )1≤i≤K the atoms themselves, and
(H̃0

i (A))1≤i≤K the durations such that V0
i + H̃0

i (A) − A is the time of birth of the last descendant
of V0

i . Note that V0
i has no offspring before time 0, so that the reproduction function of V0

i is a
truncation of h. We finally define the time when the influence of the past before 0 has vanished,
given by

E = max
1≤i≤K

(
V0

i + H̃0
i (A)

)
,

with the convention that E = 0 if K = 0. If K > 0, since V0
i ∈ (− A, 0] and H̃0

i (A) ≥ A, we have
E > 0. Note that τ+ ≥ E.

We now consider the sequence (Vi)i≥1 of ancestors arriving after time 0 at rate λ. We recall
that these can be viewed as customers arriving in an M/G/∞ queue with service times given by
H̃1(A). In our case, the queue may not be empty at time 0, when E > 0. In that case, the queue
returns to 0 when all the customers that arrived before time 0 have left the system (which is the
case at time E) and when all the busy periods containing the customers that arrived at times
between 0 and E are over. The first hitting time of 0 for the queue is thus equal to

τ+ =
{

E if YE = 0 ,

inf{t ≥ E : Yt = 0} if YE > 0 ,
(3.4)

where Yt is as given in (2.6):

Yt =
∑

k : 0≤Vk≤t

1{Vk+H̃k(A)>t}.

Step 2: Exponential moments of E. In (3.4), E depends only on N0, and (Yt)t≥0 depends only
on the arrivals and service times of customers entering the queue after time 0. A natural idea
is then to condition with respect to E, and for this it is important to gather estimates on the
moments of E. Since V0

i ≤ 0, we have that

0 ≤ E ≤ max
1≤i≤K

H̃0
i (A).

The truncation mentioned in Step 1 implies that the H̃0
i (A) are stochastically dominated by

independent random variables distributed as H̃1, which we denote by H̄0
i (A). Thus, for t > 0,

using (2.8), we have

Pm(E > t) ≤ Pm

(
max

1≤i≤K
H̄0

i (A) > t
)

= 1 −Em

((
1 − P(H̃1(A) > t)

)K
)

≤ 1 −Em

(
(1 − Ce−γ +t)K) .

Thus there exists t0 > 0 such that for any t > t0,

Pm(E > t) ≤ CEm(N0(− A, 0])e−γ +t. (3.5)
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As a corollary, we have for any β ∈ (0, γ +) that

Em

(
eβE)< +∞ . (3.6)

Step 3: Estimate of the tail distribution of τ+. For t > 0, we have

Pm(τ+ > t) = Pm

(
τ+ > t, E > t

)+ Pm

(
τ+ > t, E ≤ t

)
≤ Pm(E > t) +Em

(
1{E≤t} Pm

(
τ+ > t | E

))
.

The first term is controlled by (3.5). For the second term, we use Proposition A.2, which is
a consequence of Theorem A.1. For this, let us introduce a constant κ such that κ < γ + if
γ + ≤ λ and κ = λ if λ < γ +. We have

Em

(
1{E≤t} P

(
τ+ > t | E

))≤Em

(
1{E≤t} λCE e−κ(t−E))= λCe−κtEm

(
1{E≤t} E eκE).

Since κ < γ +, it is always possible to choose β ∈ (κ, γ +) such that (3.6) holds, which implies
that Em

(
1{E≤t} E eκE

)
can be bounded by a finite constant independent of t.

Gathering all the results, we have

Pm(τ+ > t) ≤ CEm(N0(− A, 0])e−γ +t + λC′e−κt = O
(
e−κt).

This yields that Em(eατ+
) < +∞ for any α < κ , i.e. α < min (λ, γ +).

Note that if Assumption 1.1 holds, then τ given by (1.7) satisfies E∅(τ ) < ∞, and hence the
null measure ∅ is a positive recurrent state for the strong Markov process X = (Xt)t≥0.

Theorem 3.1. Let Assumption 1.1 hold. The strong Markov process X = (Xt)t≥0 with values
in N ((− A, 0]) defined by (3.2) admits a unique invariant law πA defined as in (1.8); i.e., for
every Borel nonnegative function f on N ((− A, 0]),

πA f = 1

E∅(τ )
E∅

(∫ τ

0
f (Xt) dt

)
.

Moreover, πA{∅} = 1/(λE∅(τ )).

Proof. These facts are classic in the presence of the positive recurrent state ∅, which is
reachable from all states. �

The strong Markov property of X yields a sequence of regeneration times (τk)k≥0, which
are the successive visits of X to the positive recurrent state ∅, defined as follows (the time τ0
has already been introduced in (1.10)):

τ0 = inf{t ≥ 0 : Xt = ∅} (first entrance time of ∅),

τk = inf{t > τk−1 : Xt− �= ∅, Xt = ∅} , k ≥ 1 (successive return times at ∅).

These provide a useful decomposition of the path of X into i.i.d. excursions.

Theorem 3.2. Let Nh be a Hawkes process satisfying Assumption 1.1, and A ≥ L(h). Consider
the Markov process X defined in (3.2). Under Pm the following hold:

1. The τk for k ≥ 0 are finite stopping times, a.s.
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2. The delay (Xt)t∈[0,τ0) is independent of the cycles (Xτk−1+t)t∈[0,τk−τk−1) for k ≥ 1.

3. These cycles are i.i.d. and distributed as (Xt)t∈[0,τ ) under P∅. In particular their
durations (τk − τk−1)k≥1 are distributed as τ under P∅, and limk→+∞ τk = +∞,
Pm-a.s.

Proof. The above items follow classically from the strong Markov property of X. Let us first
prove the finiteness of the return times τk. For any m, from the definition of τ0 and τ , we have
that τ0 ≤ τ , Pm-a.s. Then Pm(τ0 < +∞) = 1 follows from Proposition 3.3. For k ≥ 1, using
the strong Markov property of X, we have for any m that

Pm(τk < +∞) =Em

(
1{τk−1<+∞} PXτk−1

(τ < +∞)
)

=Em

(
1{τk−1<+∞} P∅(τ < +∞)

)
= Pm(τk−1 < +∞) = · · · = Pm(τ0 < +∞) = 1.

