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Lock-in in vortex-induced vibration
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The phenomenon of lock-in in vortex-induced vibration of a circular cylinder is
investigated in the laminar flow regime (206Re6 100). Direct time integration (DTI)
and linear stability analysis (LSA) of the governing equations are carried out via a
stabilized finite element method. Using the metrics that have been proposed in earlier
studies, the lock-in regime is identified from the results of DTI. The LSA yields
the eigenmodes of the coupled fluid–structure system, the associated frequencies
(FLSA) and the stability of the steady state. A linearly unstable system, in the absence
of nonlinear effects, achieves large oscillation amplitude at sufficiently large times.
However, the nonlinear terms saturate the response of the system to a limit cycle.
For subcritical Re, the occurrence of lock-in coincides with the linear instability of
the fluid–structure system. The critical Re is the Reynolds number beyond which
vortex shedding ensues for a stationary cylinder. For supercritical Re, even though
the aeroelastic system is unstable for all reduced velocities (U∗) lock-in occurs only
for a finite range of U∗. We present a method to estimate the time beyond which the
nonlinear effects are expected to be significant. It is observed that much of the growth
in the amplitude of cylinder oscillation takes place in the linear regime. The response
of the cylinder at the end of the linear regime is found to depend on the energy ratio,
Er, of the unstable eigenmode. Er is defined as the fraction of the total energy of the
eigenmode that is associated with the kinetic and potential energy of the structure.
DTI initiated from eigenmodes that are linearly unstable and whose energy ratio
is above a certain threshold value lead to lock-in. Interestingly, during lock-in, the
oscillation frequency of the fluid–structure system drifts from FLSA towards a value
that is closer to the natural frequency of the oscillator in vacuum (FN). In the event
of more than one eigenmode being linearly unstable, we investigate which one is
responsible for lock-in. The concept of phase angle between the cylinder displacement
and lift is extended for an eigenmode. The phase angle controls the direction of energy
transfer between the fluid and the structure. For zero structural damping, if the phase
angle of all unstable eigenmodes is less than 90◦, the phase angle obtained via DTI
evolves to a value that is close to 0◦. If, on the other hand, the phase angle of any
unstable eigenmode is more than 90◦, it settles to 180◦, approximately in the limit
cycle. A new approach towards classification of modes is presented. The eigenvalues
are tracked over a wide range of U∗ while keeping Re and mass ratio (m∗) fixed.
In general, for large values of m∗, the eigenmodes corresponding to the two leading
eigenvalues exhibit a decoupled behaviour with respect to U∗. They are classified as
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the fluid and elastic modes. However, for relatively low m∗ such a classification is
not possible. The two leading modes are coupled and are referred to as fluid–elastic
modes. The regime of such occurrence is shown on the Re–m∗ parameter space.

Key words: flow–structure interaction, parametric instability, vortex-shedding

1. Introduction
Lock-in/synchronization/wake-capture is an important phenomenon associated with

vortex-induced vibrations (VIV) of bluff bodies. It is characterized by a high
amplitude of structural vibrations. These vibrations can cause fatigue and may
lead to catastrophic failure of structures. Lock-in, therefore, has been a subject
of numerous computational and experimental studies in the past. For a detailed
review on the various works that have been carried out related to synchronization in
VIV, the interested reader is referred to articles by Bearman (1984, 2011), Sarpkaya
(2004), Williamson & Govardhan (2004) and Wu, Ge & Hong (2012). Most of the
earlier studies on VIV have focused on characterizing the lock-in regime, and its
dependence on various parameters. In this paper, we explore the mechanism that
leads to the phenomenon of lock-in.

First, we present a very brief review of the studies that mainly focus on
characterizing the fluid–structure system within the lock-in regime. The behaviour of
the fluid–structure system depends very significantly on the Reynolds number (Re)
and mass of the cylinder. As a result, depending on the parameter range over which
the various studies have been carried out, several definitions of lock-in have been
proposed/used in the literature. The pioneering work by Bishop & Hassan (1964)
and Feng (1968) shows that during lock-in, the frequency of cylinder oscillation is
close to the natural frequency of the oscillator. In these two studies the fluid medium
surrounding the cylinder was air. Hence, the mass ratio, m∗, defined as the ratio of the
mass of the moving structure to the mass of the displaced fluid is high (m∗∼O(100)).
Khalak & Williamson (1997, 1999) carried out experiments with relatively low mass
ratios (m∗ ∼ O(10)) by conducting experiments in water. The range of Reynolds
number for these experiments varied between 5000 6 Re 6 16 000. They observed
large amplitude oscillations of the cylinder with a frequency that is significantly
higher than the natural frequency of the oscillator in water. In such cases, they found
that the pattern of vortex shedding is different from that of the flow past a stationary
cylinder and repeats after each cycle of cylinder oscillation. Subsequently, Khalak &
Williamson (1999) defined lock-in as the matching of the frequency of the periodic
wake vortex mode and the oscillation frequency of the body. This is in line with the
definition used by Sarpkaya (1995) where the force frequency matches the oscillation
frequency of the structure in the lock-in regime.

As is the case at large Re, computational studies in the laminar regime and
m∗ = 10 (Singh & Mittal 2005; Prasanth & Mittal 2008; Prasanth, Premchandran &
Mittal 2011; Navrose et al. 2014) show that the frequency of cylinder oscillation
and vortex shedding are identical in the lock-in regime. They are quite close to
the natural frequency of the oscillator in vacuum. Outside the lock-in regime, the
cylinder exhibits very low amplitude oscillations at a frequency that is nearly equal
to the vortex shedding frequency of flow past a stationary cylinder. The present study
is confined to the laminar flow regime. The lock-in regime is identified using the
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FIGURE 1. (Colour online) Flow past a freely vibrating cylinder for Re=100 and m∗=10:
variation of (a) normalized maximum amplitude of cylinder oscillation, and (b) frequency
ratio, f ∗, with reduced velocity. f ∗ is the ratio between the cylinder vibration frequency and
the natural frequency of the oscillator in vacuum. Results are shown for the computations
when U∗ is increased in small increments as well as when it is decreased in small
decrements. The lock-in regime obtained via the increasing U∗ approach is shaded: initial
branch (magenta) and lower branch (grey). Hysteresis is shown only in (a), and not in (b)
to avoid clutter.

metrics that have been proposed and utilized in the earlier studies: relatively high
amplitude of cylinder oscillation and, matching of the cylinder oscillation and vortex
shedding frequency. Figure 1 shows the amplitude of vibration and frequency ratio of
a cylinder exhibiting VIV for (Re,m∗)= (100, 10). The lock-in regime is highlighted
via shading.

There have been relatively fewer studies that investigate the mechanism(s)
underlying the lock-in phenomenon in free vibrations, i.e. what causes lock-in in
free vibrations? Cossu & Morino (2000) carried out linear stability analysis for the
flow past an elastically mounted cylinder in the laminar flow regime. They identified
two modes that may be responsible for the onset of instability in the fluid–structure
system and referred to them as the von Kármán and nearly structural modes. It was
demonstrated that vortex shedding accompanied with a large amplitude of cylinder
oscillation is possible for subcritical Re and low m∗ owing to the instability of
the nearly structural mode. Meliga & Chomaz (2011), using asymptotic analysis,
corroborated the existence of the two modes reported by Cossu & Morino (2000)
and renamed them the wake mode (WM) and structure mode (SM), respectively. The
identification of the modes is based on their characteristics in the limit of very large
mass ratio. For large m∗, the eigenvalue of the SM tends to the natural eigenvalue
of the cylinder-only system. On the other hand, the eigenvalue of WM, in the limit
of large m∗, tends to the leading eigenvalue computed for the flow past a stationary
cylinder. Therefore, to identify the two modes for a given value of Re and reduced
speed (U∗), the eigenvalue of the modes need to be followed up to large values of
m∗. For certain combinations of Re and U∗, the eigenvalues may coalesce at a mass
ratio. Naturally, in this situation the classification of modes as wake and structure
mode is not possible. Meliga & Chomaz (2011) also carried out an approximate
nonlinear analysis in the regime of linear instability of the fluid–structure system and
proposed a criterion based on the amplitude of cylinder oscillation to identify the
lock-in regime.

Recently, Zhang et al. (2015), carried out linear stability analysis of the fluid–
structure system utilizing a reduced-order model for the wake. They suggested that
at Re = 60, lock-in may result either from the instability of WM only or both WM
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and SM. They proposed that in the first situation, lock-in occurs because of the
vicinity of the frequency of WM to the natural frequency of the oscillator. This kind
of lock-in was referred to as resonance-induced lock-in. In the other case, instability
results from the interaction of SM and WM. This was referred to as flutter-induced
lock-in. The criterion used for the identification of lock-in by Zhang et al. (2015)
is based entirely on frequency considerations. However, it has been well established
in earlier studies (for example, Govardhan & Williamson 2000) that, the frequency
of the fluid–structure system in the lock-in regime may depend significantly on the
mass ratio. In fact, at low enough mass ratio, the cylinder can vibrate with large
oscillation amplitude and frequency that can be several times the natural frequency
of the oscillator (Govardhan & Williamson 2002). Therefore, a criteria for lock-in
that is based on frequency only may not be suitable for systems with moderate to
low value of mass ratio.

