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Numerical simulation based on the discrete element method (DEM) is used to investigate
the flow field generated when a cylindrical obstacle is placed in a supersonic granular
stream. Robust validation of the simulation model is performed by comparing numerical
results with experiments. Experiments are performed using a two-dimensional set-up
generating rapid granular flow owing to gravity. DEM simulations demonstrate that a
rapid gas-like stream of grains suddenly decelerates across the shock wave and finally
collapses into a slow-moving heap at the cylinder. The volume fraction suddenly increases
across the shock layer and remains constant thereafter. The flow physics of the shock
wave and the granular heap is elucidated through fundamental fluid dynamic quantities
such as the velocity, volume fraction, pressure and granular temperature. It is shown that
the interaction of grains with a cylindrical obstacle results in the generation of pressure,
which is responsible for sustaining static granular heaps on the cylinder. The total pressure
is resolved into collisional and streaming components. A streaming pressure is generated
owing to velocity fluctuations, and is found to be significant only in the shock wave region.
The observations show that the rheological complexity offered by granular shock waves
is a direct manifestation of the dissipative and frictional nature of granular collisions. The
new insight into the granular heaps could be relevant to a variety of applications involving
granular-fluid–solid interactions.

Key words: granular media

1. Introduction

Granular flows are known to exhibit a wide variety of features that are often challenging to
study and predict. Much of the difficulties arise from inter-particle friction and inelasticity
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during collisions. At the particle level, each grain is a macroscopic solid, but a large
agglomeration of these particles can easily exhibit solid-, liquid- and gas-like states
(Jaeger, Nagel & Behringer 1996; Goldhirsch 2003; Andreotti, Forterre & Pouliquen
2013a). A large number of granular flows involve interaction with obstacles such as in
mixers, grinders, conveyors, landslides, avalanches, etc. (Wassgren et al. 2003; Delannay
et al. 2017). Protective structures erected against landslides and avalanches is just one
example where a good understanding of the dynamics of granular flows around obstacles
is needed (Faug et al. 2015). Interaction of granular flows with solid obstacles results
in the formation of shock waves across which there exist large gradients of velocity and
volume fraction (Amarouchene, Boudet & Kellay 2001; Rericha et al. 2001). Analogous
to gas-dynamic shocks (Anderson 2004), shock waves in granular flows can be attached or
detached depending on the shape of the obstacle (Gray, Tai & Noelle 2003; Hákonardóttir
& Hogg 2005; Cui, Gray & Johannesson 2007; Gray & Cui 2007; Khan et al. 2019,
2022).

Shock waves form at supersonic speeds, which essentially means that the relative
velocity of the obstacle with the fluid exceeds the velocity at which finite perturbations
can travel. In the case of molecular fluids, disturbances travel via molecular vibrations and
the interaction of conservative force fields associated with the molecules because of which
the propagation is efficient and fast. Disturbances in granular medium, however, propagate
through direct collisions between macroscopic grains, which is relatively a less efficient
mechanism. Therefore, sonic velocity in granular flows is much smaller than molecular
fluids, such as air. Earlier studies have predicted sonic speed in granular flows to be less
than 1 m s−1, and therefore shock waves in granular flows are easily formed at speeds that
are commonly encountered in day-to-day applications (Savage 1988; Rericha et al. 2001;
Heil et al. 2004; Amarouchene & Kellay 2006; Khan et al. 2020).

