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Abstract. We establish a Garden of Eden theorem for expansive algebraic actions of
amenable groups with the weak specification property, i.e. for any continuous equivariant
map T from the underlying space to itself, T is pre-injective if and only if it is surjective.
In particular, this applies to all expansive principal algebraic actions of amenable groups
and expansive algebraic actions of Zd with completely positive entropy.

1. Introduction
Let a countable discrete group 0 act on a compact metrizable space X continuously and
let T be a 0-equivariant continuous map X→ X . In this paper we consider the relation
between the surjectivity of T and a weak form of injectivity of T .

In the case X = A0 for some finite set A and 0 acts on A0 by shifts, T is called a
cellular automaton [4] and can be thought of as an evolution determined by a local rule.
In this case T is not surjective exactly when there is a w ∈ AF for some finite set F ⊆ 0
such that w is not equal to the restriction of any element of T (A0) on F . Such a w is
called a Garden of Eden (GOE) pattern, meaning that it could appear only in the first
of the sequence A0, T (A0), T 2(A0), . . . . A pair of mutually erasable patterns is a pair
(w1, w2) of distinct elements of AK for some finite set K ⊆ 0 such that whenever x1

and x2 are elements of A0 coinciding on 0\K and extending w1 and w2 respectively,
one has T (x1)= T (x2). In 1963, Moore [22] showed that when 0 = Zd , if there is
a pair of mutually erasable patterns, then there is a GOE pattern. Soon afterwards
Myhill [24] proved the converse. The results of Moore and Myhill were extended to
finitely generated groups with subexponential growth by Machı̀ and Mignosi [21], and
then to all amenable groups by Ceccherini-Silberstein, Machı̀, and Scarabotti [10]. On the
other hand, Bartholdi [1, 2] showed that the results of Moore and Myhill fail for every
non-amenable group.

For general actions of 0 on a compact metrizable space X , one has the homoclinic
equivalence relation defined on X (see §2.3) and T is called pre-injective if it is injective
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on each homoclinic equivalence class [17]. For the shift action 0y A0 with finite A, the
map T is not pre-injective exactly when there is a pair of mutually erasable patterns. Thus
we say the action 0y X has the Moore property if surjectivity implies pre-injectivity
for every 0-equivariant continuous map T : X→ X , the action has the Myhill property if
pre-injectivity implies surjectivity for every such T , and the action has the Moore–Myhill
property if surjectivity is equivalent to pre-injectivity for every such T . There has been
quite some work trying to establish these properties for various actions [5–8, 14, 15, 17];
see also the book [4] and the recent survey [9].

We say an action 0y X is surjunctive if injectivity implies surjectivity for every 0-
equivariant continuous map T : X→ X . Thus the Myhill property implies surjunctivity.
Gottschalk’s surjunctivity conjecture says that the shift action 0y A0 for finite A is
surjunctive for every group 0 [16]. This was proved for sofic groups by Gromov [4, 17,
19, 29].

Specification plays a vital role in our work. It is a strong orbit tracing property
introduced by Bowen for Z-actions [3] and extended to Zd -actions by Ruelle [26]. There
are a few versions of the specification property [20, Definition 5.1] [11, Definition 6.1].
For our purpose, the weak specification property (see §2.1) suffices. Our result regarding
the Myhill property is the following.

THEOREM 1.1. Every expansive continuous action of a countable amenable group on a
compact metrizable space with the weak specification property has the Myhill property. In
particular, such actions are surjunctive.

Theorem 1.1 strengthens a few known results and is new even for the case 0 = Z.
Fiorenzi [15, Corollary 4.8] proved Theorem 1.1 under the further assumption of subshifts
of finite type. (Actually Fiorenzi stated her result for strongly irreducible subshifts
of finite type, but strongly irreducible subshifts are exactly subshifts with the weak
specification property, see Appendix A.) Ceccherini-Silberstein and Coornaert proved
Theorem 1.1 under the further assumption of subshifts [5, Theorem 1.1] and under
the further assumption of a uniformly bounded-to-one factor of a weak specification
subshift [6, Theorem 1.1].

Algebraic actions are actions of 0 on compact metrizable abelian groups by
automorphisms. The algebraic actions of Zd were studied extensively in 1990s, and the
last decade has seen much progress towards understanding the algebraic actions of non-
abelian groups; see [19, 27] and the references therein. Our result concerning the Moore
property is the following.

THEOREM 1.2. Every expansive algebraic action of a countable amenable group with
completely positive entropy with respect to the normalized Haar measure has the Moore
property.