In the present study we investigate the phenomenon of lock-in via linear stability
analysis (LSA) and direct time integration (DTI) of the equations that govern the
flow and response of the structure. No empirical model is used. Most of the earlier
studies that explore lock-in consider variation with reduced speed while holding mass
ratio fixed. The present analysis is carried out over a relatively wide range of m∗
and Re, including the subcritical and supercritical regimes with respect to onset of
vortex shedding. Using these results, a classification of the modes is presented. It
is observed that, for large mass ratios, the modes corresponding to the two leading
eigenvalues are quite distinct and maintain this distinction as U∗ is varied. In this
sense, the two leading modes are decoupled from each other. We refer to the two
eigenmodes as the fluid mode (FM) and elastic mode (EM). The FM resembles the
mode corresponding to the leading eigenvalue of the flow past a stationary cylinder.
For low mass ratios, the two leading eigenmodes do not exhibit a clear distinction in
terms of their affiliation to being either class fluid or class elastic. We refer to them
as coupled modes.

The linear instability of the coupled fluid–structure system results in free vibrations.
Depending on the operational parameters (m∗, U∗, Re) there may be several unstable
modes. As the amplitude of vibration increases, nonlinear terms become significant
and the response of the system is altered from its linear behaviour. As a consequence,
the fluid–structure system achieves a limit cycle. However, not all unstable eigenmodes
lead to high amplitude response of the cylinder. Only those unstable eigenmodes
whose Er a higher than a certain threshold value lead to lock-in. We also study
the phase angle between the cylinder displacement and lift force corresponding to
an eigenmode. The phase angle is found to be related to the direction of energy
transfer between the fluid and structure. DTI is initiated with the disturbance field
corresponding to the unstable eigenmodes. The phase angle undergoes a change as
the amplitude of cylinder vibration increases.

2. The governing equations
2.1. Incompressible flow equations

To investigate the interaction between the fluid and the oscillating cylinder, linear
stability analysis of the governing equations is carried out in a moving frame attached
to the cylinder. Such an approach has been used earlier to study vortex-induced
vibration of a cylinder (Étienne & Pelletier 2012; Lu & Papadakis 2014). Let x
and t denote the spatial and temporal coordinates respectively. The spatial domain is
represented by Ω ⊂ R2. Γ represents the boundary of Ω . The temporal domain is
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FIGURE 2. (Colour online) Flow past a freely vibrating cylinder: (a) finite element mesh
that has been employed for the computations in this work, (b) close-up view of the
mesh near the surface of the cylinder. The mesh consists of 12 814 nodes and 12 540
quadrilateral elements. The location of the various boundaries and boundary conditions
are also shown.

represented by (0, T). The Navier–Stokes equations governing an incompressible flow
in the absence of body forces are

ρ

(
∂u
∂t
+ u · ∇u+ U̇b

)
−∇ · σ = 0 on Ω × (0, T), (2.1)

∇ · u= 0 on Ω × (0, T). (2.2)

Here, ρ, u and σ are the density, velocity and stress tensor, respectively. Ub

denotes the instantaneous velocity of the cylinder. For a Newtonian fluid the
stress tensor is given as σ = −pI + 2µε(u), where, ε is the strain rate given as
ε(u) = ((∇u) + (∇u)T)/2 and, p and µ are the pressure and coefficient of dynamic
viscosity, respectively.

Unlike the LSA, the DTI of the governing equations is carried out in an inertial
frame of reference. Therefore, the third term in (2.1) is dropped. More details on the
same can be found in our earlier work (Prasanth & Mittal 2008). The computational
domain along with the boundary conditions are shown in figure 2. No-slip condition
is applied on the velocity at the surface of the cylinder. The location of the cylinder
and its velocity are updated at each nonlinear iteration of the solution to the flow
equations.

2.2. The equations of motion for the structure
The motion of the cylinder mounted on elastic supports, in the two directions along
the Cartesian axes, is governed by the following system of equations:

U̇b + 4πFNζUb + (2πFN)
2X = 2CF

πm∗
for (0, T), (2.3)

Ẋ =Ub for (0, T). (2.4)
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Here, FN is the reduced natural frequency of the oscillator, ζ the structural damping
ratio and m∗ the non-dimensional mass of the body. CF is the instantaneous coefficient
of fluid force acting on the cylinder. The fluid force is computed by integrating
stress on the boundary of the cylinder. X denotes the normalized displacement. The
displacement and velocity are normalized by the diameter of the cylinder, D, and the
free-stream speed U, respectively. FN is related to the natural frequency of the spring
mass system ( fN) as FN = fND/U. Another related parameter is the reduced velocity,
U∗. It is defined as U∗ = U/( fND)= 1/FN . Although the formulation presented here
is general, results are presented for transverse-only oscillation of the structure.

2.3. Global LSA
We carry out a global linear stability analysis of the fluid–structure system represented
by (2.1)–(2.4). A similar approach was employed by Cossu & Morino (2000). The
unsteady flow variables, (u, p) are decomposed as a combination of the steady and
the disturbance field: u = U + u′ and p = P + p′. (U, P), the steady flow past a
stationary cylinder, is obtained by dropping the unsteady terms in (2.1) and (2.2). u′
and p′ are the perturbation fields of the velocity and pressure, respectively. In the
steady state the cylinder is at rest at its equilibrium position. Therefore, Ub is also the
disturbance in the velocity of the cylinder. In the equilibrium state, the spring is in a
stretched position, Xeq, due to the steady force acting on the cylinder. In general, for
a circular cylinder in uniform flow, this force is along the streamwise direction. The
displacement of the cylinder, therefore, can be decomposed as X = Xeq + x′, where
x′ represents the disturbance field of the cylinder displacement. Substituting for the
decomposition of flow and the structural variables in (2.1)–(2.4), and subtracting
from them, the equations for steady flow, the equations for the evolution of the
disturbance field can be obtained. We assume that the disturbances are small and
drop the nonlinear terms. We also assume that the system is devoid of any structural
damping. This leads to the following linearized equations of the disturbance field:

ρ

(
∂u′

∂t
+ u′ · ∇U +U · ∇u′ + U̇b

)
−∇ · σ ′ = 0, (2.5)

∇ · u′ = 0, (2.6)

U̇b + (2πFN)
2x′ =

2
(
∂CF

∂Ub
·Ub+ ∂CF

∂p′
p′
)

πm∗
, (2.7)

ẋ′ =Ub. (2.8)

In the equation above, σ ′ represents the stress tensor due to disturbance field of the
flow. The variation in non-dimensional forces because of change in the velocity of
the cylinder with respect to the equilibrium state is denoted by the matrix ∂CF/∂Ub.
Similarly, the variation in forces because of the change in the pressure on the surface
of the cylinder is ∂CF/∂p′. For conducting the global LSA of the combined fluid–
cylinder system, we assume the disturbance field of the following form:

u′(x, t)= û(x)eλt, p′(x, t)= p̂(x)eλt, Ub= Ûbeλt, x′ = x̂eλt. (2.9a−d)

Substituting this form of the disturbance in (2.5)–(2.8) we obtain:

ρ(λ(û+ Ûb)+ û · ∇U +U · ∇û)−∇ · σ̂ = 0, (2.10)
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∇ · û= 0, (2.11)

λÛb + (2πFN)
2x̂=

2
(
∂CF

∂Ûb

· Ûb + ∂CF

∂ p̂
p′
)

πm∗
, (2.12)

λx̂= Ûb. (2.13)

Here, λ is the eigenvalue of the coupled fluid–structure system and governs its stability.
In general, λ= λr+ iλi, where λr and λi are the real and imaginary parts, respectively.
We define the non-dimensional frequency of the eigenmode as FLSA = λi/2π. The
corresponding reduced velocity is represented by U∗LSA= 2π/λi= 1/FLSA. In this study,
we restrict the motion of the cylinder in the direction transverse to the free-stream
flow. This is commonly referred to as Y-only oscillations. A typical global eigenmode
of the fluid–structure system is thus represented as (û(x), p̂(x), ˆ̇Y , Ŷ).

3. The finite element formulation
A stabilized finite element method has been utilized to carry out the time integration

of the governing equations as well as their linear stability analyses. The numerical
stabilizations are based on SUPG (streamline-upwind/Petrov–Galerkin) and PSPG
(pressure-stabilizing/Petrov–Galerkin) techniques (Tezduyar et al. 1992c). All the
stabilizations used in this work are residual based. Therefore, they lead to a consistent
formulation in the sense that the exact solution satisfies the finite element formulation.
The steady state about which stability analysis is carried out is obtained by simply
dropping the unsteady term in the governing equations. For carrying out direct time
integration, a space–time version of the stabilized finite element method is employed
(Tezduyar et al. 1992a; Tezduyar, Liou & Behr 1992b). We rewrite (2.1) and (2.2) in
the stationary frame. The equations of motion for the oscillator are also cast in the
space–time formulation as described in the articles by Mittal & Tezduyar (1992a,b)
and Tezduyar et al. (1992c). This method allows us to carry out computations that
involve moving boundaries and interfaces. The finite element mesh that has been
employed for all the computations is shown in figure 2.