Let us now prove (2) and (3). It is sufficient to consider (Xt)t∈[0,τ0), (Xτ0+t)t∈[0,τ1−τ0),
and (Xτ1+t)t∈[0,τ2−τ1). Let F0, F1, and F2 be three measurable bounded real functions on
D(R+,N (− A, 0]). Then, using the strong Markov property successively at τ1 and τ0, we
obtain

Em

(
F0

(
(Xt)t∈[0,τ0)

)
F1

(
(Xτ0+t)t∈[0,τ1−τ0)

)
F2

(
(Xτ1+t)t∈[0,τ2−τ1)

))
=Em

(
F0

(
(Xt)t∈[0,τ0)

))
E∅

(
F1

(
(Xt)t∈[0,τ )

))
E∅

(
F2

(
(Xt)t∈[0,τ )

))
.

This concludes the proof. �

4. Proofs of the main results

We reinterpret the statements of the main results in terms of the Markov process X. Let
T > 0 be fixed; since the sequence (τk)k≥0 increases to infinity,

KT � max{k ≥ 0 : τk ≤ T} Pm−a.s.−−−−→
T→∞ ∞ . (4.1)

For a locally bounded Borel function f on N ((− A, 0]) we define the random variables

Ikf �
∫ τk

τk−1

f (Xt) dt , k ≥ 1 , (4.2)

which are finite a.s., i.i.d., and of the same law as
∫ τ

0 f (Xt) dt under P∅; see Theorem 3.2.

Proof of Theorem 1.2(1)

This classic proof assumes first that f ≥ 0. Then using (4.1) and (4.2),

1

KT

KT∑
k=1

Ikf ≤ 1

KT

∫ T

0
f (Xt) dt ≤ 1

KT

∫ τ0

0
f (Xt) dt + 1

KT

KT+1∑
k=1

Ikf ,

and the strong law of large numbers applied to the i.i.d. Ikf yields that

1

KT

∫ T

0
f (Xt) dt

Pm−a.s.−−−−→
T→∞ E∅

(∫ τ

0
f (Xt) dt

)
�E∅(τ ) πA f .
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Choosing f = 1 yields that
T

KT

Pm−a.s.−−−−→
T→∞ E∅(τ ) < ∞, (4.3)

and dividing the first limit by the second concludes the proof for f ≥ 0. The case of
πA-integrable signed f follows using the decomposition f = f + − f −.

Proof of Theorem 1.2(2)

This follows from a general result in Thorisson [36, Th. 10.3.3, p. 351], which says that
if the distribution of τ under P∅ has a density with respect to the Lebesgue measure and if
E∅(τ ) < +∞, then there exists a probability measure Q on D(R+,N (− A, 0]) such that, for
any initial law m,

Pm

(
(Xt+u)u≥0 ∈ ·) total variation−−−−−−−→

t→∞ Q .

Since πA is an invariant law, PπA

(
(Xt+u)u≥0 ∈ ·)= PπA (X ∈ ·) for every t ≥ 0. Hence, taking

m= πA in the above convergence yields that Q= PπA (X ∈ ·).
It remains to check the assumptions of the theorem above. Proposition 3.3 yields that

E∅(τ ) < +∞. Moreover, under P∅ we can rewrite τ as

τ = Uh
1 + inf

{
t > 0 : X(t+Uh

1 )− �= ∅ and Xt+Uh
1
= ∅}.

Using the strong Markov property, we easily prove independence of the two terms in the right-
hand side. Since Uh

1 has an exponential distribution under P∅, τ has a density under P∅.

Proof of Theorem 1.3

Let f̃ � f − πA f , so that 1
T

∫ T
0 f̃ (Xt) dt = 1

T

∫ T
0 f (Xt) dt − πA f . With the notation (4.1) and

(4.2), we have the decomposition

∫ T

0
f̃ (Xt) dt =

∫ τ0

0
f̃ (Xt) dt +

KT∑
k=1

Ikf̃ +
∫ T

τKT

f̃ (Xt) dt . (4.4)

The Ikf̃ are i.i.d. and are distributed as
∫ τ

0 f̃ (Xt) dt under P∅, with expectation 0 and variance
E∅(τ )σ 2( f ); see Theorem 3.2. Since f is locally bounded, so is f̃ , and

1√
T

∫ τ0

0
f̃ (Xt) dt

Pm−a.s.−−−−→
T→∞ 0 .

Now, let ε > 0. For arbitrary a > 0 and 0 < u ≤ T ,

Pm

(∣∣∣∣∫ T

τKT

f̃ (Xt) dt

∣∣∣∣> a

)
≤ Pm(T − τKT > u) + Pm

(
sup

0≤s≤u

∣∣∣∣∫ T

T−s
f̃ (Xt) dt

∣∣∣∣> a

)
.

But
Pm(T − τKT > u) = 1 − Pm(∃t ∈ [T − u, T] : Xt− �= ∅, Xt = ∅),

and Theorem 1.2(2) yields that

lim
T→∞ Pm(T − τKT > u) = 1 − PπA(∃t ∈ [0, u] : Xt− �= ∅, Xt = ∅),
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so that there exists u0 large enough such that

lim
T→∞ Pm(T − τKT > u0) <

ε

2
.

Moreover, Theorem 1.2(2) yields that

lim
T→∞ Pm

(
sup

0≤s≤u0

∣∣∣∣∫ T

T−s
f̃ (Xt) dt

∣∣∣∣> a

)
= PπA

(
sup

0≤s≤u0

∣∣∣∣∫ s

0
f̃ (Xt) dt

∣∣∣∣> a

)
;

thus there exists a0 large enough that

lim
T→∞ Pm

(
sup

0≤s≤u0

∣∣∣∣∫ T

T−s
f̃ (Xt) dt

∣∣∣∣> a0

)
<

ε

2
,

and hence

lim sup
T→∞

Pm

(∣∣∣∣∫ T

τKT

f̃ (Xt) dt

∣∣∣∣> a0

)
< ε .

This implies in particular that

1√
T

∫ T

τKT

f̃ (Xt) dt
probab.−−−−→
T→∞ 0 .

It now remains to treat the second term in the right-hand side of (4.4). The classic central limit
theorem yields that

1√
T

�T/E∅(τ )�∑
k=1

Ikf̃
in law−−−→
T→∞

1√
E∅(τ )

N (0,E∅(τ )σ 2( f )) =N (0, σ 2( f )),

and we are left to control

�T � 1√
T

KT∑
k=1

Ikf̃ − 1√
T

�T/E∅(τ )�∑
k=1

Ikf̃ .

Let ε > 0 and

v(T, ε) � {�(1 − ε3)T/E∅(τ )�, . . . , �(1 + ε3)T/E∅(τ )�} .