A typical detached granular shock wave, as demonstrated by Amarouchene et al. (2001),
is parabolic in shape and consists of an inner static zone surrounded by an envelope
of moving grains such that the velocity increases nonlinearly in the radial direction.
Using particle velocities obtained from experiments, Boudet, Amarouchene & Kellay
(2008) demonstrated that the transition from high velocity in the free stream to very low
velocity in the heap (downstream of the shock) occurs via multiple granular collisions
within the shock wave region. In more recent investigations, it was demonstrated that the
particles around the shock wave have two prominent sub-populations; one corresponding
to the particles upstream of the shock front having supersonic velocities and the other
corresponding to the subsonic particles in the downstream (Boudet et al. 2008; Vilquin,
Boudet & Kellay 2016; Vilquin, Kellay & Boudet 2018; Khan et al. 2022). They extended
the bimodal distribution proposed by (Mott & Harold 1951) and later investigated by other
researchers experimentally (Holtz & Muntz 1983; Pham-Van-Diep, Erwin & Muntz 1989;
Mazouffre et al. 2001) and numerically (Bird 1970, 1978) for molecular gases to account
for dissipative effects in granular shock waves. Both continuum and molecular-based
approaches can be used to model granular shock waves. A continuum-based approach
is particularly suited for large-scale applications such as landslides and avalanches but
cannot predict the inner structure of the non-equilibrium shock wave (Gray et al. 2003;
Cui & Gray 2013). The discrete element method (DEM), however, can expose the inner
structure of the shock wave at the microscopic level but is restricted to small domains
owing to the computational cost (Padgett, Mazzoleni & Faw 2015). Rericha et al. (2001)
successfully used continuum and kinetic theory simulations to capture the bulk properties
of shock waves around a wedge. Results from both the techniques compared well with the
experiments.
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Shock waves in granular flows remain a challenging subject owing to the limited
measurement techniques and difficulties in theoretical modelling. Although earlier
investigations have successfully revealed many of the interesting features of the shock
waves in granular medium (Amarouchene et al. 2001; Padgett et al. 2015; Vilquin et al.
2016; Karim & Corwin 2017; Garai, Verma & Kumar 2019), there persists a dearth of
understanding on some of the very fundamental aspects. The objective of the present work
is to probe deeper into the fluid-dynamic aspects of the dynamic zone comprising the shock
wave and the dense heap close to the cylinder. While the shock wave is a gas-like zone with
strong agitations in particle motion, the grains within the heap are slow-moving owing to
granular collapse. The dynamics result in substantial shear and pressure variations within
the system that are not given due considerations in the earlier works on the subject. The
present work elucidates salient features of shock waves that are formed when a granular
stream passes around a circular cylinder using the open-source DEM solver – LAMMPS
Improved for General Granular and Granular Heat Transfer Simulations (LIGGGHTS)
(Kloss et al. 2012). The simulation model is validated by experimental results performed
in a rectangular channel confined by two parallel glass plates. A comprehensive analysis
is then carried out for a more generic case where a vertically falling granular stream
interacts with a stationary solid cylinder, with no influence from the side walls. The
complicated fluid-dynamic aspects of the shock wave and the dynamic heap near the
cylindrical obstacle are elucidated and are discussed in detail. The origin and the role
of the streaming pressure and the shear stress give important insight into the dynamic
nature of granular shocks. It is interesting to see how a gas-like stream of particles could
transform into a fluid- and then into a solid-like state in such a simple flow situation.

The remainder of the article is structured in the following manner. First, the numerical
method is explained in brief in § 2. Then a detailed discussion on the validation is
presented where the experimental set-up and preliminary results are compared with the
results from DEM simulations in § 3. This is followed by the results and discussion in § 4,
where a detailed discussion on the flow field is performed purely on the basis of numerical
simulations. Finally, concluding remarks are presented in § 6.

2. Numerical method

In the present simulations, grains are modelled as soft spheres, where inter-particle forces
during granular collisions can be modelled using various contact theories. Here, the
Hertz-contact theory is used to model elastoplastic behaviour of the forces using springs
and dashpots in the normal and the tangential directions (Hertz 1896; Johnson 1987; Kloss
et al. 2012; Andreotti, Forterre & Pouliquen 2013b). The normal force, Fn, is formulated
using (2.1) and the tangential force, Ft, using (2.2) (Di Renzo & Di Maio 2004; Kloss et al.
2012). Note that these forces are nonlinear because the coefficients vary with the normal
displacement according to the Hertz contact theory (Hertz 1896; Kloss et al. 2012). The
forces act only when the distance r between the centres of two particles of radii Ri and Rj
is less than their contact distance d′ = Ri + Rj,

Fn = Kn δn − γn vn
rel, (2.1)

Ft = min
(∣∣∣Ktδt − γt vt

rel
∣∣∣ , μf |Fn|

)
. (2.2)

Here, δn = d′ − r is the normal overlap, vrel
n is the relative velocity between two particles,

δt is the tangential displacement, which is measured as the relative tangential movement
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at the surface from the time of contact, and vt
rel is the tangential displacement velocity