The finite element formulation of the linear stability analysis of flow equations is
the extension of that presented in our earlier studies (Mittal & Kumar 2007; Mittal &
Verma 2014). The stabilization coefficients for the formulation are based on the steady-
state velocity field, Uh. In this work the formulation is extended to include (2.12)
and (2.13) for the structure. The finite element discretization of (2.10)–(2.13) leads
to a generalized eigenvalue problem of the form AX − λBX = 0, where A and B are
non-symmetric matrices. We use a shift-invert transformation in conjunction with the
subspace iteration method to track the fastest growing eigenmodes. The growth rate
of the eigenmodes obtained from LSA is confirmed by tracking the growth rate of the
energy of the disturbance from the DTI of the governing equations. This is illustrated
for a few cases in § 8 by initiating computations with the eigenmodes obtained from
LSA.

4. Eigenmodes from the linear stability analysis
4.1. Classification of modes

Compared to the fluid alone, LSA of the fluid–structure model is associated with
two additional eigenmodes. Cossu & Morino (2000) and Meliga & Chomaz (2011)
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FIGURE 3. (Colour online) Linear stability analysis of the steady flow past a fluid–
structure system: stability characteristics for (a,c) (Re, m∗) = (60, 20), (b,d) (Re, m∗) =
(60, 5). λr represents the growth rate and FLSA = λi/2π represents the non-dimensional
frequency.

presented a classification of the eigenmodes based on their characteristics in the limit
of very large m∗. To identify the class to which an eigenmode belongs for a given
value of Re and U∗, the eigenvalue has to be followed up to large values of m∗. Most
studies on VIV that explore the characteristics of the fluid–structure system in lock-in
regime consider its variation with reduced speed while holding the mass ratio fixed.
A different perspective towards mode classification is adopted in this work wherein
m∗ is fixed and the eigenmodes are computed over a wide range of U∗. The present
classification makes it relatively easier to compare the characteristics of fluid–structure
system in the lock-in regime with the properties of the unstable modes. It is observed
that for systems with large m∗, the modes corresponding to two leading eigenvalues
are quite distinct and maintain this distinction for all U∗. That is, in terms of variation
with U∗, the two leading eigenmodes are decoupled. We refer to the two modes as
fluid mode and elastic mode. The frequency of FM remains nearly constant with U∗.
The frequency of EM, on the other hand, varies inversely with U∗. For low m∗, the
two leading eigenmodes do not exhibit a clear distinction in terms of their affiliation
to being either class elastic or class fluid. We refer to such modes as coupled modes
and denote them by fluid–elastic mode I (FEMI) and fluid–elastic mode II (FEMII).
For small U∗, FEMI resembles fluid mode and FEMII is similar to elastic mode.
However, for large U∗, the characteristics of FEMI and FEMII resemble EM and FM
respectively. A detailed description of decoupled and coupled modes for the Re =
60 flow is presented for two values of mass ratio, m∗ = 20 and 5. The modes are
decoupled for m∗ = 20, while they are coupled for m∗ = 5. In the discussion that
follows, we refer to the mode responsible for the onset of global instability in the
flow past a stationary cylinder as the stationary wake mode.

Figure 3(a) shows the variation of the growth rate of the fluid and the elastic
mode with U∗ for (Re, m∗) = (60, 20). The fluid mode is unstable for all U∗. It
achieves maximum growth rate for U∗ = 8.0. The growth rate of FM approaches the
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(a) (b)

FIGURE 4. (Colour online) Linear stability analysis of the Re = 60 steady flow past a
circular cylinder: vorticity field for the (a) real and (b) imaginary parts of the eigenmode
corresponding to the stationary wake mode. The flow is from left to right.

(a)

(c)

(e)

(b)

(d)

( f )

FIGURE 5. (Colour online) Linear stability analysis of the steady flow past a
fluid–structure system for (Re, m∗)= (60, 20): spanwise vorticity field of the EM (a,c,e)
and the FM (b,d, f ) for (a,b) U∗ = 5.5, (c,d) U∗ = 7.0 and (e, f ) U∗ = 8.0. The flow is
from left to right.

growth rate of the stationary wake mode for Re = 60 for very small and very large
values of U∗. The elastic mode is unstable for 5.8 < U∗ < 7.3. This mode attains
highest growth rate for U∗ = 7.0. Figure 3(c) shows the variation of non-dimensional
frequency, FLSA = λi/2π, with U∗. The frequency of the fluid mode remains close to
the frequency of the stationary wake mode for all U∗. It is noted that the growth
rate of both modes achieve maximum within the range of U∗ where the frequencies
of the two modes are close to each other. Figure 4 shows the vorticity field for
the real and imaginary parts of the unstable eigenmode for the steady flow past a
stationary cylinder at Re= 60. Figure 5 shows the vorticity field for FM and EM for
different U∗ at (Re,m∗)= (60, 20). It is observed that the shape of the eigenmode is
closely related to its frequency (FLSA). If the frequency associated with the eigenmode
is relatively larger, then the region of large perturbation associated with the mode
is closer to the cylinder. As the frequency of the eigenmode decreases, the large
perturbation region shifts downstream with respect to the cylinder. The frequency of
FM remains close to that of the Re = 60 stationary wake mode for all values of
U∗. Therefore, the mode shape of FM resembles the stationary wake mode (figure 4)
for all reduced speeds. On the other hand, the frequency of EM follows the natural
frequency of the structure-only system over a wide range of U∗. As a result, with
increase in U∗ the region of large perturbation associated with EM moves downstream
to the cylinder. For U∗ values where the frequency of FM and EM are close to each
other, no perceptible difference is observed in the structure of the two modes.

Figure 3(b,d) shows the stability characteristics of FEMI and FEMII for (Re,m∗)=
(60, 5). The vorticity field of the eigenmodes for different values of U∗ are shown in
figure 6. The growth rate, frequency and mode shape of FEMI resemble the stationary
wake mode for low U∗. In the same U∗ regime, FEMII is stable and its frequency
follows the structure-only system. Concomitantly, the region of large perturbation
associated with FEMII moves downstream to the cylinder with increase in reduced
speed. The growth rate of FEMI decreases with increase in U∗ and the mode becomes
stable beyond U∗ = 6.0. FEMII is unstable for U∗ > 5.0. Towards the higher-U∗ end,
growth rate, frequency and mode shape of FEMII resemble the stationary wake mode.
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(a)

(c)
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( f )

FIGURE 6. (Colour online) Linear stability analysis of the steady flow past a
fluid–structure system for (Re,m∗)= (60, 5): spanwise vorticity field of FEMI (a,c,e) and
FEMII (b,d, f ) for (a,b) U∗ = 4.0, (c,d) U∗ = 6.8 and (e, f ) U∗ = 10.0. The flow is from
left to right.
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FIGURE 7. (Colour online) Linear stability analysis of the steady flow past a
fluid–structure system: variation of U∗LSA= 2π/λi= 1/F with U∗ for (a) (Re,m∗)= (60, 20)
and (b) (Re,m∗)= (60, 5). The point corresponding to stationary wake mode is shown in
bull’s eye symbol.

For FEMI, at large values of U∗, the large perturbation region associated with the
eigenmode moves downstream with increase in U∗. For 6.06U∗69.0, the frequencies
of the two modes are close to each other and their variations with U∗ are also similar.
The growth rate of the unstable FEMII achieves maximum within this range.

To further bring out the distinction between the coupled and decoupled modes
we replot the results shown in figure 3 on the λr–U∗LSA plane; U∗LSA(= 1/FLSA) is
the reduced velocity based on the frequency of the eigenmode. Figure 7 shows the
variation of the growth rate with U∗LSA for (Re, m∗) = (60, 20) and (60, 5). The end
points of the curves are tagged with A–B for FM, C–D for EM, P–Q for FEMI
and R–S for FEMII. The location of these points in figure 3 is also marked. In the
case of decoupled modes, the end points of the fluid mode, at the low (point A)
and high end of U∗ (point B), approach each other with increase in the range of
U∗. For the limiting case when the reduced velocity spans from zero to infinity,
FM would appear as a closed ring, separate from EM, on λr–U∗LSA plane. The point
where the end points of the ring merge, corresponds to that for the stationary wake
mode (shown as bull’s eye symbol in figure 3). For the case of coupled modes, with
increase in the range of U∗, the end point of FEMII (point S) and the beginning of
FEMI (point P) approach the point corresponding to the stationary wake mode. In the
limiting case when the reduced velocity spans from zero to infinity, the two modes
would merge at the point corresponding to stationary wake mode on λr–U∗LSA plane
and appear as a single curve. Figure 7 clearly brings out the distinction between the
coupled and decoupled modes and the identification of the two branches.
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4.2. Regime of coupled and decoupled modes
In general, whether the modes are coupled or decoupled depends on m∗ and Re. At
a given Re, the modes are coupled for relatively low m∗ and get decoupled to EM
and FM at larger m∗. We define critical mass ratio, m∗c , as the largest mass ratio
for which modes are coupled at a certain Re. We also define Reo as the Reynolds
number beyond which the stationary wake mode becomes unstable. The value of
Reo estimated with the mesh employed in the present study is Reo = 47.5. The value
of Reo from the study reported by Kumar & Mittal (2006), independent of mesh
and blockage effects, is Reo = 47. The two values are in very good agreement. The
small difference between the two studies is attributed to the slightly lower spatial
resolution in the present study. Compared to the flow past stationary cylinder, the
coupled fluid–structure system has additional degrees of freedom corresponding to
cylinder displacement and velocity. In addition, these degrees of freedom are strongly
coupled with the flow variables at the surface of the cylinder. Therefore, LSA of
the coupled fluid–structure problem is relatively more demanding on computational
resources as compared to the fluid-only and structure-only problems. One of the
factors in choosing the finite element mesh used in the present study is that with the
computational resources at our disposal, we should be able to carry out LSA over a
wide range of the various parameters of interest (Re, U∗, m∗). A mesh convergence
study is carried out to check the adequacy of the mesh against a mesh of finer spatial
resolution. The details of the mesh convergence study are presented in appendix A.
The results from the two meshes are found to be in very good agreement. The
effect of m∗ on (de-)coupling of modes is presented with Re. To account for the
offset in the value of Reo compared to that reported by Kumar & Mittal (2006), we
additionally present the results with respect to Re/Reo. Marais et al. (2011) used a
similar approach to present their results on stability analysis. They recorded a value
of Reo = 64 in their experiments because of confinement and blockage effects.