Note that (1 − ε3)T/E∅(τ ) < T/E∅(τ ) < (1 + ε3)T/E∅(τ ) and hence that �T/E∅(τ )� belongs
to v(T, ε). In view of (4.3), there exists tε such that if T ≥ tε, then

Pm(KT ∈ v(T, ε)) > 1 − ε .

For T ≥ tε we thus have on {KT ∈ v(T, ε)} that

|�T | ≤
∣∣∣∣∣ 1√

T

KT∑
k=�(1−ε3)T/E∅(τ )�

Ikf̃

∣∣∣∣∣+
∣∣∣∣∣ 1√

T

�T/E∅(τ )�∑
k=�(1−ε3)T/E∅(τ )�

Ikf̃

∣∣∣∣∣
≤ 2√

T
max

n∈v(T,ε)

∣∣∣∣∣
n∑

k=�(1−ε3)T/E∅(τ )�
Ikf̃

∣∣∣∣∣ .
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Using now Kolmogorov’s maximal inequality [16, Sec. IX.7, p. 234], we obtain that

Pm(|�T | ≥ ε) ≤ �(1 + ε3)T/E∅(τ )� − �(1 − ε3)T/E∅(τ )�
ε2T/4

E∅(τ )σ 2( f ) ≤ 8σ 2( f )ε .

Since ε > 0 is arbitrary, we conclude that∣∣∣∣∣ 1√
T

KT∑
k=1

Ikf̃ − 1√
T

�T/E∅(τ )�∑
k=1

Ikf̃

∣∣∣∣∣ probab.−−−−→
T→∞ 0 .

These three convergence results and Slutsky’s theorem yield the desired convergence result.

Proof of Theorem 1.4

With the notation f̃ � f − πA f , so that 1
T

∫ T
0 f̃ (Xt) dt = 1

T

∫ T
0 f (Xt) dt − πA f , and (4.2), let

us consider the decomposition∫ T

0
f̃ (Xt) dt =

∫ τ0

0
f̃ (Xt) dt +

�T/E∅(τ )�∑
k=1

Ikf̃ +
∫ T

τ�T/E∅(τ )�
f̃ (Xt) dt . (4.5)

The Ikf̃ are i.i.d. and distributed as
∫ τ

0 f̃ (Xt) dt under P∅, with expectation 0 and variance
E∅(τ )σ 2( f ); see Theorem 3.2. Since f takes its values in [a, b], we have∣∣∣∣∫ τ0

0
f̃ (Xt) dt

∣∣∣∣≤ |b − a|τ0

and ∣∣∣∣∫ T

τ�T/E∅(τ )�
f̃ (Xt) dt

∣∣∣∣≤ |b − a||T − τ�T/E∅(τ )�| .

Now,

T − τ�T/E∅(τ )� = −τ0 −
�T/E∅(τ )�∑

k=1

(τk − τk−1) + T

= −τ0 −
�T/E∅(τ )�∑

k=1

(τk − τk−1 −E∅(τ )) + T − �T/E∅(τ )�E∅(τ );

here
0 ≤ T − �T/E∅(τ )�E∅(τ ) <E∅(τ ),

and the τk − τk−1 −E∅(τ ) are i.i.d., have the same law as τ −E∅(τ ) under P∅, and have
expectation 0 and variance Var∅(τ ). Thus,

Pm

(∣∣∣∣ 1

T

∫ T

0
f (Xt) dt − πA f

∣∣∣∣≥ ε

)

≤ Pm

⎛⎝∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

Ikf̃

∣∣∣∣∣∣+ |b − a|
⎛⎝2τ0 +

∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

(τk − τk−1 −E∅(τ ))

∣∣∣∣∣∣+E∅(τ )

⎞⎠≥ Tε

⎞⎠.
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Now, using that for any u ∈ [0, 1)

Tε − |b − a|E∅(τ ) − 2|b − a|Em(τ0) = 2
(1 − u)Tε − |b − a|E∅(τ )

2
+ uTε − 2|b − a|Em(τ0),

we obtain that

Pm

(∣∣∣∣ 1

T

∫ T

0
f (Xt) dt − πA f

∣∣∣∣≥ ε

)

≤ Pm

⎛⎝∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

Ikf̃

∣∣∣∣∣∣≥ (1 − u)Tε − |b − a|E∅(τ )

2

⎞⎠
+ Pm

⎛⎝∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

(τk − τk−1 −E∅(τ ))

∣∣∣∣∣∣≥ (1 − u)Tε − |b − a|E∅(τ )

2|b − a|

⎞⎠
+ Pm

(
τ0 −Em(τ0) ≥ uTε − 2|b − a|Em(τ0)

2|b − a|
)

. (4.6)

We aim to apply Bernstein’s inequality [25, Cor. 2.10, p. 25; (2.17), (2.18), p. 24] to bound the
three terms of the right-hand side. We recall that for the application of Bernstein’s inequality
to random variables X1, . . . XN , there should exist constants c and v such that

N∑
k=1

Em

[
X2

k

]
≤ v and

N∑
k=1

Em

[
(Xk)n+

]≤ n!
2

vcn−2 ∀n ≥ 3.

First,
�T/E∅(τ )�∑

k=1

Em

(
(Ikf̃ )2)=

⌊ T

E∅(τ )

⌋
E∅(τ )σ 2( f ) ≤ Tσ 2( f )

and, for n ≥ 3,

�T/E∅(τ )�∑
k=1

Em

(
(Ikf̃ )n±

)=
⌊ T

E∅(τ )

⌋
Em

(
(If̃ )n±

)
≤ n!

2
Tσ 2( f )

(
sup
k≥3

(
2

k!
Em

(
(If̃ )k±

)
E∅(τ )σ 2( f )

) 1
k−2

)n−2

� n!
2

Tσ 2( f )(c±( f ))n−2 .

Then,
�T/E∅(τ )�∑

k=1

Em

(
(τk − τk−1 −E∅(τ ))2)=

⌊ T

E∅(τ )

⌋
Var∅(τ ) ≤ T

Var∅(τ )

E∅(τ )

and, for n ≥ 3,

�T/E∅(τ )�∑
k=1

Em

(
(τk − τk−1 −E∅(τ ))n±

)=
⌊

T/E∅(τ )
⌋
E∅

(
(τ −E∅(τ ))n±

)
≤ n!

2
T

Var∅(τ )

E∅(τ )

(
sup
k≥3

(
2

k!
E∅

(
(τ −E∅(τ ))k±

)
Var∅(τ )

) 1
k−2

)n−2

� n!
2

T
Var∅(τ )

E∅(τ )
(c±(τ ))n−2 .
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Lastly, Em

(
(τ0 −Em(τ0))2

)= Varm(τ0) and, for n ≥ 3,

Em

(
(τ0 −Em(τ0))n+

)
≤ n!