(Di Renzo & Di Maio 2004; Ai et al. 2011). The normal force has two terms, an
elastic-repulsive force with a spring coefficient (Kn) and a damping force with a damping
coefficient (γn). The tangential force also has two components: a varying shear force with a
spring coefficient (Kt) and a damping force with a damping coefficient (γt). The tangential
displacement gives rise to the shear force between the particles for the duration of the
time they are in contact. Here, μf is the coefficient of Coulomb friction, while subscripts
n and t denote the normal and tangential components, respectively. The asterisk (∗)
denotes equivalent quantities derived in the case of contact between two different spherical
particles (Johnson 1987). The parameters Kn, Kt, γn and γt are calculated from Young’s
modulus (Y∗), shear modulus (G∗), Poisson’s ratio (ν) and the coefficient of restitution
(COR) (Kloss et al. 2012). The maximum tangential force is limited to μf |Fn|, where μf
is the coefficient of friction (COF) to satisfy the Coulomb friction criterion, as shown in
(2.2). Note that the particles studied here are assumed to be perfectly spherical without
any rolling resistance. The numerical integrations are carried out using the velocity Verlet
scheme of Kruggel-Emden et al. (2008).

3. Experimental set-up and validation

A new set of experiments are performed in a very controlled environment for the purpose
of validating the numerical model. The experimental set-up used to generate a dilute
granular stream is shown in figure 1. It consists of an inclined chute made of a smooth
glass panel that is 300 mm wide and 900 mm long. The cylindrical disk of diameter
39.8 mm and thickness of 4.7 mm is placed at a distance of 500 mm from the top that
acts as an obstruction to the incoming flow. Another glass panel is placed on the top
(and parallel to the bottom panel of the chute) such that it touches the top surface of the
cylindrical obstacle, and thus maintains a constant channel spacing of 4.7 mm throughout.
The granular material used for the experiments is glass beads with a nominal diameter of
1.9 mm and specific gravity γ = 1.6. The hopper at the top is used for feeding grains such
that its opening matches perfectly with the channel inlet. The velocity of the incoming
stream is changed by adjusting the inclination of the channel, α. Once the hopper gate
is removed, grains slide down the inclined channel such that they are mostly in contact
with the bottom surface. A light-emitting diode (LED)-based monochrome light panel
illuminates the chute from the bottom. This additional illumination is needed because
images are acquired with an exposure of the order of nanoseconds. Monochrome images
of the flow field are acquired with an i-Speed 713R high-speed camera at a frame rate of
4000 frames per second with a resolution of 2048 × 1536.

The numerical simulations for validating the flow field are carried out by simulating
the glass channel section of the experimental set-up. An insertion surface is placed 10 cm
upstream of the cylinder from which particles are inserted at a velocity and mass flow
rate matching the experimental values. Table 1 summarises the parameters used in the
simulations. A lower Young’s modulus than the actual value of the material helps in
using a larger time step for the simulation without much sacrifice on the accuracy (Yan
et al. 2015). The Poisson’s ratio was assumed to be 0.45. A first guess for the values of
coefficient of friction and the coefficient of restitution for glass beads is obtained from the
literature (Tang et al. 2019). Fine-tuning of these parameters was then done by running
several simulations around the base value. An excellent match between experimental and
numerical results is obtained and the final values based on these simulations were then
fixed, as shown in table 1.
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Figure 1. Experimental set-up. The inset shows the coordinate system and the flow direction with respect to
the obstacle.

Property Value

Time step 10−5 s
Young’s modulus 5 × 106 N m−2

Particle density 1600 kg m−3

Particle diameter 1900 µm
Poisson’s ratio 0.45
Diameter of cylinder 40 mm
COF 0.21
COR 0.86

Table 1. Parameters used for validation simulations.

Validation is based on the comparison of the velocity field around the cylinder obtained
from experimental and numerical simulations. A snapshot of the flow field is shown in
figure 2(a) from experiments and figure 2(b) from simulations for the channel inclination
of 70◦. The mass flow rate of the oncoming stream is 0.4 kg per unit channel width per
second, and the velocity just ahead of the shock front is 2.1 m s−1. A sudden clustering
of grains near the cylinder nose, wake and the grain-free vacuum region bears a good
resemblance in the two cases.