Figure 8(a) shows the regions in Re–m∗ plane where the modes are coupled or
decoupled. We describe the procedure used to generate this figure. For several values
of Re, computations are carried out for many values of m∗ that are separated by a
step size of 1m∗ = 5.0. At each of these (Re, m∗) values, LSA is carried out over
a wide range of reduced speed. The variation of λr with U∗LSA is utilized to identify
coupled/decoupled modes. In the range of m∗ where the system transits between
coupled and decoupled modes, computations are carried out for more m∗ values
that are separated by a finer step size of 1m∗ = 1.0. These are utilized to estimate
the critical mass ratio, m∗c , beyond which the modes are decoupled for a given Re.
These values are shown in figure 8(a) by solid circles. We note that m∗c decreases
as one moves away from Reo. Figure 8(b–d) shows the variation of λr with U∗LSA
for m∗ = 75 at Re = 37.5, 47 and 56.5, respectively. For Re = 37.5 and 56.5 the
modes are decoupled. While the fluid mode is stable for former, it is unstable in the
latter case. For Re= 47.0 (Re/Reo = 1.0), the modes are coupled. The value of λr at
the junction, where the branches corresponding to modes FEMI and FEMII meet, is
equal to zero. The transition from the regime of coupled modes to decoupled modes
with increase in mass ratio is demonstrated in figure 9 for Re = 42 and 52 by the
evolution of the topology of the curves.

The term critical mass ratio has been used in earlier studies on free vibrations in
different contexts. For example, Govardhan & Williamson (2000) introduced a critical
mass ratio, m∗crit, below which synchronization is observed for values of U∗ up to
infinity. Prasanth et al. (2011) introduced a critical mass ratio, m∗cr, below which
hysteresis between the initial and lower branch, at low Re and in an unbounded
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FIGURE 8. (Colour online) Linear stability analysis of the steady flow past a
fluid–cylinder system: (a) the regions of mode coupling/decoupling. The variation of
growth rate of modes with U∗LSA for m∗ = 75 at (b) Re = 37.5, (c) Re = Reo = 47 and
(d) Re= 56.5.

domain, disappears. The term critical mass ratio, in the present work, is not related
to these two phenomena. In the following sections most of the results and figures are
presented for the case of coupled modes. The general argument can be extended to
the case of coupled modes as well.

5. Lock-in regime
As a first step towards exploring the connection between the lock-in phenomenon

and linear instability of the fluid–structure system, we identify the lock-in regime
in the cylinder response obtained from the DTI of governing equations. Later in
the section, we present a comparison of the lock-in regime obtained from DTI
with that estimated from the results of LSA. In the linear regime the fluid and the
structure system are associated with the same growth rate and frequency (2.9).
A positive growth rate, via linear theory, would necessarily lead to very large
oscillations of the fluid–structure system at sufficiently large times. Therefore, it
is appropriate to conclude that in the linear regime, instability is synonymous with
lock-in/synchronization. However, as the disturbance field becomes large the nonlinear
terms in the governing equations become significant; the system can no longer be
approximated by dropping the nonlinear effects. In fact, the nonlinear terms drive
the system to a limit cycle with finite amplitude of oscillation and with modified
frequency. This may change the lock-in range as compared to that predicted by LSA.
Figures 10–12 show the lock-in regime predicted by LSA and DTI of the governing
equations. The results shown for DTI are the ones when the oscillations have reached
a limit cycle. The three figures are discussed in detail below.

Re 6 Reo: Figure 10(a,b) shows the variation of normalized maximum amplitude of
transverse oscillation and frequency ratio with U∗ for (Re, m∗) = (40, 10) obtained

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.157


Lock-in in vortex-induced vibration 577

–0.08

–0.04

0

0.04

0.08

–0.08

–0.04

0

0.04

0.08

–0.08

–0.04

0

0.04

0.08

–0.08

–0.04

0

0.04

0.08

–0.08

–0.04

0

0.04

0.08

–0.08

–0.04

0

4 5 6 7 8 109 11 4 5 6 7 8 109 11

4 5 6 7 8 109 11 4 5 6 7 8 109 11

0.04

0.08

4 5 6 7 8 109 11 4 5 6 7 8 109 11

FEMI

FEMI FEMI

FM

FM

FEMII

FEMII FEMII

FEMIFEMII

EM

EM

(a)

(e)

(b)

(c)

( f )

(d)

FIGURE 9. (Colour online) Linear stability analysis of the steady flow past a
fluid–cylinder system: variation of growth rate with U∗LSA of modes for for (a) (Re,m∗)=
(42, 10), (c) (Re, m∗) = (42, 25), (e) (Re, m∗) = (42, 50), (b) (Re, m∗) = (52, 10),
(d) (Re,m∗)= (52, 25), ( f ) (Re,m∗)= (52, 40).

from DTI. The frequency ratio, f ∗DTI , is defined as the ratio of the frequency of the
cylinder oscillation to the natural frequency of the oscillator in vacuum. It is observed
that lock-in/synchronization occurs for 5.9 < U∗ < 10.1. Outside this range of U∗
the flow is steady and the cylinder is at rest. In the lock-in regime, the cylinder
oscillations are accompanied with vortex shedding and the frequency ratio is close
to unity. As shown in figure 10(a,c), LSA predicts instability of the fluid–structure
system in exactly the same regime of U∗ as computed from DTI. The instability
sets in via the elastic mode. We note that the fluid mode is stable for all U∗ for
subcritical Re. The frequency ratio, f ∗LSA = λi/(2πFN), of EM is also close to unity
as is f ∗DTI . However, the two values are different (figure 10c,d). The difference is
attributed to nonlinear effects that are associated with DTI. The effect of nonlinearities
on the frequency response of the fluid–structure system has been explored by Meliga
& Chomaz (2011) for systems with relatively large mass ratio. In the scenario of
coupled modes, lock-in occurs via FEMII while FEMI is stable for all U∗.

Re>Reo: Figure 11(a,b) shows the variation of Ymax/D and f ∗DTI with U∗ for (Re,m∗)=
(60, 20). The amplitude and the frequency of the cylinder response show that lock-in
occurs over 5.8<U∗ < 9.3. The cylinder exhibits large amplitude of vibration within
the lock-in regime. The frequency ratio in the lock-in regime is closer to unity than
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FIGURE 10. (Colour online) Flow past a fluid–cylinder system for (Re, m∗) = (40, 10):
variation of (a) normalized maximum amplitude of cylinder response and (b) frequency
ratio with reduced velocity obtained from DTI. The lock-in regime from DTI, in the
presence of nonlinear effects, is shaded in grey in (a,b). The variation of growth rate
and frequency ratio of the eigenmodes with reduced velocity are shown in (c) and (d),
respectively. The stable and unstable eigenmodes are denoted by hollow and solid symbols,
respectively. The range of U∗ over which the system is linearly unstable is shaded in (c,d).

outside the range of lock-in. LSA, in this case, shows that FM is unstable for all U∗;
suggesting lock-in forever (figure 11c). The elastic mode is unstable over 5.8<U∗<
7.3. Figure 12(a,b) shows the variation of Ymax/D and f ∗DTI with U∗ for (Re, m∗) =
(60, 5). In this case also the fluid–structure system is linearly unstable for all U∗.
For low values of U∗, the instability occurs via FEMI while for large U∗, FEMII
is unstable. The results from DTI show that lock-in for (Re, m∗) = (60, 5) occurs
over 5.0 < U∗ < 8.8. Compared to free vibrations at subcritical Re, the oscillations
for Re> Reo are different on two major counts.

(1) The U∗-range of lock-in from DTI and LSA are different: for Re6Reo, prediction
of the lock-in range from LSA matches the range observed from DTI. This
is not so for Re > Reo. The fluid–structure system is linearly unstable for
all U∗. However, nonlinear effects lead to saturation of oscillation amplitude
of the cylinder to relatively low values outside the lock-in regime. More
specifically, the phase between the lift and displacement as well as the frequency
undergo a significant change due to the nonlinear effects leading the system
to desynchronization. Desynchronization is indicated by a strong departure of
f ∗ from unity (results for DTI in figure 11b). A question that arises from this
observation is, ‘Is there any feature in the unstable eigenmodes from LSA that
might indicate whether it will eventually lead to lock-in or no lock-in?’ We
explore this in the next section by studying the relative distribution of energy in
an eigenmode between the fluid and the structure.