2
Varm(τ0)

(
sup
k≥3

(
2

k!
Em

(
(τ0 −Em(τ0))k+

)
Varm(τ0)

) 1
k−2

)n−2

� n!
2

Varm(τ0)(c+(τ0))n−2 .

Applying [25, Cor. 2.10, p. 25; (2.17), (2.18), p. 24] to the right-hand side of (4.6) yields
that

Pm

(∣∣∣∣ 1

T

∫ T

0
f (Xt) dt − πA f

∣∣∣∣≥ ε

)

≤ exp

(
− ((1 − u)Tε − |b − a|E∅(τ ))2

8Tσ 2( f ) + 4c+( f )((1 − u)Tε − |b − a|E∅(τ ))

)

+ exp

(
− ((1 − u)Tε − |b − a|E∅(τ ))2

8Tσ 2( f ) + 4c−( f )((1 − u)Tε − |b − a|E∅(τ ))

)

+ exp

⎛⎝− ((1 − u)Tε − |b − a|E∅(τ ))2

8T|b − a|2 Var∅(τ )
E∅(τ ) + 4|b − a|c+(τ )((1 − u)Tε − |b − a|E∅(τ ))

⎞⎠
+ exp

⎛⎝− ((1 − u)Tε − |b − a|E∅(τ ))2

8T|b − a|2 Var∅(τ )
E∅(τ ) + 4|b − a|c−(τ )((1 − u)Tε − |b − a|E∅(τ ))

⎞⎠
+ exp

(
− (uTε − 2|b − a|Em(τ0))2

8|b − a|2Varm(τ0) + 4|b − a|c+(τ0)(uTε − 2|b − a|Em(τ0))

)
,

which is (1.11).

Proof of Corollary 1.1

Under P∅, we have τ0 = 0, and thus (4.6) reads as follows:

P∅
(∣∣∣∣ 1

T

∫ T

0
f (Xt) dt − πA f

∣∣∣∣≥ ε

)
≤ P∅

⎛⎝∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

Ikf̃

∣∣∣∣∣∣≥ Tε − |b − a|E∅(τ )

2

⎞⎠ (4.7)

+ P∅

⎛⎝∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

(τk−τk−1−E∅(τ ))

∣∣∣∣∣∣≥Tε − |b − a|E∅(τ )

2|b − a|

⎞⎠.

As in the proof of Theorem 1.4, we apply Bernstein’s inequality for each of the terms in the
right-hand side. However, in order to simplify the obtained bound, we change the upper bounds
of the moments of Ikf̃ and τk − τk−1 −E∅(τ ). Namely, we use the fact that for all n ≥ 1,

E∅(τ n) ≤ n!
αn

E∅(eατ ) and E∅(|τ −E∅(τ )|n) ≤ n!
αn

E∅(eατ )eαE∅(τ ).

Since τ is a nonnegative random variable, we have eαE∅(τ ) ≥ 1, and in the sequel it will be
more convenient to use the following upper bound: for all n ≥ 1,

E∅(τ n) ≤ n!
αn

E∅(eατ )eαE∅(τ ).
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Then

�T/E∅(τ )�∑
k=1

E∅
(
(Ikf̃ )2)≤

⌊ T

E∅(τ )

⌋
E∅(τ 2)(b − a)2 ≤ 2(b − a)2

α2

⌊ T

E∅(τ )

⌋
E∅(eατ )eαE∅(τ ) ,

and, for n ≥ 3,

�T/E∅(τ )�∑
k=1

E∅
(|Ikf̃ )|n)≤ n!

2

(⌊ T

E∅(τ )

⌋
|b − a|2 2

α2
E∅(eατ )eαE∅(τ )

) ( |b − a|
α

)n−2
.

Setting

v = 2(b − a)2

α2

⌊ T

E∅(τ )

⌋
E∅(eατ )eαE∅(τ ) and c = |b − a|

α
,

and applying Bernstein’s inequality, we obtain that

P∅

⎛⎝∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

Ikf̃

∣∣∣∣∣∣≥ Tε − |b − a|E∅(τ )

2

⎞⎠≤ 2 exp

⎛⎜⎝−
(

Tε − |b − a|E∅(τ )
)2

4 (2v + (Tε − |b − a|E∅(τ ))c)

⎞⎟⎠.

Also,
�T/E∅(τ )�∑

k=1

E∅
(
(τk − τk−1 −E∅(τ ))2)≤ 2

α2

⌊ T

E∅(τ )

⌋
E∅(eατ )eαE∅(τ ) ,

and, for n ≥ 3,

�T/E∅(τ )�∑
k=1

E∅
(|τk − τk−1 −E∅(τ )|n)≤ n!

2

(⌊ T

E∅(τ )

⌋ 2

α2
E∅(eατ )eαE∅(τ )

)
1

αn−2
.

Applying Bernstein’s inequality again, we obtain that

P∅

⎛⎝∣∣∣∣∣∣
�T/E∅(τ )�∑

k=1

(τk − τk−1 −E∅(τ ))

∣∣∣∣∣∣≥ Tε − |b − a|E∅(τ )

2|b − a|

⎞⎠
≤ 2 exp

⎛⎜⎝−
(

Tε − |b − a|E∅(τ )
)2

4 (2v + (Tε − |b − a|E∅(τ ))c)

⎞⎟⎠.

The inequality (4.7) gives that

P∅
(∣∣∣∣ 1

T

∫ T

0
f (Xt) dt − πA f

∣∣∣∣≥ ε

)
≤ 4 exp

⎛⎜⎝−
(

Tε − |b − a|E∅(τ )
)2

4 (2v + (Tε − |b − a|E∅(τ ))c)

⎞⎟⎠.
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To prove the second part of Corollary 1.1 we have to solve

η = 4 exp

⎛⎜⎝−
(

Tε − |b − a|E∅(τ )
)2

4 (2v + (Tε − |b − a|E∅(τ ))c)

⎞⎟⎠ (4.8)

by expressing ε as function of η, for any η ∈ (0, 1).
Let us define the following decreasing bijection from R+ into R−:

ϕ(x) = − x2

4(2v + cx)
.

The solution of (4.8) is then εη = (|b − a|E∅(τ ) + x0)/T , where x0 is the unique positive
solution of

ϕ(x) = log
(η

4

)
⇔ x2 + 4c log

(η

4

)
x + 8v log

(η

4

)
= 0 .