Velocity from the experimental data is obtained by performing particle image
velocimetry (PIV) on a set of 100 instantaneous images acquired through a high-speed
camera. An averaged flow field is obtained by averaging the velocity data from all the
instantaneous frames. Figure 2(c) compares the velocity across the shock wave just ahead
of the cylinder nose (along the dashed line shown in figure 2(d) for reference) for channel
inclination, α = 40◦ and 70◦ (a zero value of z corresponds to the cylinder surface facing
the free stream). A sharp decrease is observed initially inside the shock wave, which is
followed by a more gradual decrease downstream of the shock up to the cylinder surface.
A sharp decrease in velocity is a typical character of a shock wave. The minimum velocity

936 A11-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

62
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.62


A.K. Mathews, A. Khan, B. Sharma, S. Kumar and R. Kumar

z (m)

V
el

o
ci

ty
  
(m

 s
–
1
)

–0.03 –0.02 –0.01 0
0

0.5

1.0

1.5

2.0

2.5

3.0

p
.d

.f
.

–0.5 0 0.5 1.0 1.5
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

–0.5 0 0.5 1.0 1.5

Computational, α = 70º

Experimental, α = 70º

Experimental, α = 40°

Computational, α = 40°

Experimental, α = 70°

Computational, α = 70°

(e)

(b)(a)

(c)

( f )

(d)

v/V∞ v/V∞

Figure 2. Snapshot of the flow field: (a) from experiments and (b) from DEM simulations. (c) Velocity across
the shock wave along the dashed line shown in panel (d). (e, f ) Probability distribution function of velocity
for a small window around the cylinder shown in panel (d). Mass flow rate and free stream velocity are m =
0.55 kg s−1 and V∞ = 1.92 m s−1 for α = 40◦ (e), and m = 0.4 kg s−1 and V∞ = 2.51 m s−1 for α = 70◦ ( f ).

near the cylinder surface approaches an almost zero value. A good match in the overall
velocity profile from the cylinder surface to the free stream is observed for both the channel
inclinations.
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Figure 3(a) compares the velocity (Vz) distribution of particles within a small square
region of size approximately equal to 1.3 times the cylinder diameter, as illustrated by
the rectangular box in figure 2(d). A reasonably good match in the velocity distribution
indicates the robustness and accuracy of the numerical model in resolving the flow
structure at the molecular (or granular) level. This is particularly important because one
of the important objectives of the present study is to elucidate the physics of the structure
of the shock wave and the dense flow between the shock wave and the cylinder wall. The
probability distribution function represents a typical bi-modal structure that was earlier
observed for gas-dynamic shocks (Mott & Harold 1951; Pham-Van-Diep et al. 1989) and
granular shocks (Vilquin et al. 2016, 2018). The velocity on the x−axis is normalized by
the free stream value, so that the peak at V/V∞ = 1 represents the undisturbed supersonic
flow. Another peak at V/V∞ = 0 corresponds to densely clustered grains around the
cylinder surface. The spread in the central region of the distribution corresponds to the
particles within the shock wave, or in other words, those particles from the free stream
that have just entered into the shock wave region and are undergoing collisions. A detailed
discussion on these features is given in the work of Vilquin et al. (2018) and the references
therein. A small portion of particles have negative velocity indicating particle motion
towards the upstream direction; this is owing to the particles getting reflected from the
cylinder surface and or from the dense heap. This also explains our reason for choosing a
particular window for making probability distribution functions (p.d.f.s). While the choice
of window size and location is arbitrary, it should actually give a good representation
of the flow field around the shock wave. For example, if the window is too large in the
upstream direction, it will result in overpopulation of free stream particles, and therefore,
the distribution of the particles in the shock wave and the inner heap will not be well
resolved. Further, a choice of taking grains with a diameter of 1.9 mm is made so that the
size of the grain and the channel is comparable. This is because the PIV algorithm assumes
the flow field to be two-dimensional. Therefore, if the grain size is too small, there will be
many layers of particles inside the heap, which will remain hidden in the still images. In
such a case, the p.d.f.s will not give an accurate representation of the dense region of the
shock and the heap.

The final domain used for the main case study, as discussed in the next section, is
different from that used in the validation study. This is because the authors wanted to
perform a detailed analysis for a very fundamental and generic case – flow past a circular
cylinder (without any complication of sidewalls). However, setting up such a flow in reality
is difficult. So, we performed experiments using a closed channel where experiments and
diagnostics are relatively easy. Therefore, in § 4, details of the simulation domain are first
given before explaining the results.