If an algebraic action of a countable amenable group has the weak specification
property, then it has completely positive entropy with respect to the normalized Haar
measure (see Corollary 5.3). For expansive algebraic actions, the converse is also true
in the case 0 = Zd [20, Theorem 5.2], and is conjectured to hold for polycyclic-by-finite
groups [11, Conjecture 6.5, Theorem 1.2, Corollary 8.4]. The principal algebraic actions
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are the actions of the form 0y ̂Z0/Z0 f for f in the integral group ring Z0 (see §2.2). By
Lemma 2.1 every expansive principal algebraic action has the weak specification property.
Thus combining Theorems 1.1 and 1.2 we have

THEOREM 1.3. Every expansive algebraic action of a countable amenable group with the
weak specification property has the Moore–Myhill property. In particular, every expansive
principal algebraic action of a countable amenable group and every expansive algebraic
action of Zd with completely positive entropy with respect to the normalized Haar measure
have the Moore–Myhill property.

Theorem 1.3 applies to the shift actions 0y A0 for finite A, since one can identify A0

with ̂Z0/Z0 f for f = |A|. Previously, Ceccherini-Silberstein and Coornaert established
the Moore–Myhill property for hyperbolic toral automorphisms [7] and expansive
principal algebraic actions of countable abelian groups with connected underlying
space [8].

We remark that even for 0 = Z, not every expansive action with the weak specification
property has the Moore property. Indeed, Fiorenzi showed that the even shift in {0, 1}Z

consisting of all elements with an even number of 0’s between any two 1’s does not have
the Moore property [14].

This paper is organized as follows. In §2 we recall some definitions. Theorems 1.1
and 1.2 are proved in §§3 and 4 respectively. We study the implications of weak
specification for combinatorial independence in §5. The equivalence of weak specification
and strong irreducibility for subshifts is proved in Appendix A.

2. Preliminaries
In this section we recall some definitions and set up some notations. Throughout this paper
0 will be a countable discrete group with identity element e0 .

2.1. Expansiveness and weak specification. Let 0 act on a compact metrizable space
X continuously, and let ρ be a compatible metric on X . The action is called expansive if
there is some κ > 0 such that sups∈0 ρ(sx, sy) > κ for all distinct x, y ∈ X . Such a κ is
called an expansive constant with respect to ρ.

The action 0y X is said to have the weak specification property [11, Definition 6.1]
if for any ε > 0 there exists a non-empty symmetric finite subset F of 0 such that for any
finite collection {F j } j∈J of finite subsets of 0 satisfying

F Fi ∩ F j = ∅ for all distinct i, j ∈ J,

and any collection of points {x j } j∈J in X , there exists a point x ∈ X such that

ρ(sx, sx j )≤ ε for all j ∈ J, s ∈ F j .

Using the compactness of X , it is easy to see that when the action has the weak
specification property, one can actually allow J and F j to be infinite. It is also easy to
see that weak specification passes to factors.

https://doi.org/10.1017/etds.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.6


3078 H. Li

2.2. Group rings and algebraic actions. We refer the reader to [19, 27] for details on
group rings and algebraic actions. The integral group ring Z0 of 0 is defined as the set of
all finitely supported functions 0→ Z, written as

∑
s∈0 fss with fs ∈ Z for all s ∈ 0 and

fs = 0 for all but finitely many s, with addition and multiplication given by∑
s∈0

fss +
∑
s∈0

gss =
∑
s∈0

( fs + gs)s,(∑
s∈0

fss
)(∑

t∈0

gt t
)
=

∑
s,t∈0

fs gt (st).

The group algebra `1(0) is the set of all functions f : 0→ R satisfying
∑

s∈0 | fs |<+∞,
with addition and multiplication defined in the same way.

An action of 0 on a compact metrizable abelian group by (continuous) automorphisms
is called an algebraic action. Up to isomorphism, there is a natural one-to-one
correspondence between algebraic actions of 0 and countable left Z0-modules as follows.
For any algebraic action 0y X , the Pontrjagin dual X̂ consisting of all continuous
group homomorphisms X→ R/Z is a countable abelian group and the action of 0 on
X induces an action of 0 on X̂ which makes X̂ into a left Z0-module. Conversely,
for any countable left Z0-module M, the Pontrjagin dual M̂ consisting of all group
homomorphisms M→ R/Z under the pointwise convergence topology forms a compact
metrizable abelian group and the Z0-module structure of M gives rise to an action of 0
on M which induces an action of 0 on M̂ in turn.