Computing the roots of this second-order polynomial, we can show that there always exist one
negative and one positive root as soon as η < 4. More precisely,

x0 = −2c log
(η

4

)
+

√
4c2 log2

(η

4

)
− 8v log

(η

4

)
,

which concludes the proof.

Appendix A.

A.1. Proof of Proposition 2.1

Before proving Proposition 2.1, we start with a lemma showing that the assumption (2.2)
implies a milder condition which will be used repeatedly in the proof of the proposition.

Lemma A.1. Suppose that the assumption (2.2) is satisfied. Then for any nonnegative random
variable U and r > 0,

Pm

( ∫ U+r

U

∫
(−∞,0]

h+(t − s) N0(ds) dt < +∞, U < +∞
)

= Pm(U < +∞) .

Proof. First note that, for every integer n,∫ n

0

∫
(−∞,0]

h+(t − s) N0(ds)dt < +∞ , Pm − a.s.,

using the condition (2.2) and the Fubini–Tonelli theorem. This leads easily to

Pm

(
∀n ≥ 0,

∫ n

0

∫
(−∞,0]

h+(t − s) N0(ds)dt < +∞
)

= 1 ,
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and, for a positive real number r, to

Pm

(
∀u ≥ 0,

∫ u+r

u

∫
(−∞,0]

h+(t − s) N0(ds)dt < +∞
)

= 1 ,

which gives the stated result.

Proof of Proposition 2.1. Proofs of both (1) and (2) will be obtained by induction on the
successive atoms of Nh.

Proof of (1): initialization. Let

�h
0(t) =

(
λ +

∫
(−∞,0]

h(t − s) N0(ds)

)+
, t > 0 , (A.1)

Uh
1 = inf

{
u > 0 :

∫
(0,u]

∫
(0,�h

0(v)]
Q(dv, dθ ) > 0

}
, (A.2)

with the usual convention that inf ∅ = +∞. First note that conditionally on N0,

Q({(v, θ ) ∈ (0, ε] × (0, +∞) : θ ≤ �h
0(v)})

follows a Poisson law with parameter
∫ ε

0 �h
0(t)dt. Using the assumption (2.2) and Lemma A.1,

we can find ε0 > 0 such that
∫ ε0

0

∫
(−∞,0] h+(t − s) N0(ds)dt < +∞. We thus have, Pm-a.s.,

∫ ε0

0
�h

0(t)dt =
∫ ε0

0

(
λ +

∫
(−∞,0]

h(t − s) N0(ds)

)+
dt

≤ λε0 +
∫ ε0

0

∫
(−∞,0]

h+(t − s) N0(ds)dt < +∞ .

Consequently,
Q({(v, θ ) ∈ (0, ε0] × (0, +∞) : θ ≤ �h

0(v)})
is finite Pm-a.s. Hence Uh

1 > 0 Pm-a.s. If Uh
1 = +∞ then Nh = N0, and we define Uh

k = +∞
for all k ≥ 2. Otherwise, Uh

1 is the first atom on (0, +∞) of the point process of conditional
intensity �h

0. Since �h
0(t) = �h(t) for t ∈ (0, Uh

1], this implies that Uh
1 is also the first atom of

Nh on (0, +∞).

Proof of (1): recursion. Assume that we have built Uh
1, . . . , Uh

k such that on the event
{Uh

k < +∞} these are the first k atoms of Nh in increasing order. We are going to construct
Uh

k+1, which will be an atom of Nh greater than Uh
k .

On {Uh
k = +∞} we set Uh

k+1 = +∞. Henceforth, we work on {Uh
k < +∞}. Let

�h
k(t) =

(
λ +

∫
(−∞,0]

h(t − s) N0(ds) +
∫

(0,Uh
k ]

h(t − s) Nh(ds)

)+
, t > 0 , (A.3)

Uh
k+1 = inf

{
u > Uh

k :
∫

(Uh
k ,u]

∫
(0,�h

k (v)]
Q(dv, dθ ) > 0

}
.
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As in Step 1, we first prove that there exists ε > 0 such that Q(Rε) is a.s. finite, where

Rε = {(v, θ ) : v ∈ (Uh
k , Uh

k + ε], θ ∈ (0, �h
k(v)]} .

Since the random function �h
k is measurable with respect to FUh

k
, conditionally on FUh

k
, Q(Rε)

follows a Poisson law with parameter ∫ Uh
k +ε

Uh
k

�h
k(t)dt

(see Lemma A.2), so that

P(Q(Rε) < +∞) =E

(
P(Q(Rε) < +∞ |FUh

k
)
)

=E

(
P

(∫ Uh
k +ε

Uh
k

�h
k(t)dt < +∞

∣∣∣∣FUh
k

))
.

Using the fact that x ≤ x+ and the monotonicity of x 	→ x+, we obtain from (A.3) that∫ Uh
k +ε

Uh
k

�h
k(t)dt ≤ λε +

∫ Uh
k +ε

Uh
k

∫
(−∞,0]

h+(t − s) N0(ds)dt

+
∫ Uh

k +ε

Uh
k

∫
(0,Uh

k ]
h+(t − s) Nh(ds)dt .

On {Uh
k < +∞} the second term in the right-hand side is finite thanks to the assumption (2.2)

and Lemma A.1. It is thus also finite, a.s., on {Uh
k < +∞}, conditionally on FUh

k
. Now, using

the Fubini–Tonelli theorem and the assumption (2.1), we obtain that∫ Uh
k +ε

Uh
k

∫
(0,Uh

k ]
h+(t − s) Nh(ds)dt =

∫
(0,Uh

k ]

(∫ Uh
k +ε

Uh
k

h+(t − s)dt

)
Nh(ds)

≤ ‖h+‖1 Nh((0, Uh
k ]) = k‖h+‖1 < +∞.