4. Results and discussion

Once the simulation model is validated, a relatively simple domain (shown in figure 3)
is used for detailed analysis. Spherical grains with a diameter d = 800 µm and density
of 2500 kg m−3 are released continuously from an insertion surface into the channel. The
periodic boundary condition is used in the x- and y-directions, whereas grains leaving the
z-direction are deleted. For post-processing, an in-house code is used, where the properties
are averaged over bins of 1 × 1 mm2 area in the x–z plane. The values of Young’s modulus
and Poisson’s ratio used in the simulations are 5 × 106 N m−2 and 0.45, respectively. The
values of the cylinder diameter (D), coefficient of restitution and the coefficient of friction
are 40 mm, 0.4 and 0.5, respectively, unless stated otherwise.
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Figure 3. Simulation domain.

Particles are inserted at an x–y plane placed 0.045 m upstream of the cylinder, as shown
in figure 3. The number of particles inserted is estimated in accordance with the predefined
mass flow rate. Particles are allowed to fall freely around the cylindrical obstacle resulting
in a detached bow shock.

Figure 4(a) shows a sudden change in the volume fraction around the bow shock and a
wake in the shadow of the obstacle completely devoid of grains. The volume fraction (φ)
increases from a value of 0.2–0.5 immediately across the shock front but varies slightly
thereafter in the dense regime downstream of the shock. A volume fraction of 0.55–0.62
is established close to the cylinder surface, which is close to the random close-packing
fraction of spherical particles. A maximum value of φ = 0.62 is achieved near the cylinder
surface. The flow expands as the grains move downstream of the compression heap,
resulting in a gradual decrease in the volume fraction in the wake. The expansion and
compression effects are quantified by calculating the divergence of velocity around the
cylinder (figure 4b). High magnitudes of divergence near the shock wave points to the
compressible nature of the shock wave, whereas, inner shear layer in the wake exhibits high
magnitude owing to the expansion effects. The phenomenon is analogous to expansion
waves that are observed at the trailing regions of obstacles in gas dynamics (Rericha et al.
2001; Anderson 2004).

Velocity contours in figure 4(c) reveal a sharp jump across the shock front and a
relatively gradual change from the shock to the cylinder surface. After multiple collisions
within the shock region, grains lose energy owing to friction and inelasticity that eventually
leads to granular collapse near the cylinder walls. The resulting flow structure resembles a
dynamic heap with a solid-like dense inner zone surrounded by an envelope of energetic
granular fluid. These flow features resemble those reported earlier by Amarouchene et al.
(2001) and Buchholtz & Pöschel (1998). The presence of a dynamic heap is typical to
granular shocks with no such correspondence to the molecular-based fluid.
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Figure 4. Contours of steady-state flow quantities obtained from DEM simulations for free stream velocity =
1 m s−1 and volume fraction, φ∞ = 0.22: (a) volume fraction, φ; (b) divergence of velocity, ∇ · V ∗; (c) speed,
V (m s−1); (d) granular temperature, T∗; (e) streaming pressure, P∗

s , and ( f ) total pressure, P∗
t . Here, X∗ = X/d,

Z∗ = Z/d, T∗ = T/
√

gd and ∇ · V ∗ = ∇ · V/(V∞d−1). Note: the value of V and ∇ · V ∗ is undefined for the
grain-free region in the lee side of the cylinder, and therefore, it is artificially set to zero during post-processing
for simplicity.

The granular temperature, T , which is defined as one-third of the variance of the velocity
field, is an important ingredient in the application of gas kinetic theory for granular flows.
The speed of sound, Cs, is calculated using the following relation (Savage 1988; Vilquin
et al. 2018):

Cs =
√

Tβ

(
1 + 1

3
β + φ

β

dβ

dφ

)
, (4.1)

β = 1 + 2(1 + e)φ(
1 −

(
φ

φmax

)((4/3)φmax)
) , (4.2)

where e is the coefficient of restitution and φmax = 0.65 is the maximum random close
packing fraction. The Mach number, M, is defined as the ratio of the average particle
velocity to the local speed of sound. The sonic speed and the Mach number across the
shock wave are shown in figure 5. Here, Cs is small near the surface of the cylinder owing
to the absence of granular motion in the dense heap. The value increases rapidly near the
shock wave region owing to high fluctuations in the flow velocity. Upstream of the shock
wave, the value of Cs again reduces to zero owing to the absence of fluctuation in the free
stream velocity. Following the sonic velocity, the Mach number increases from zero in
the static heap region to high values away from the cylinder. The free stream value of M