(2) The mode that leads to synchronization: for Re6Reo, only one mode is unstable
and it controls the dynamics; instability sets in via EM for decoupled modes
and FEMII for the case of coupled modes. However, for Re > Reo, multiple
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FIGURE 11. (Colour online) Flow past a fluid–cylinder system for (Re, m∗) = (60, 20):
variation of (a) normalized maximum amplitude of cylinder response and (b) frequency
ratio with reduced velocity obtained from DTI. The lock-in regime from DTI, in the
presence of nonlinear effects, is shaded in grey in (a,b). The variation of growth rate
and frequency ratio of the eigenmodes with reduced velocity are shown in (c) and (d),
respectively. The stable and unstable eigenmodes are denoted by hollow and solid symbols,
respectively. The range of U∗ over which the system is linearly unstable is shaded in (c,d).

eigenmodes may be unstable depending on the operational U∗. For (Re, m∗) =
(60, 20), towards the lower U∗ end of lock-in, both EM and FM are unstable
(5.8 < U∗ < 7.3). Similarly, for (Re, m∗) = (60, 5), both FEMI and FEMII are
unstable for 5.0<U∗< 6.0. In next section we explore the question as to ‘which
of the two modes leads to lock-in?’ It is shown that for (Re, m∗) = (60, 20),
compared to FM, EM is associated with higher energy transfer from the fluid
to the cylinder. Therefore, for 5.9 6 U∗ 6 7.2, the elastic mode leads to lock-in.
For 7.2<U∗ 6 9.2, lock-in occurs via the fluid mode as it is the only unstable
mode. In the case of coupled modes, lock-in occurs via FEMII as it is associated
with higher energy transfer than FEMI.

6. Energy considerations related to eigenmodes
6.1. Energy ratio

We consider the disturbance field given by (2.9). In general, the eigenvalues/eigen-
modes are complex. The total energy of the fluid–oscillator system associated with
the disturbance field is the sum of the structural energy, Es, and the kinetic energy of
the fluid, Ef . The two components are defined as:

Es(t)= 1
2 m∗ẎẎ + 1

2(2πFn)
2m∗YY, (6.1)

Ef (t)= 1
2

∫
Ω

u · u dΩ. (6.2)

In (6.1) the first term on the right-hand side is the contribution of the kinetic energy
of the cylinder while the second term arises from the potential energy of the spring.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.157


580 Navrose and S. Mittal

0

0.1

0.2

0.3

0.4

0.6

0.5

0.4

0.6

0.8

1.0

1.2

1.4

0.4

0.6

0.8

1.0

1.2

1.4FEMI
FEMII

–0.06

–0.03

0

0.03

0.06

0.12

0.09

4 5 6 7 8 109 11 4 5 6 7 8 109 11

4 5 6 7 8 109 11 4 5 6 7 8 109 11

(a) (b)

(c) (d)

FIGURE 12. (Colour online) Flow past a fluid–cylinder system for (Re, m∗) = (60, 5):
variation of (a) normalized maximum amplitude of cylinder response and (b) frequency
ratio with reduced velocity obtained from DTI. The lock-in regime from DTI, in the
presence of nonlinear effects, is shaded in grey in (a,b). The variation of growth rate
and frequency ratio of the eigenmodes with reduced velocity are shown in (c) and (d),
respectively. The stable and unstable eigenmodes are denoted by hollow and solid symbols,
respectively. The range of U∗ over which the system is linearly unstable is shaded in (c,d).

Equations (6.1) and (6.2) can be rewritten as

Es(t)= Êse2λr t, (6.3)

Ef (t)= Êf e2λr t, (6.4)

where Ês and Êf are given as,

Ês = 1
2 m∗ ˆ̇Y ˆ̇Y + 1

2(2πFn)
2m∗ŶŶ, (6.5)

Êf = 1
2

∫
Ω

û · û dΩ. (6.6)

We define the energy ratio as Er = Es(t)/(Es(t) + Ef (t)). It denotes the fraction
of the total energy of the disturbance field contained in the structure; (1 − Er) is
the fraction of the total energy of the disturbance due to the motion of the fluid.
We note that Er is constant with respect to time and can also be computed via
Er = Ês/(Ês + Êf ). The evolution of Es(t), therefore, depends on Er and λr. If λr is
positive, Es, grows with time. However, the nonlinear terms become significant when
the disturbance field becomes relatively large. As a consequence, the fluid–structure
system tends towards a limit cycle. The saturated oscillation amplitude of the spring
mass oscillator significantly depends on Er of the unstable mode. We will show
later in the paper that systems with relatively large Er, coupled with positive growth
rate, attain large amplitude oscillations resulting in synchronization. The threshold
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FIGURE 13. Linear stability analysis of the steady flow past a fluid–cylinder system:
variation of energy ratio of the eigenmodes with U∗ for (a) (Re, m∗) = (60, 20) and
(b) (Re,m∗)= (60, 5). The stable and the unstable eigenmodes are shown as hollow and
solid symbols, respectively. The lock-in regime from DTI, in the presence of nonlinear
effects, is shaded in the figures.

value of Er beyond which the unstable eigenmodes lead to lock-in state depends on
Re and m∗. For example for (Re, m∗) = (60, 20), all unstable eigenmodes that are
associated with Er > 2 × 10−4 lead to lock-in. Figure 13(a) shows the variation of
Er with U∗ for the elastic and fluid mode for (Re,m∗)= (60, 20). The same for the
case of coupled modes at (Re, m∗) = (60, 5) is shown in figure 13(b). To clearly
bring out the features in the variation of Er with U∗ and the relative behaviour
of the two eigenmodes, the vertical axis is shown in log scale. Also shown in the
figures, via shading, is the lock-in regime obtained from DTI. The stable and the
unstable eigenmodes are denoted by hollow and solid symbols, respectively. Er of the
unstable eigenmodes is relatively low outside the lock-in regime. Within the lock-in
regime, for each U∗, the energy ratio of at least one unstable eigenmode has a large
value. For (Re, m∗) = (60, 20), EM has high Er for U∗ up to 7.3 approximately.
Beyond U∗ ∼ 7.3, EM is stable and is not expected to play any role in lock-in. In
this flow regime, though, Er for the fluid mode is large and is expected to drive the
system towards lock-in. For (Re,m∗)= (60, 5), FEMII has a significantly large values
of Er over the entire lock-in regime. Lock-in in this case, therefore, is expected
via FEMII.

6.2. Energy transfer per oscillation cycle
The key to self-excited nature of free vibrations is the net energy transfer over a cycle
from the fluid to the oscillator (Williamson & Roshko 1988; Morse & Williamson
2009). The time evolution of cylinder displacement and lift coefficient corresponding
to an eigenmode (û, p̂, ˆ̇Y, Ŷ) is given as:

Y(t)= (Ŷeλt + c.c.)
2

, (6.7)

CL(t)= (ĈLeλt + c.c.)
2

. (6.8)

Here, ĈL is the lift coefficient calculated by integrating the stress corresponding to
the eigenmode at the boundary of the cylinder. In general, Ŷ and ĈL are complex and
c.c. represents the complex conjugate. Let |Ŷ| and |ĈL| represent the magnitude of
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Ŷ and ĈL, respectively. Further, let θ and θ + φ denote the argument of Ŷ and ĈL,
respectively, where φ is the phase angle between the cylinder displacement and lift
coefficient. We recall that λ = λr + iλi. Equations (6.7) and (6.8) can be rearranged
and written as:

Y(t)= Yo(t)eλr t; Yo(t)= |Ŷ| cos(λit+ θ), (6.9a,b)

CL(t)=CLo(t)e
λr t; CLo(t)= |ĈL| cos(λit+ θ + φ). (6.10a,b)

The non-dimensional energy transfer from the fluid to the oscillator over a time
interval, T1–T2 is defined as:

Etransfer(T1, T2)=
∫ T2

T1

CL(t)Ẏ(t) dt. (6.11)

We now consider the non-dimensional energy transfer over a time period of cylinder
oscillation from that part of CL and Y that excludes the exponential growth/decay. The
time period of cylinder oscillation is related to λi as Tc= 2π/λi. We define Ec, energy
transfer per oscillation cycle, as:

Ec =
∫ Tc

0
CLo(t)Ẏo(t) dt. (6.12)

Ec and Etransfer are related as

Etransfer(t, t+ Tc)= Ec

∫ t+Tc

t
e2λr t dt. (6.13)

Plugging in the expressions of CLo and Yo from (6.9) and (6.10) in (6.12), it can be
shown that

Ec =π|ĈL||Ŷ| sin φ. (6.14)

It is noted that Ec is directly proportional to sin φ. For 0◦<φ < 180◦, Ec > 0 and the
energy transfer per cycle of oscillation is from the flow to the oscillator. In this case,
the amplitude of cylinder oscillation grows with time. Instead, for −180◦ < φ < 0◦,
Ec is negative and the energy is transferred to the fluid by the oscillator. As a result
the oscillation of cylinder decays with time leading to a steady state. Figure 14(a)
shows the variation of Ec with U∗ for (Re,m∗)= (60, 20). The lock-in regime based
on DTI is also shaded in the figure. Ec can be written in terms of the growth rate
and frequency of the eigenmode (details in appendix C) as:

Ec = 2π2|Ŷ|2m∗λrλi. (6.15)