This concludes the proof of the finiteness of∫ Uh
k +ε

Uh
k

�h
k(t)dt,

so that Q(Rε) < +∞, Pm-a.s.
If Q(Rε) is null then Uh

k+1 = +∞ and thus Nh = N0 +∑k
i=1 δUh

i
. Otherwise, Uh

k+1 is actu-

ally a minimum, implying that Uh
k < Uh

k+1 and, since �h and �h
k coincide on (0, Uh

k+1), that
Uh

k+1 is the (k + 1)th atom of Nh.
We have now proved by induction the existence of a random sequence (Uh

k )k≥1 which is
strictly increasing until the first rank where it (possibly) hits +∞, after which point it stays
there. On the event that this first rank is finite, the finite Uh

k are exactly the atoms of the random
point process Nh on (0, +∞).
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To complete the proof, it is thus enough to prove that limk→+∞ Uh
k = +∞, Pm-a.s. For this,

we compute Em(Nh(0, t)) for t > 0. For all k ≥ 1,

Em

(
Nh(0, t ∧ Uh

k )
)=Em

( ∫ t∧Uh
k

0
�h(u)du

)

=Em

( ∫ t∧Uh
k

0

(
λ +

∫
(−∞,u)

h(u − s) Nh(ds)

)+
du

)
≤ λt +Em

( ∫ t

0

∫
(−∞,0]

h+(u − s) N0(ds)du

)

+Em

( ∫ t∧Uh
k

0

∫
(0,u)

h+(u − s) Nh(ds)du

)
.

Using the nonnegativity of h+ and the assumption (2.2),

Em

( ∫ t

0

∫
(−∞,0]

h+(u − s) N0(ds)du

)
≤

∫ t

0
Em

( ∫
(−∞,0]

h+(u − s) N0(ds)

)
du < +∞ .

For the last term, we use again the Fubini–Tonelli theorem and obtain

Em

( ∫ t∧Uh
k

0

∫
(0,u)

h+(u − s) Nh(ds) du

)
=Em

( ∫
(0,t∧Uh

k )

∫ t∧Uh
k

s
h+(u − s)du Nh(ds)

)
≤ ‖h+‖1 Em

(
Nh(0, t ∧ Uh

k )

)
.

These three inequalities and the fact that ‖h+‖1 < 1 (see Assumption (2.1)) yield that

0 ≤Em

(
Nh(0, t ∧ Uh

k )
)≤ 1

1 − ‖h+‖1

(
λt +

∫ t

0
Em

( ∫
(−∞,0]

h+(u − s) N0(ds)

)
du

)
, (A.4)

where the upper bound is finite and independent of k.
As a consequence, we necessarily have that limk→+∞ Uh

k = +∞ a.s., which we now prove
by contradiction. If P( limk→+∞ Uh

k < +∞) > 0 then there would exist T > 0 and �0 such
that P(�0) > 0 and limk→+∞ Uh

k ≤ T on �0. But this would entail that Em(Nh(0, T ∧ Uh
k )) ≥

(k − 1)Pm(�0), which converges to +∞ with k and cannot be bounded above by (A.4).
Note additionally that once we know that limk→+∞ Uh

k = +∞, a.s., we can use the Beppo
Levi theorem, which leads to Em

(
Nh(0, t)

)
< +∞ for all t > 0.

Note that uniqueness comes from the algorithmic construction of the sequence (Uh
k )k≥1.

Proof of (2). The assumptions of the theorem are valid both for h and for h+, and the result
(1) which we have just proved allows us to construct strong solutions Nh and Nh+

of Equation
(1.2) driven by the same Poisson point process Q. Proving (2) is equivalent to showing that the
atoms of Nh are also atoms of Nh+

, which we do using the following recursion.
If Uh

1 = +∞ then Nh has no atom on (0, +∞) and there is nothing to prove.

Otherwise, we first show that the first atom Uh
1 of Nh is also an atom of Nh+

. The key point
is to establish that

∀t ∈ (0, Uh
1), �h(t) ≤ �h+

(t). (A.5)
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Indeed, from the definition of Uh
1, there exists an atom of the Poisson measure Q at some

(Uh
1, θ ) with θ ≤ �h

(
(Uh

1)−
)
. If (A.5) is true we may deduce that (Uh

1, θ ) is also an atom of Q

satisfying θ ≤ �h+(
(Uh

1)−
)
, and thus that Uh

1 is also an atom of Nh+
.

We now turn to the proof of (A.5). For every t ∈ (0, Uh
1), we clearly have

�h(t) = �h
0(t) �

(
λ +

∫
(−∞,0]

h(t − s) N0(ds)

)+
;

we use the fact that x 	→ x+ is nondecreasing on R to obtain that

�h(t) ≤ λ +
∫

(−∞,t)
h+(t − s) Nh+

(ds) ��h+
(t) .

We now prove that if Uh
1, . . . , Uh

k are atoms of Nh+
and Uh

k+1 < +∞, then Uh
k+1 is also an

atom of Nh+
. By construction, �h(t) = �h

k(t) for all t ∈ (0, Uh
k+1), and there exists θ > 0 such

that (Uh
k+1, θ ) is an atom of Q satisfying θ ≤ �h((Uh

k+1)−). To obtain that Uh
k+1 is also an atom

of Nh+
, it is thus enough to prove that

∀t ∈ [Uh
k , Uh

k+1), �h(t) ≤ �h+
(t).

Using that h ≤ h+ and the induction hypothesis that the first k atoms Uh
1, . . . , Uh

k of Nh are

also atoms of Nh+
, we obtain for all t ∈ (Uh

k , Uh
k+1) that∫

(0,Uh
k ]

h(t − s) Nh(ds) ≤
∫

(0,Uh
k ]

h+(t − s) Nh(ds) ≤
∫

(0,t)
h+(t − s) Nh+

(ds) .

This upper bound and the definition (A.3) of �h
k yield that, for all t ∈ (Uh

k , Uh
k+1),

�h
k(t) ≤ �h+

(t) ,

and since �h
k and �h coincide on (0, Uh

k+1), we have finally proved that Uh
k+1 is an atom of

Nh+
. This concludes the proof of the proposition.

A.2 Extension to the more general setting of Remark 1.2

As noted in Remark 1.2, the results of this article can be extended to a more general setting.
A critical point for this extension is to construct a coupling of the Hawkes process Nh,φ with a
Hawkes process Ng satisfying Definition 1.1 for a nonnegative function g, in such a way that
Nh,φ ≤ Ng (thinning). Then Ng = ∅ implies that Nh,φ = ∅, and in particular this allows us to
derive exponential bounds on the renewal time τ of Nh,φ .

Proposition A.1. Assume that Nh,φ is a Hawkes process with conditional intensity �h,φ

defined in (1.13), and that the functions φ and h have the property that there exist λ and a
in [0, ∞) such that for all x ∈R,

φ(x) ≤ λ + ax+ and a
∫

h+ < 1.