936 A11-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

62
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.62


A.K. Mathews, A. Khan, B. Sharma, S. Kumar and R. Kumar

(Z-R)/δ
0 0.2 0.4 0.6 0.8 1.0 1.2

(Z-R)/δ
0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

3

M

0

1

2

3

φ = 0.22, V = 1.05 m s–1, δ = 0.038 
φ = 0.11, V = 2.14 m s–1, δ = 0.012

φ = 0.08, V = 3.11 m s–1, δ = 0.009

0.04

0.02

0
0–0.02 0.02

Z

X

(a) (b)
C
s 

(m
 s

–
1
)

Figure 5. Quantities calculated from the gas granular theory. Here, R is the radius of the cylinder and δ is the
heap height (see figure 4 f ). (a) Speed of sound. (b) Mach number. The contour of the sonic lines is shown in
the inset of panel (b).

approaches exceedingly high values owing to a very low granular temperature. The sonic
values obtained in the present study agree well with the estimates reported in the previous
studies (Rericha et al. 2001; Amarouchene & Kellay 2006). The sonic line that demarcates
the subsonic and the supersonic regime is shown in the inset, and as can be anticipated, it
depends on the free stream flow conditions.

Granular particles generate stresses as they interact with each other and with obstacles
(Savage & Jeffrey 1981). The total Cauchy’s stress tensor (σ ) is generally symmetric for
granular flows and is composed of the streaming stress component σs and the collisional
stress component σc (Savage & Jeffrey 1981; Savage 1988). The streaming component
originates owing to the transport of momentum of the particles as they move through the
bulk of the material, and the collisional component appears owing to the forces between
colliding particles.

For many-body interactions, the total stress tensor can be computed as

σ = σs + σc. (4.3)

The streaming stress component is given by (Campbell 1989)

σs = 1
Vb

Nb∑
i=1

m Ci ⊗ Ci, (4.4)

where Vb is the volume of the bin, Nb is the number of particles inside the bin, m is the
mass of the particle, Ci is the instantaneous velocity of the particle i and ⊗ is the dyadic
product. The collisional stress component for the monodisperse medium is given by (Kloss
et al. 2012).

σc = 1
Vb

Nb∑
i=1

Ni∑
j=1

1
2
(Fij ⊗ rij), (4.5)

where Ni is the number of neighbouring particles that are in contact with particle i, Fij is
the force exerted by particle j on i and rij = ri − rj is the relative position of the particle
i with respect to particle j. The streaming pressure (Ps) is calculated as the average of the
trace of the streaming stress tensor. The contours of normalized streaming pressure P∗

s =
Ps/(mgd−2) are shown in figure 4(e). Because the streaming pressure is generated owing
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Figure 6. Comparison of the sum of differential stresses G = ∂σxz/∂x + ∂σzz/∂z obtained directly from
stress calculations and from the momentum conservation equation.

to granular fluctuations, it highlights the regions of high interlayer mixing of momentum.
The value of streaming pressure is high near the shock front and the cylinder surface (away
from the stagnation region) where granular fluctuations are relatively high.

The total pressure (Pt) is computed as the average of the trace of the total stress tensor.
The contours of the normalized total pressure P∗

t = Pt/(mgd−2) are shown in figure 4( f ).
It can be observed that the total pressure is significantly higher than the streaming pressure,
especially in dense regions. This indicates that the collisional stresses contribute the most
to the total pressure in the dense regions.

The acquired stress values have been compared with the stress values obtained through
the conservation of momentum equations in the vertical direction (at θ = 0◦ figure 4b)
given by

ρ

(
∂Vz

∂t
+ Vx

∂Vz

∂x
+ Vz

∂Vz

∂z

)
+ ρg = ∂σxz

∂x
+ ∂σzz

∂z
. (4.6)

The right-hand side of the above equation has been calculated directly from the stress
field obtained using (4.3) and compared with the results obtained by evaluating the
left-hand side of the above equation (see figure 6). A good match, except in the shock
wave region owing to the non-equilibrium effects, is achieved. The stress calculations
made by the in-house post-processing code show good agreement with the continuum
fields obtained from theoretical equations.

5. Anatomy of granular heap

The detailed physics of the inner structure of the heap is studied through the variation of
flow properties across the heap in different radial directions normal to the surface of the
cylinder (see figure 4b for the schematic of radial lines). Radial lines r∗ = √

x2 + z2/d are
drawn at angular positions θ = 0◦, 15◦, 30◦, 45◦, 60◦ and 65◦. The dashed line at r∗ = 25
denotes the location of the cylinder wall and the right-dashed line at r∗ = 48 marks the
location of the compression front (for the θ = 0◦ case).