For each f ∈ Z0, the associated algebraic action 0y ̂Z0/Z0 f is called a principal
algebraic action.

LEMMA 2.1. Every expansive principal algebraic action has the weak specification
property.

Proof. For any f ∈ Z0, the principal algebraic action 0y ̂Z0/Z0 f is expansive
exactly when f is invertible in `1(0) [13, Theorem 3.2]. If f ∈ Z0 is invertible in
`1(0), then the principal algebraic action 0y ̂Z0/Z0 f has the weak specification
property [25, Theorem 1.2]. �

2.3. Homoclinic pairs. Let 0 act on a compact metrizable space X continuously, and
let ρ be a compatible metric on X . We say a pair (x, y) ∈ X2 is homoclinic or asymptotic
if ρ(sx, sy)→ 0 as 0 3 s→∞. The set of all homoclinic pairs is an equivalence relation
on X , and does not depend on the choice of ρ. A map from X to another space is called
pre-injective if it is injective on every homoclinic equivalence class.

Now assume that 0y X is an algebraic action. We can always choose ρ to be
translation-invariant. It follows that the homoclinic equivalence class of the identity
element 0X is a 0-invariant subgroup of X , which we shall denote by1(X). Furthermore,
for any x ∈ X , its homoclinic equivalence class is exactly x +1(X). The following lemma
will be crucial for the proof of Theorem 4.2.

LEMMA 2.2. Let 0y X be an expansive algebraic action. Then there is a translation-
invariant compatible metric ρ on X such that

∑
s∈0 ρ(sx, 0X ) <+∞ for all x ∈1(X).
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Proof. Since the algebraic action 0y X is expansive, by [11, Theorem 5.6] [19, Theorem
13.31] we have 1(X)=11(X), where 11(X) is the 1-homoclinic group of X defined
in [11, Definition 5.1] and [19, Definition 13.26].

Again using the expansiveness of the algebraic action 0y X , by [27, Proposition
2.2, Corollary 2.16] or [19, Lemma 13.6] we know that X̂ is a finitely generated Z0-
module. Then by [11, Proposition 5.7] or [19, Lemma 13.33] there is a translation-
invariant compatible metric ρ on X such that

∑
s∈0 ρ(sx, 0X ) <+∞ for all x ∈11(X).

Consequently,
∑

s∈0 ρ(sx, 0X ) <+∞ for all x ∈1(X). �

2.4. Amenable groups and entropy. We refer the reader to [4, 19, 23] for details on
amenable groups and the entropy theory of their actions. A countable group 0 is called
amenable if it has a left Følner sequence, i.e. a sequence {Fn}n∈N of non-empty finite
subsets of 0 satisfying

lim
n→∞

|K Fn1Fn|

|Fn|
= 0

for all non-empty finite subsets K of 0.
Let 0 act on a compact metrizable space X continuously. For a finite open cover U of

X , we denote by N (U) the minimal number of elements of U needed to cover X . Then
the limit limn→∞ (1/|Fn|) log N (

∨
s∈Fn

s−1U) exists and does not depend on the choice
of the Følner sequence {Fn}n∈N. We denote this limit by htop(U). The topological entropy
of the action 0y X is defined as

htop(X) := sup
U

htop(U),

where U runs over all finite open covers of X .
Let ρ be a compatible metric on X , and let ε > 0. A set Z ⊆ X is called (ρ, ε)-separated

if ρ(x, z)≥ ε for all distinct x, z ∈ Z . Denote by sep(X, ρ, ε) the maximal cardinality of
(ρ, ε)-separated subsets of X . A set Z ⊆ X is called (ρ, ε)-spanning if for any x ∈ X there
exists some z ∈ Z with ρ(x, z) < ε. Denote by span(X, ρ, ε) the minimal cardinality of
(ρ, ε)-spanning subsets of X . For any non-empty finite subset F of 0, we define a new
metric ρF on X by ρF (x, y)=maxs∈F ρ(sx, sy).

The case 0 = Z of the following lemma is [28, Theorem 7.11], whose proof extends to
the amenable group case easily.

LEMMA 2.3. Suppose that the action 0y X is expansive, and let κ be an expansive
constant with respect to a compatible metric ρ on X. Then the following hold.
(1) For any finite open cover U of X such that each item of U has ρ-diameter at most κ ,

one has htop(X)= htop(U).
(2) For any 0< ε < κ/4, one has

htop(X)= lim
n→∞

1
|Fn|

log sep(X, ρFn , ε)= lim
n→∞

1
|Fn|

log span(X, ρFn , ε).