Equation (6.15) shows that the sign of Ec is determined by the sign of λr. Therefore,
Ec is positive for unstable eigenmode and negative for stable eigenmodes. If an
eigenmode is unstable (λr > 0), a net energy transfer takes place from the base flow
to the fluid–oscillator system. A part of this energy, determined by the energy ratio
Er, is transferred to the structure. This energy transfer is via the work done by the
fluid force in displacing the oscillator. The energy transferred to the oscillator adds
up to its kinetic energy as well as the potential energy of the spring. We note that
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FIGURE 14. Linear stability analysis of the steady flow past a fluid–cylinder system:
variation of energy transfer per cycle of cylinder oscillation with U∗ for (a) (Re, m∗) =
(60, 20) and (b) (Re,m∗)= (60, 5). The stable and the unstable eigenmodes are shown as
hollow and solid symbols, respectively. The lock-in regime from DTI, in the presence of
nonlinear effects, is shaded in the figures.

the variation of Ec with U∗ can be quite different than the variation of λr with U∗,
even though they are of the same sign. Therefore, the U∗ for largest growth rate may
not necessarily coincide with that for maximum energy transfer. It is noted that Ec

of the EM is generally higher than that of the fluid mode in the regime of instability
of the elastic mode (5.8 < U∗ < 7.3). However, we recall here that the growth rate
of FM is higher than the elastic mode for all U∗ (figure 11c). This suggests that
for 5.8 < U∗ < 7.3 initially FM would dominate the temporal evolution of cylinder
displacement. However, as time progresses, EM is expected to drive the structural
response towards lock-in. This is confirmed by direct time integration in § 8.3. The
variation of Ec with U∗ for the case of coupled modes is shown in figure 14(b).
FEMII is expected to dominate the dynamics of the fluid–structure system in this
case.

7. Phase angle between cylinder displacement and lift

In free vibrations, the phase angle between the lift and cylinder displacement is
closely related to the energy transfer between the fluid and the oscillator. Morse &
Williamson (2009), using the approximation that cylinder motion and fluid forcing are
sinusoidal functions, showed that the energy transfer from the fluid to the cylinder
over one cycle of cylinder oscillation is given by, EIN =πAF sin φ. Here, A and F are
the amplitude of cylinder displacement and lift force, respectively; φ denotes the phase
difference between the two functions. In the fully developed state, where the system
oscillates with constant amplitude and frequency, the energy input to the structural
system should exactly balance the energy dissipated by it. Since, in the present study
there is no structural damping, EIN is identically zero in the fully developed state. This
implies that φ can admit only two solutions, 0◦ or 180◦. In general, φ is close to zero
towards the lower-U∗ end of the lock-in regime. However, near the middle of lock-in
regime, φ suffers a jump of approximately 180◦, and remain close to 180◦ for higher
values of U∗. These observations have been reported in earlier articles by Govardhan
& Williamson (2000) and Prasanth & Mittal (2008).

Phase angle can be also be defined for eigenmodes obtained from LSA. By
substituting (6.7) and (6.8) into the equation describing the motion of the oscillator
(2.3) and (2.4), it can be shown that the phase angle related to eigenmodes is given
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FIGURE 15. Flow past a freely vibrating cylinder: variation of phase angle from DTI and
phase angle of eigenmodes with U∗ for (a) (Re,m∗)= (40, 10) and (b) (Re,m∗)= (60, 20).
The stable and unstable eigenmodes are denoted by hollow and solid symbols, respectively.
The lock-in regime from DTI, in the presence of nonlinear effects, is shaded in the figures.

by:

sin φ = 2λiλr|Ŷ|πm∗

|ĈL|
. (7.1)

The details of the derivation are given in appendix C. We denote the phase angle
estimated from DTI and that from the eigenmodes as φDTI and φLSA, respectively.
As discussed in § 6.2, the eigenmodes are usually associated with non-zero energy
transfer. The relationship between Ec and the phase angle is described by (6.14). For
unstable eigenmodes the phase angle lies between 0◦ <φLSA < 180◦. Figure 15 shows
the variation of phase angle of eigenmodes with U∗ for (Re, m∗) = (40, 10) and
(60, 20). For comparison φDTI is also plotted. Unlike in DTI, where a phase jump
from 0◦ to 180◦ occurs during lock-in, φLSA varies rather smoothly with U∗. Figure 15
shows that φDTI undergoes a jump close to that value of U∗ where φLSA crosses 90◦.
It appears that, in most cases, the nonlinear effects drive φDTI to a near-zero value
if φLSA < 90◦ and to 180◦ if φLSA > 90◦ to maintain zero energy transfer in the limit
cycle.

Close to the phase jump, the frequency spectrum of the lift force in the fully
developed state shows multiple peaks. In general, the phase difference between the
lift force and cylinder displacement corresponding to each frequency component is
different. The phase angle (φDTI) shown in figure 15 corresponds to the fundamental
frequency which is usually the most dominant one. It is observed that for U∗ close to
the phase jump, φDTI exhibits offset from 0◦ or 180◦ despite EIN being equal to zero.
We note that the condition of φDTI = 0◦ or 180◦ for free vibrations has been derived
for the situation when the time histories of cylinder displacement and lift force are
associated with only one frequency. The offset, therefore, may be attributed to the
interaction of components of energy at various frequency.

8. Effect of nonlinearities and relative significance of eigenmodes
8.1. When do nonlinear terms become significant?

In the preceding sections we have shown that there are differences between LSA and
DTI with respect to the frequency, phase and the extent of lock-in regime. These
differences are attributed to the nonlinear terms in DTI of the governing equations.
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FIGURE 16. (Colour online) (Re,m∗)= (60, 20) flow past a freely vibrating cylinder for
(a,b) U∗= 5.5 and (c,d) U∗= 8.0: time evolution of (a,c) cylinder displacement, Strouhal
number based on frequency of cylinder oscillation and (b,d) structural energy. The time
instant beyond which the nonlinear terms become significant is marked in broken lines.
Also shown in inset in (b,d) is the close-up view of the evolution of structural energy in
the linear regime. The line with slope two times the growth rate of the wake mode is
shown in blue colour.

We recall that the oscillator used in the present study is associated with linear spring
and damper. Therefore, the nonlinearity in the fluid–oscillator system results entirely
from the convection terms in (2.1). We assume that the nonlinear terms involving
the disturbance field become relatively significant when their magnitude exceeds
10 % of the size of the other terms, i.e. O(|u′ · ∇u′|)∼ 0.1O(|U · ∇U|). Based on this
assumption, the time at which the nonlinear effects are expected to become significant
is estimated to be:

Tnl ∼
(

ln
0.33|U∞|
|ûmax|

)/
λr. (8.1)

The details for the derivation of Tnl are presented in appendix B. We now present an
estimate of Tnl for (Re,m∗)= (60, 20) for two values of reduced velocity. Figure 16
shows the estimate of Tnl for U∗=5.5 and 8.0. While U∗=5.5 lies before the onset of
synchronization, the oscillator experiences lock-in for U∗= 8.0 (see figure 11a). From
figure 16 we observe that up to t = Tnl the fluid–structure system indeed retains its
linear behaviour. This is most evident from the time variation of the structural energy,
Es. The structural energy at any instant is the sum of the kinetic energy and potential
energy of the oscillator. As seen from (6.3), the slope of ln(Es) versus t is 2λr in the
linear regime. The match between the two slopes, from DTI and the estimate via LSA,
is excellent. Beyond t = Tnl, the nonlinear terms cause saturation in the oscillation
amplitude and Es, leading to a limit cycle. The saturation in the Strouhal number and
the added mass coefficient is also observed for t> Tnl.
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FIGURE 17. Flow past a freely vibrating cylinder: distribution of energy ratio with the
growth rate of the eigenmodes for (a) (Re, m∗) = (60, 20), and (b) (Re, m∗) = (60, 5).
All unstable eigenmodes that lead to lock-in with respect to the fully developed state are
shown in solid symbols. These eigenmodes are characterized by energy ratio that is greater
than a threshold value, Ert.

We note that much of the increase in the amplitude of transverse vibration takes
place in the linear regime (t < Tnl). For example, for U∗ = 5.5, the amplitude of
cylinder response increases eightfold during 0 6 t 6 Tnl and only by a factor of 1.5
beyond Tnl up to the attainment of limit cycle. These numbers for U∗ = 8.0 are 17
and 3, approximately.