Reading figure 7(a) from right to left, the volume fraction undergoes a sharp rise through
the shock wave, attains a plateau and then decreases suddenly near the cylinder wall.
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Figure 7. Variation of properties with radial distance from the centre of the cylinder. The dashed lines
encompass the dense region for the θ = 0◦ case: (a) volume fraction φ; (b) normal (Vn) and tangential (Vt)
velocities; (c) granular temperature; (d) shear stress; (e) streaming pressure and ( f ) total pressure (absolute
value).
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The presence of a similar plateau region for all radial lines indicates that the volume
fraction remains nearly the same inside the heap.

The velocities transformed in the normal/radial (Vn) and the tangential (Vt) directions
are shown in figure 7(b). Normal velocity shows a piecewise linear profile with two
sections: one corresponding to the shock wave region with a higher slope and the other
to the inner heap with a smaller slope for all the radial lines. There is a sharp decrease
in the magnitude of Vn around r∗ = 48 owing to the presence of the shock wave, but
unlike the volume fraction, the velocity continues to decrease within the heap (the region
between the shock wave and the cylinder wall). It is interesting to note that there is a slight
overshoot of Vn for θ = 60◦ and 65◦ near r∗ = 25, which suggests the presence of flow
separation at the cylinder walls. The tangential velocity Vt (see figure 7b) remains zero
along the θ = 0◦ line, which is anticipated owing to the lateral symmetry of the flow field.
For other values of θ , Vt decreases slightly within the shock wave and the downstream
region, and finally drops to zero near the cylinder wall.

Figure 7(c) shows that the value of the granular temperature in the free stream is almost
zero and rises rapidly in the shock wave region owing to an increase in the fluctuations
in velocity. The energy is dissipated within the shock wave owing to the high rate of
collisions, and consequently, cooling takes place inside the heap. A slight increase in
the temperature is again observed near the wall region, prominently for high values of
θ , owing to the fluctuating components generated in the velocity as the grains slide down
the cylinder surface.

Figure 7(d) shows the variation of the normalized shear stress τ ∗
x′z′ = τx′z′/(mgd−2)

along radial lines. It remains zero along the θ = 0 line owing to the lateral symmetry of
the flow field. A sharp increase in the shear stress is observed near to the cylinder for theta
values (θ = 15◦–45◦) that is attributed to the strong shearing action provided by the grains
sliding atop the cylinder. The shearing is evident from the high gradients in the tangential
velocity, as discussed earlier (see figure 7b). Moving further along the radial direction, the
value of shear stress drops to a minimum in the central region and then again rises owing to
the shearing action of the free stream near the shock front. For higher values of θ (θ = 60◦
and 65◦), the spike in the shear stress at the surface is absent. Interestingly, the value of
shear stress near the surface becomes zero somewhere between θ = 60◦ and 65◦ locations.
At low angles, the pressure near the surface is higher (see figure 4 f ), which means that
the grains exert larger forces on each other and on to the surface. This results in more
sustained contacts, which eventually give rise to high Coulombic friction and hence high
shear stresses. However, for high values of θ , grains tend to detach from the cylinder walls
resulting in weak and short-lived inter-particle contacts. The position of zero shear stress
appears to be the location where the flow starts to expand. Analogous to fluid dynamics,
the point of zero shear stress in the present case may be crudely regarded as the point of
flow separation. As we move away from the cylinder walls, the shear stress for θ = 60◦ and
65◦ increases gradually. This gradual increase is attributed to the shearing action provided
by the direct interaction of the free stream near the shock front.

As shown in figure 7(e), the behaviour of streaming pressure correlates well with
the granular temperature (figure 7c). They both reach maxima inside the shock wave,
where the normal velocity gradient is the highest, and reduce to low values in the central
region. The maximum reached is significantly higher for lower angles. A slight increase is
observed near the surface owing to high tangential velocity gradients, as can be deduced
from figure 7(b).