Let us define g = ah+. Then there exists a coupling of Nh,φ with a Hawkes process Ng in the
sense of Definition 1.1 such that a.s. Nh,φ ≤ Ng.
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Scheme of the proof. As in the previous case, a key point is to establish an upper bound for
the intensity �h,φ on given time intervals. We have

φ

(∫
(−∞,t)

h(t − u)Nh,φ(du)

)
≤ λ + a

(∫
(−∞,t)

h(t − u)Nh,φ(du)

)+
(by assumption)

≤ λ +
∫

(−∞,t)
g(t − u)Nh,φ(du) (since g = ah+)

≤ λ +
∫

(−∞,t)
g(t − u)Ng(du) (thinning),

and thus it is possible at each point U of Ng to either include it into Nh,φ with probability

φ
(∫

(−∞,U) h(U − u)Nh,φ(du)
)

λ + ∫
(−∞,U) g(U − u)Ng(du)

≤ 1

or else to reject it, independently of the rest. Then the conditional intensity of Nh,φ is given by

φ
(∫

(−∞,U) h(t − u)Nh,φ(du)
)

λ + ∫
(−∞,t) g(t − u)Ng(du)

(
λ +

∫
(−∞,t)

g(t − u)Ng(du)

)
= φ

(∫
(−∞,t)

h(t − u)Nh,φ(du)

)
.

A.3. Return time for M/G/∞ queues

We now state a general result for the tail behavior of the time of return to zero T1 of an
M/G/∞ queue with a service time admitting exponential moments. All queues in this section
start empty.

We recall that an M/G/∞ queue has a Poisson process of customer arrivals with i.i.d. service
times with a general distribution, and each customer starts its service immediately at arrival
and leaves the system at its completion. For the Hawkes process with nonnegative reproduc-
tion function, we consider the ancestors to be customers (arriving as a Poisson process of
intensity λ) with service times distributed as H̃1(A) � H1 + A, where H1 is a cluster length
(see Section 2.2), and then the queue empties exactly at the hitting times of ∅ by the auxiliary
Markov process.

This result is of interest in itself, independently of the Hawkes process interpretation.
Its proof is based on the computation of the Laplace transform E(e−sT1 ) on the half-plane
{s ∈C : �(s) > 0} by Takács [34, 35]. We analytically extend this Laplace transform to {s ∈
C : �(s) > sc} for an appropriate sc < 0, which yields exponential moments.

Theorem A.1. Consider an M/G/∞ queue with arrival rate λ > 0 and generic service duration
H satisfying for some γ > 0 that, for t ≥ 0,

P(H > t) � 1 − G(t) = O(e−γ t) .

Let V1 denote the arrival time of the first customer, T1 the subsequent time of return of the
queue to zero, and B = T1 − V1 the corresponding busy period.

1. If β < γ then E(eβB) < ∞. In particular P(B ≥ t) = O(e−βt).

2. If λ < γ , then P(T1 ≥ t) = O(e−λt). If γ ≤ λ, then P(T1 ≥ t) = O(e−αt) for α < γ .
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Proof. We have T1 = V1 + B, and the strong Markov property of the Poisson process yields
that V1 and B are independent. Since V1 is exponential of parameter λ, we need mainly to study
B. Takács has proved in [34, Eq. (37)] (see also [35, Th. 1, p. 210]) that the Laplace transform
of T1 satisfies

E(e−sT1 ) = 1 − 1

λ + s

1∫ ∞
0 e−st−λ

∫ t
0 [1−G(u)] du dt

, s ∈C , �(s) > 0 . (A.6)

Since the Laplace transform of V1 is λ
λ+s , the Laplace transform of B satisfies

E(e−sB) = λ + s

λ
− 1

λ

1∫ ∞
0 e−st−λ

∫ t
0 [1−G(u)] du dt

, s ∈C , �(s) > 0 . (A.7)

There is an apparent singularity in the right-hand sides of (A.6) and of (A.7), since the
integral term increases to infinity as s decreases to 0. This is normal, since these formulas
remain valid for heavy-tailed service. Moreover, (A.6) is proved in [34] and [35] using the
Laplace transform of a measure with infinite mass. We shall remove this apparent singular-
ity and compute the abscissa of convergence of the Laplace transform in the left-hand side
of (A.7).

The main point to prove is that the abscissa of convergence σc of the Laplace transform in
the left-hand side of (A.7) satisfies σc ≤ −γ . In order to remove the apparent singularity in the
right-hand side of (A.7), we use integration by parts: on the half-line {s ∈R : s > 0},∫ ∞

0
e−st−λ

∫ t
0 [1−G(u)] du dt =

[
e−st

−s
e−λ

∫ t
0 [1−G(u)] du

]∞

t=0

−
∫ ∞

0

e−st

−s
(− λ[1 − G(t)]) e−λ

∫ t
0 [1−G(u)] du dt

= 1

s
− λ

s

∫ ∞

0
[1 − G(t)] e−st−λ

∫ t
0 [1−G(u)] du dt . (A.8)

After inspection of the integral on the right-hand side, since 1 − G(t) = O(e−γ t) and

λ

∫ ∞

0
[1 − G(t)] e−λ

∫ t
0 [1−G(u)] du dt =

[
−e−λ

∫ t
0 [1−G(u)] du

]∞
t=0

= 1 − e−λE(H) < 1,

we are able to define a constant θ < 0 and an analytic function f by setting

θ = inf

{
s ≤ 0 : λ

∫ ∞

0
[1 − G(t)] e−st−λ

∫ t
0 [1−G(u)] du dt < 1

}
∨ (− γ ) ,

f (s) = λ + s

λ
− s

λ

1

1 − λ
∫ ∞

0 [1 − G(t)] e−st−λ
∫ t

0 [1−G(u)] du dt
, s ∈C , �(s) > θ .

(A.9)

The Laplace transform in the left-hand side of (A.7) has an abscissa of convergence σc ≤ 0
and is analytic in the half-plane {s ∈C : �(s) > σc}; see Widder [37, Th. 5a, p. 57]. Both this
Laplace transform and f are analytic in the domain {s ∈C : �(s) > max (θ, σc)}, and since these
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two analytic functions coincide there on the half-line {s ∈R : s > 0}, they must coincide in the
whole domain (see Rudin [33, Th. 10.18, p. 208]), so that

E(e−sB) = f (s) , s ∈C , �(s) > max (θ, σc) .

This Laplace transform must have an analytic singularity at s = σc (see Widder [37, Th. 5b,
p. 58]), and since f is analytic in {s ∈C : �(s) > θ}, necessarily σc ≤ θ .