8.2. What causes lock-in?
The observations from the preceding section motivate us to propose a hypothesis to as
to why lock-in occurs for a certain range of U∗, and not for others. We believe that
Er (fraction of energy in the structural part of the eigenmode) determines if a certain
disturbance field will lead to attainment of lock-in. To demonstrate the relevance of
the energy ratio, Er, we consider the case of (Re,m∗)= (60, 20). The two modes that,
in general, govern the aeroelastic instability of the fluid–structure system for various
U∗ are EM and FM. Figure 17(a) shows the points for the two eigenmodes on the
Er–λr plane, for various U∗. DTI is carried out for each case. The initial condition is
the steady flow superimposed with the eigenmode:

(u(x), p(x), Ẏ, Y)
T = (U(x), P(x), 0, 0)T + s ∗ (û(x), p̂(x), ˆ̇Y, Ŷ)

T
. (8.2)

s is a scalar and is used to control the magnitude of the initial disturbance. Unless
stated otherwise, a value of 1.0 is assigned to s for all the cases presented in this
work. In figure 17(a) the eigenmodes that lead to lock-in are marked in solid symbols
and the ones that do not cause lock-in are marked in hollow symbol. It is noted that
all unstable eigenmodes, irrespective of their growth rate, that have an Er beyond
a threshold value of 2 × 10−4 lead to lock-in. Interestingly, the case that leads to
maximum oscillation amplitude is associated with smallest positive value of λr, but
the largest value of Er. Similarly, modes that are associated with relatively large λr,
but with Er below the threshold value, do not lead to lock-in. The region in the Er–λr

plane that leads to lock-in is marked in figure 17(a). Figure 17(b) shows the same for
(Re,m∗)= (60, 5). Similar observations hold for this figure as well. The value of Ert

in this case is 1× 10−3. We note that the threshold value of Er, required for lock-in
depends on m∗, and possibly on Re.
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8.3. Eigenmodes responsible for lock-in
For subcritical Re (Re 6 Reo), the instability of the fluid–structure system, if any, is
caused by only one unstable eigenmode. In the scenario of coupled modes, FEMII
is responsible for lock-in. For large mass ratios, where the modes are decoupled,
lock-in is attributed to the growth of EM. For supercritical Re (Re > Reo), the
situation becomes complicated as LSA predicts lock-in for all U∗. Further, in certain
flow regimes multiple eigenmodes are unstable. We now study in more detail the
mechanism of how an unstable eigenmode leads to lock-in for Re > Reo. We carry
out DTI for (Re, m∗) = (60, 20) for various values of U∗ in the lock-in regime. As
shown in figure 11(c), for (Re, m∗) = (60, 20), LSA predicts the instability of the
FM for the fluid–structure system for all values of U∗. The EM is unstable for
5.8 < U∗ < 7.3. The growth rate of FM is higher than that of EM in the entire U∗
regime. However, the energy ratio, Er, that has been shown to be very relevant for
determining the amplitude of cylinder oscillation in the limit cycle, is larger for EM
than for FM, and above the threshold value for 5.8 < U∗ < 7.2. This is shown in
figure 13(a). Figure 17(a) shows that lock-in occurs only when Er for the concerned
mode exceeds the threshold value. The range for lock-in for (Re, m∗) = (60, 20) is
5.8<U∗ < 9.3.

8.3.1. Lock-in via fluid mode
For (Re, m∗) = (60, 20), lock-in via the fluid mode occurs for 7.3 6 U∗ < 9.3.

In this regime, the energy ratio of FM is larger than the threshold value while the
elastic mode is stable. Figure 16 shows the time evolution of the cylinder response,
Strouhal number and energy of the structure for DTI initiated with the steady flow
superimposed with FM for U∗ = 5.5 and 8.0. In both cases, the time variation of
Es, in the linear regime, is consistent with the response predicted by LSA. Lock-in
is observed at U∗ = 8.0 and is accompanied with large amplitude vibration of the
cylinder. No lock-in is obtained for U∗ = 5.5.

8.3.2. Lock-in via elastic mode
For (Re,m∗)= (60, 20), both the elastic and the fluid mode are unstable for 5.8<

U∗ < 7.3. In this regime Er of the elastic mode is above the threshold energy for
lock-in (figure 17a). The fluid mode, though unstable, has energy ratio lower than Ert.
Hence, lock-in over this regime results from the instability of EM. To elucidate this,
we carry out computations for U∗ = 6.0 with two initial conditions. In the first case,
the simulation is initiated with the elastic mode superimposed on the steady solution.
The value of s (8.2) used for this case is 10.0. Figure 18 shows the time evolution of
Y/D and Es. It is observed that the amplitude of cylinder oscillation increases with
time up to t = Tnl with a rate that matches the growth rate of EM. Concomitantly,
the structural energy grows with twice the growth rate of EM over this time interval.
Beyond t = Tnl, the response of the fluid–structure system approaches a limit cycle
where the cylinder exhibits relatively large amplitude of oscillation with frequency
that is close to the natural frequency of the oscillator in vacuum. The fluid–structure
system is in a state of lock-in in the limit cycle. Simulations with lower value of s
(for example, s= 1) lead to an interesting evolution. The numerical inaccuracies in the
eigenmodes act as noise and excite other modes, including FM. Since FM has a higher
growth rate than EM, for this case, the FM grows very rapidly compared to EM.
Therefore, in the linear regime for s = 1.0, the growth of amplitude of the cylinder
exhibits the growth rate of EM at low t followed by a growth rate corresponding to
that of FM up to the end of the linear regime. On the other hand, with s= 10.0, even
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FIGURE 18. (Colour online) Flow past a freely vibrating cylinder for (Re, m∗, U∗) =
(60, 20, 6.0) initiated with EM: time evolution of (a) cylinder displacement, Strouhal
number based on frequency of cylinder oscillation and (b) structural energy. The time
instant beyond which the nonlinear terms become significant is marked in dash-dotted
lines. The line with slope two times the growth rate of the elastic mode is shown in
green colour.
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FIGURE 19. (Colour online) Flow past a freely vibrating cylinder for (Re, m∗, U∗) =
(60, 20, 6.0) initiated with FM: time evolution of (a) cylinder displacement, Strouhal
number based on frequency of cylinder oscillation and (b) structural energy. The time
instant beyond which the nonlinear terms become significant is marked in dash-dotted
lines. The different flow regions are demarcated by broken lines. The line with slope two
times the growth rate of the elastic mode is shown in green colour. Also shown in inset
is the evolution of structural energy in the linear regime. The line with slope two times
the growth rate of the fluid mode is shown in blue colour.

though the FM grows faster than the EM, the growth is dominated by EM owing to
its significantly larger initial strength.

In the second case, the computations are initiated with the fluid mode superimposed
on the steady solution. Figure 19 shows the time history of Y/D and Es for this
case. It is observed that the initial growth of the amplitude of cylinder oscillation is
governed by the fluid mode. This is shown as region I in the figure (also shown in
the inset). In this region, the contribution of nonlinear terms based on the analysis,
described earlier, is negligible. In region II, the oscillations achieve a state where the
amplitude and the structural energy are nearly constant. It is further observed that Y/D
and Es in region II are comparable to that observed for U∗=5.5 in the fully developed
state; the latter corresponds to a lock-in state. Beyond region II, the response of the
cylinder exhibit beats. The frequency spectrum of Y/D show two prominent peaks:
one at 0.136 and the other at 0.157. The former is equal to the frequency of oscillation
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FIGURE 20. (Colour online) Flow past a freely vibrating cylinder: different response
regimes and the eigenmodes responsible for them for (a) (Re, m∗) = (40, 10) and
(b) (Re,m∗)= (60, 20). The lock-in regime from DTI, in the presence of nonlinear effects,
is shaded in the figure.

in region II, while the latter matches the frequency of the elastic mode for U∗ = 6.0.
It is noted that the structural energy, in region III, grows almost linearly with twice
the growth rate of the elastic mode. The linear growth becomes more clear in region
IV. Further the frequency spectrum in region IV is dominated by the elastic mode.
These observations suggest that the dynamics of the fluid–structure system in regions
III and IV is governed by the elastic mode. The transition of the system from region
II to region IV may be attributed to transfer of the energy from FM to EM due
to nonlinear effects which become significant beyond Tnl. We recall that the energy
transfer per cycle of cylinder oscillation (Ec) for EM is quite large (figure 14). As
a result, the structural energy of the system increases significantly in region IV. At
the end of region IV the oscillation amplitude and structural energy are similar to
the values observed at the end of the linear regime for computations started with the
elastic mode. Finally, in region V , the oscillations achieve a limit cycle with amplitude
Y/D∼ 0.5. In summary, the computations initiated with the FM drive the system to an
intermediate state corresponding to no lock-in. The system then transitions to a state
of lock-in via the elastic mode.

9. Conclusions
The phenomenon of synchronization/lock-in in transverse-only free vibrations of

a circular cylinder is investigated in the laminar flow regime. DTI and LSA, of
the equations governing the dynamics of the coupled aeroelastic system, is carried
out. Lock-in is identified from the results of DTI using the metrics that have been
proposed and utilized in earlier studies. It is characterized by relatively high amplitude
of cylinder response and the matching of the frequencies of the periodic wake vortex
mode and cylinder oscillation (Khalak & Williamson 1999) when it has achieved a
limit cycle. Figure 20 shows an example each of the lock-in regime for the sub and
supercritical Re.

A stabilized finite element method for carrying out LSA of an aeroelastic system
has been presented. The linear instability of the aeroelastic system implies that in
the absence of nonlinear effects, the system achieves very large amplitude oscillations.
The nonlinear terms in the equations governing the flow of fluid, become significant
when the disturbance field grows beyond a certain limit. They tend to saturate the
growth of the disturbance field and drive the system to a limit cycle. The oscillation
amplitude of the cylinder, in the limit cycle, is quite large over a certain range of U∗.
During synchronization, the frequency of the system evolves from FLSA to close to FN .
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Outside the lock-in regime, however, the frequency evolves to a value that is close to
the vortex shedding frequency for the flow past a stationary cylinder. The reason as
to why this happens is not clear from this study. We speculate that this might be an
outcome of the fluid–structure system attempting to find a state where the fluid faces
least resistance from the structure and achieves this by minimization of the added mass
during the limit cycle in free vibrations.