Figure 7( f ) shows the variation of total pressure inside the heap and the shock wave
region. The total pressure demonstrates a piecewise linear variation with a steep rise in
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the shock wave followed by either a rise or a fall in the downstream region of the heap.
The initial rise in the pressure arises from the sudden deceleration of particles owing
to multiple collisions within a thin region of the shock wave. The second branch of the
pressure has a contribution from the deceleration as well as the weight of the particles
acting on top of each other analogous to the hydrodynamic pressure. For the θ = 0 line,
the pressure rise in the second branch is steepest because the free stream is oriented normal
to the cylinder surface that results in maximum deceleration of grains. As the value of θ

is increased (θ = 30◦ for example), the component of the velocity of the incoming grains
normal to the cylinder decreases, which results in the net increase in total pressure owing to
granular deceleration being relatively less. Additionally, for higher theta values, the grains
pick up tangential momentum, which causes them to tend to lose contact with the surface
resulting in lower stresses near the surface while exhibiting an increase in stresses towards
the shock wave. This particular state of the heap, where grains are densely packed but are in
motion, exhibits a viscoplastic behaviour. In such a scenario, the volume fraction remains
constant and the pressure distribution varies across the flow cross-section. A particularly
interesting case is observed for θ = 45◦ where the pressure in the second branch is almost
constant, thus exhibiting a linear plug-like flow profile. For high θ lines (θ = 60◦ and 65◦),
the grains leaving the shock wave region do not get compressed into a heap, rather flow
down into the wake, and thus the pressure decreases.

5.1. Heap height
Because higher pressures give rise to increased frictional forces, as per the Coulomb
friction model, the heap can sustain a large number of particles as long as the pressure
within the heap is high. The pressure from the impact of the grains near the shock front is
most likely transmitted through the network of force chains established through the contact
point of neighbouring grains (Radjai et al. 1996). Therefore, the size of the heap correlates
with the total pressure rise around the cylinder surface. In the absence of a continuous free
stream flow, the pressure at the shock front reduces to zero and the heap breaks down layer
by layer.

The heap height varies almost exponentially with the volume fraction, φ, for constant
free stream speeds, as shown in figure 8(a). A denser flow will increase the pressure
near the cylinder surface, giving rise to more frictional forces. The increase in frictional
forces aids in the formation of a larger heap. The speed of the flow has relatively less
impact on the heap height; though an increase in speed of the flow with constant volume
fraction would effectively increase the mass flow rate, the particles are more energized
within the heap and the heap formed is less stable. The inset image on the bottom right of
figure 8(a) shows the variation of heap height with different coefficient of friction values.
The higher values of COF allow the particles to transmit more frictional forces from
the surface of the cylinder, thus stabilizing the heap further; this results in an increased
heap height. The graph shows an asymptotic variation because fewer particles reach the
maximum Coulomb friction criteria as the COF value is increased. Figure 8(b) shows the
variation of the heap height with D/d for two values of φ. For dotted curves, D/d is varied
by changing the cylinder diameter D from 0.02 m to 0.16 m, whereas for solid curves,
D/d is varied by changing the grain diameter d from 0.8 mm to 1.6 mm. For higher D/d
ratios, the non-dimensionalized heap height almost remains a constant, signifying a linear
relationship between S and D. Additionally, a change in grain diameter at high D/d ratios
does not change the non-dimensionalized heap height, signifying that it does not have any
effect on the heap height.
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Figure 8. Variation of heap height with (a) volume fraction, φ, and (b) cylinder to grain diameter ratio, D/d.
The ratio D/d is varied either by changing D or d at a time, where the constant value is denoted by the arrow
in panel (b) for that particular branch of the plot.

6. Conclusions

In this work, we studied the formation of shock waves and the inner structure of dynamic
granular heaps using the discrete element method for the flow of a dry granular stream past
a circular cylinder. A two-dimensional granular stream is generated by allowing grains to
fall vertically over a cylinder. The shock wave consists of a thin non-equilibrium zone
followed by a dense region near the cylinder surface where grains are almost stationary.
The region within the shock wave is dominated by granular collisions resulting in a
sharp increase in the granular temperature and the streaming stress component. Strong
dissipation in the kinetic energy owing to granular collisions results in a sharp transit from
the supersonic to subsonic regime across the shock wave, and the formation of a granular
heap near the cylinder surface. The heap height increases nearly exponentially with volume
fraction but remains almost insensitive to the free stream flow velocity. Additionally, the
height of the heap is found to be correlated with the total pressure values, and is sustained
as long as the grains within the heap continue to receive energy from the incoming stream.
The results indicate that the formation and the stability of the heap is a consequence of
frictional and inelastic dissipation during granular collisions.
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