Since θ < 0, by monotone convergence we have

lim
s→θ+ f (s) = λ + θ

λ
− θ

λ

1

1 − λ
∫ ∞

0 [1 − G(t)] e−θ t−λ
∫ t

0 [1−G(u)] du dt
=E(e−θB) ∈ [1, ∞] ,

which implies that

λ

∫ ∞

0
[1 − G(t)] e−θ t−λ

∫ t
0 [1−G(u)] du dt < 1,

and thus that θ = −γ .
We conclude that σc ≤ −γ . Thus, if β < γ , then E(eβB) < ∞, and P(B ≥ t) = O(e−βt) using

the Markov inequality. Moreover, if P(B ≥ t) = O(e−αt) then

P(T1 ≥ t) = P(B + V1 ≥ t) = e−λt + λ

∫ t

0
e−λuP(B ≥ t − u) du

≤ e−λt + C
∫ t

0
e−λu−α(t−u) du ;

hence, if λ < γ , then choosing λ < α < γ yields that

P(T1 ≥ t) ≤ e−λt + Ce−λt
∫ t

0
e−(α−λ)(t−u) du ≤ [1 + C/(α − λ)]e−λt,

and if α < γ ≤ λ, then

P(T1 ≥ t) ≤ e−λt + Ce−αt
∫ t

0
e−(λ−α)u du ≤

[
1 + C

λ − α

]
e−αt .

We now provide a corollary to the previous result.

Proposition A.2. Consider an M/G/∞ queue with arrival rate λ > 0 and generic service
duration H satisfying for some γ > 0 that

P(H > t) = O(e−γ t) .

Let Yt denote the number of customers at time t ≥ 0, and for each E ≥ 0 let

τE = inf{t ≥ E : Yt = 0} (A.10)

be the first hitting time of zero after E. If λ < γ then let α = λ, and if γ ≤ λ then let 0 < α < γ .
Then there exists a constant C < ∞ such that

P(τE ≥ t) ≤ λCE e−α(t−E) , ∀t ≥ E .
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Proof. The successive return times to zero (Tk)k≥0 of the process (Yt)t≥0 have been defined
in (2.7). The events {Tk−1 ≤ E, Tk > E} for k ≥ 1 define a partition of �, and for t > E,

P(τE ≥ t) =
+∞∑
k=1

P
(
τE ≥ t, Tk−1 ≤ E, Tk > E

)
=

+∞∑
k=1

P
(
Tk−1 ≤ E, Tk ≥ t

)
=

+∞∑
k=1

E

(
1{Tk−1≤E}P

(
Tk ≥ t |FTk−1

))

≤
+∞∑
k=1

E

(
1{Tk−1≤E}P

(
Tk − Tk−1 ≥ t − E |FTk−1

))
,

so that, since Tk − Tk−1 is independent of FTk−1 and distributed as T1,

P(τE ≥ t) ≤
+∞∑
k=1

E

(
1{Tk−1≤E}

)
P
(
T1 ≥ t − E

)= P
(
T1 ≥ t − E

)
E

( +∞∑
k=1

1{Tk−1≤E}

)
.

By Theorem A.1, under the assumptions there exists a constant C such that

P
(
T1 ≥ t − E

)≤ Ceα(t−E) .

Moreover,
∑+∞

k=1 1{Tk−1≤E} is the number of returns to zero before time E. It is bounded by
the number of arrivals between times 0 and E, which follows a Poisson law of parameter and
expectation λE. This leads to the stated inequality. �

A.4. Strong Markov property for homogeneous Poisson point processes

In this appendix, we prove a strong Markov property for homogeneous Poisson point pro-
cesses on the line. This classic result is stated in [32, Prop. 1.18, p. 18] in the case when the
filtration is the canonical filtration generated by the Poisson point process. Here, the filtration
(Ft)t≥0 may contain additional information, for example coming from configurations on R−.

Lemma A.2. Let Q be an (Ft)t≥0-Poisson point process on (0, +∞) × (0, +∞) with unit
intensity. Then Q is a strong (Ft)t≥0-Markov process in the following sense: for any stop-
ping time T for (Ft)t≥0, conditionally on T < ∞ the shifted process STQ defined by (3.3) is an
(FT+t)t≥0-Poisson point process with unit intensity.

Proof. It is enough to prove that, for any stopping time T and any h, a > 0, conditionally on
T < ∞ the random variable Q((T, T + h] × (0, a]) is FT+h-measurable, independent of FT ,
and Poisson of parameter ha. Indeed, in order to prove the strong Markov property at a given
stopping time T , it is enough to apply the above to the stopping times T + t for t > 0 in order
to see that STQ satisfies that for every t, h, a > 0, the random variable Q((t, t + h] × (0, a]) is
Ft+h-measurable, independent of Ft, and Poisson of parameter ha.
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We first prove this for an arbitrary stopping time T with finite values belonging to an
increasing deterministic sequence (tn)n≥1. For each B in FT and k ≥ 0, we have

P(B ∩ {T < ∞} ∩ {Q((T, T + h] × (0, a]) = k})
=

∑
n≥1

P(B ∩ {T = tn} ∩ {Q((tn, tn + h] × (0, a]) = k}),

in which, by definition of FT and since Ftn−1 ⊂Ftn ,

B ∩ {T = tn} = (B ∩ {T ≤ tn}) − (B ∩ {T ≤ tn−1}) ∈Ftn .

The (Ft)t≥0-Poisson point process property then yields that

P(B ∩ {T = tn} ∩ {Q((tn, tn + h] × (0, a]) = k}) = P(B ∩ {T = tn}) e−ha (ha)k

k! ,

and summation of the series yields that

P(B ∩ {T < ∞} ∩ {Q((T, T + h] × (0, a]) = k}) = P(B ∩ {T < ∞}) e−ha (ha)k

k! .

Hence Q((T, T + h] × (0, a]) is independent of FT and Poisson of parameter ha. Moreover,
for k ≥ 0, similarly

{T < ∞, Q((T, T + h] × (0, a]) = k} ∩ {T + h ≤ t}
=

⋃
n≥1

{T = tn, Q((tn, tn + h] × (0, a]) = k} ∩ {tn + h ≤ t} ⊂Ft,

and hence Q((T, T + h] × (0, a]) is FT+h-measurable.
In order to extend this to a general stopping time T , we approximate T by the discrete

stopping times

Tn =
+∞∑
k=1

k

2n
1{ k−1

2n <T≤ k
2n } , n ≥ 1 .

The nondecreasing sequence (Tn) satisfies Tn ≥ T a.s. As n goes to infinity, the right continuity
of t 	→ Q((0, t] × (0, a]) and of (Ft)t≥0 allows us to conclude.
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