A method, based on the order-of-magnitude analysis of the governing equations, to
estimate the time beyond which nonlinear terms become significant has been presented.
It is observed, via computations initiated with an unstable eigenmode, that the increase
in the amplitude of cylinder oscillation occurs mainly in the linear regime. Further, not
all unstable eigenmodes lead to lock-in in the limit cycle. We define energy ratio as
the fraction of the total energy of the eigenmode that is contained in the structure
as kinetic and potential energy. Only those unstable eigenmodes for which the energy
ratio is above a certain threshold value result in lock-in in the saturated state. This
behaviour is found to be independent of the value of the growth rate of the unstable
eigenmode. For subcritical Re, the regime of U∗ for which lock-in occurs, coincides
with the region of linear instability of the fluid–structure system. In this case, only one
mode is linearly unstable and that too for a finite range of U∗. For supercritical Re,
the aeroelastic system in unstable for all U∗. However, lock-in occurs over a finite
range of U∗. Lock-in, in this case, is caused by different eigenmodes for different
regimes of U∗. This is shown in figure 20. In the flow regime where multiple modes
are unstable, the energy transfer from the fluid to the structure corresponding to the
eigenmode is found to have significant effect on the time evolution of the response.

Compared to the stationary cylinder, the transversely oscillating cylinder is
associated with two additional eigenmodes. A new approach to classification of
modes is presented wherein Re and m∗ are fixed and LSA is carried out over a
wide range of U∗. The present classification makes it relatively easier to compare the
characteristics of fluid–structure system in the lock-in regime. It is observed that for
certain combinations of Re and m∗, the eigenmodes corresponding to the two leading
eigenvalues are distinct and maintain the distinction for all U∗. The two modes, in
this situation, are referred to as the fluid mode, FM and the elastic mode, EM. The
frequency of the fluid mode remains close to that of the stationary wake mode for
all reduced velocities. The frequency of the elastic mode, on the other hand, varies
inversely with U∗. However, for certain combinations of Re and m∗, it may not be
possible to classify the two modes as either FM or EM. In this situation we refer
to the two modes as coupled modes. The evolution of modes is better understood
on λr–U∗LSA plane. On this plane, in the case of decoupled modes, the fluid mode
appears like a ring, separate from the elastic mode. In the case of coupled modes,
the two modes appear to be parts of a single curve. In general, coupled modes are
observed for low m∗ and decoupled modes for relatively large m∗. We define critical
mass ratio, m∗c , as the largest mass ratio for which the modes are coupled. m∗c is
found to be very large for Reo, the critical Re for the onset of vortex shedding past
a stationary cylinder. It decreases as Re deviates further from Reo.

The phase angle related to the eigenmodes has been defined. The phase angle of
the eigenmode is found to be related to the energy transfer per oscillation cycle of
the cylinder oscillation. Unlike in the nonlinear regime where a jump in phase with
U∗ is observed, the Φ for the eigenmodes for LSA varies smoothly with U∗. It is
observed in most cases that in the limit cycle the nonlinear processes drive the phase
angle to near zero value if the phase angle is less than 90◦, and to 180◦ if the phase
angle is greater than 90◦. The phenomenon of phase jump in the limit cycle response
is observed when the phase angle of an unstable eigenmode crosses 90◦.
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Mode M1 M2
λr FLSA λr FLSA

FM 0.0412 0.1213 0.0410 0.1213
EM 0.0134 0.1331 0.0132 0.1331

TABLE 1. (Re, m∗, U∗) = (60, 20, 7.0) LSA of a fluid–structure system: effect of mesh
resolution on the rightmost eigenvalue of different modes. Meshes M1 and M2 consist of
12 814 and 15 004 nodes, respectively.
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Appendix A. Convergence studies
The computations in this study have been carried out over a wide range of

parameter space (20 6 Re 6 100, 1.0 6 m∗ 6 300, 2.0 6 U∗ 6 15.0). Prasanth & Mittal
(2008) carried out a detailed domain and mesh convergence study for numerical
simulations at 60 6 Re 6 100. They reported that a computational domain with
blockage less than 2 % can successfully simulate an unbounded flow. In the present
study, we have used a computational domain that has a blockage of 1 %. The spatial
resolution of the mesh used for carrying out direct time integration is higher than
the one used by Prasanth & Mittal (2008). It consists of 12 814 nodes and 12 540
elements. The same mesh is used for carrying out linear stability analysis. We name
this mesh M1. To establish the adequacy of mesh M1 for LSA, its performance is
compared to a mesh with higher spatial resolution. The finer mesh is denoted by M2.
The number of nodes and elements in mesh M2 are 15 004 and 14 710, respectively.
The computational domain as well as the structure of the mesh is same in the two
cases. The difference is mostly in the grid points close to the cylinder. Table 1 shows
the effect of spatial resolution on the growth rate and frequency of the eigenmodes
computed at U∗= 7.0 for (Re,m∗)= (60, 20). The value of U∗ is close to the one for
which maximum growth rate is obtained for EM. Results from the two meshes are in
very good agreement. The maximum difference of 0.5 % is noted in the growth rate
of EM. In view of the difference being small enough, mesh M1 is employed for all
computations in the present work.

Appendix B. Derivation of Tnl

We present a method to obtain an a priori estimate of the time beyond which the
nonlinear terms are expected to become significant. Let U represent the base flow
velocity and L denote a suitable length scale. Then the convection term in the base
flow is of the order |U · ∇U| ∼ O(U∞2/L); where U∞ is the free-stream speed. For
the flow regime considered in the present work, this is also the magnitude of the
largest term in the flow equations. We assume that the nonlinear terms involving the
disturbance field become relatively significant when their magnitude exceeds 10 % size
of the other terms, i.e. O(|u′ · ∇u′|)∼ 0.1O(|U · ∇U|). This implies that the nonlinear
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terms gain significance when O(|u′|) ∼ 0.33U∞. We consider the situation when the
computations are initiated with the steady base flow superimposed with a disturbance
field corresponding to the eigenmode from LSA. Therefore, in the linear regime the
disturbance evolves as u′ = ûeλt. The estimate of the size of the disturbance at any
time is given as: O(|u′|) ∼ O(|û|)eλr t. The nonlinear terms are expected to become
locally important as soon as û becomes large enough at that local location. This will
occur at the spatial location where |û| is the largest. We, therefore, locate the maxima
of |û|, and represent it as |ûmax|. Let Tnl be the time at which the nonlinear terms gain
significance. At that time instant, O(|u′|) ∼ |ûmax|eλrTnl and the disturbance becomes
large locally as ∼0.33U∞. Therefore, the estimate of Tnl is

Tnl ∼
(

ln
0.33|U∞|
|ûmax|

)/
λr. (B 1)

Appendix C. Amplitude and frequency equations
The time evolution of cylinder displacement and lift coefficient corresponding to an

eigenmode (û, p̂, ˆ̇Y, Ŷ) is given as:

Y(t)= (Ŷeλt + c.c.)
2

, (C 1)

CL(t)= (ĈLeλt + c.c.)
2

. (C 2)

Here, ĈL is the lift coefficient calculated by integrating the stress corresponding to
the eigenmode around the boundary of the cylinder. In general, Ŷ and ĈL are complex
and c.c. represents the complex conjugate. Let |Ŷ| and |ĈL| represent the magnitude
of Ŷ and ĈL, respectively. Further, let θ and θ + φ denote the argument of Ŷ and ĈL,
respectively, where φ is the phase angle between the cylinder displacement and lift
coefficient. We recall that λ= λr + iλi. Equations (C 1) and (C 2) can be rewritten as

Y(t)= |Ŷ|eλr t cos(λit+ θ), (C 3)

CL(t)= |ĈL|eλr t cos(λit+ θ + φ). (C 4)

Substituting (C 3) and (C 4) in the equations describing the motion of the cylinder
(2.3) and (2.4), and assuming the structural damping coefficient to be zero, we obtain:

|Ŷ|eλr t[(λr
2 − λi

2) cos(λit+ θ)− 2λrλi sin(λit+ θ)] + (2πFN)
2|Ŷ|eλr t cos(λit+ θ)

= |ĈL|eλr t

πm∗
[cos(λit+ θ) cos φ − sin(λit+ θ) sin φ]. (C 5)

Since (C 5) holds for all time, we collect the terms involving cos(λit + θ) and
sin(λit+ θ) and equate them to zero. This leads to

sin φ = 2λiλr|Ŷ|πm∗

|ĈL|
, (C 6)

λi
2 = (2πFN)

2α, (C 7)
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where, α = [(λr
2 − (|ĈL|cos φ)/(|Ŷ|πm∗))/(2πFN

2)] − 1. We refer (C 6) and (C 7)
as the amplitude and frequency equation following the nomenclature proposed by
Khalak & Williamson (1999). While (C 6) defines the phase between the cylinder
displacement and the lift acting on it, (C 7) relates the frequency of the response of the
fluid–structure system to its natural frequency in the vacuum.

Using (C 6), the energy transfer per cycle of cylinder oscillation for an eigenmode,
Ec, that is given by (6.14), can also be written as

Ec = 2π2|Ŷ|2m∗λrλi. (C 8)
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