Let µ be a 0-invariant Borel probability measure on X . For each finite Borel partition
P of X , one defines the Shannon entropy

Hµ(P)=
∑
P∈P

−µ(P) log µ(P),
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where the convention is 0 log 0= 0, and the dynamical entropy

hµ(P)= lim
n→∞

1
|Fn|

Hµ

(∨
s∈Fn

s−1P

)
.

The measure entropy of the action 0y (X, µ) is defined as

hµ(X) := sup
P

hµ(P)

for P ranging over all finite Borel partitions of X . The action 0y (X, µ) is said to have
completely positive entropy (CPE) if hµ(P) > 0 for every finite Borel partition P of X
with Hµ(P) > 0.

The variational principle says that htop(X)= supµ hµ(X) for µ ranging over all 0-
invariant Borel probability measures of X .

3. Myhill property
In this section we prove Theorem 1.1. Throughout this section, we let a countable
amenable group 0 act on compact metrizable spaces X and Y continuously, and fix a
left Følner sequence {Fn}n∈N for 0.

PROPOSITION 3.1. Assume that the action 0y Y is expansive and has the weak
specification property. For any non-empty closed 0-invariant subset Z of Y with Z 6= Y ,
we have htop(Z) < htop(Y ).

Proof. Take a compatible metric ρ on Y . Let κ > 0 be an expansive constant of 0y Y
with respect to ρ. Take y0 ∈ Y\Z and set η =min(κ/10, ρ(y0, Z)) > 0. By the weak
specification property, there exists a symmetric finite set F ⊆ 0 containing e0 such that
for any finite collection of finite subsets {K j } j∈J of 0 satisfying F Ki ∩ K j = ∅ for all
distinct i, j ∈ J and any collection {y j } j∈J of points in Y , there exists y ∈ Y such that
ρ(sy, sy j )≤ η/4 for all j ∈ J and s ∈ K j .

Let n ∈ N. Take a maximal set Kn ⊆ Fn subject to the condition that for any distinct
s, t ∈ Kn , one has s 6∈ Ft . Then F Kn ⊇ Fn , and hence

|Kn| ≥ |Fn|/|F |.

Let A ⊆ Kn . Take a (ρFn\(F A), η)-spanning subset WFn\(F A) of Z with cardinality
span(Z , ρFn\(F A), η), and for each s ∈ A take a (ρFs, η)-spanning subset WFs of Z with
cardinality span(Z , ρFs, η)= span(Z , ρF , η). For each z ∈ Z , we can take zFn\(F A) ∈

WFn\(F A) with ρFn\(F A)(z, zFn\(F A)) < η and zFs ∈WFs with ρFs(z, zFs) < η for each
s ∈ A. For any z, z′ ∈ Z , if zFn\(F A) = z′Fn\(F A) and zFs = z′Fs for all s ∈ A, then
ρFn (z, z′) < 2η. It follows that

sep(Z , ρFn , 2η)≤ |WFn\(F A)| ·
∏
s∈A

|WFs |

= span(Z , ρFn\(F A), η) span(Z , ρF , η)
|A|

≤ sep(Z , ρFn\(F A), η) sep(Z , ρF , η)
|A|.

Take a (ρFn\(F A), η)-separated subset �A of Z with maximal cardinality. For each
ω ∈�A, take ωA ∈ Y such that ρ(sωA, y0)≤ η/4 for all s ∈ A and ρ(tωA, tω)≤ η/4
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for all t ∈ Fn\(F A). For any distinct ω, ω′ ∈�A, we have ρ(tω, tω′)≥ η for some
t ∈ Fn\(F A), and hence

ρ(tωA, tω′A)≥ ρ(tω, tω′)− ρ(tω, tωA)− ρ(tω′, tω′A)≥ η − η/4− η/4= η/2.

For any distinct A, B ⊆ Kn and any ω ∈�A, ω
′
∈�B , say s ∈ A\B, we have

ρ(sωA, sω′B)≥ ρ(y0, sω′)− ρ(sωA, y0)− ρ(sω′B, sω′)≥ η − η/4− η/4= η/2.

Thus the set {ωA : A ⊆ Kn, ω ∈�A} is a (ρFn , η/2)-separated subset of Y with cardinality∑
A⊆Kn

sep(Z , ρFn\(F A), η). Therefore

sep(Y, ρFn , η/2)≥
∑

A⊆Kn

sep(Z , ρFn\(F A), η)

≥

∑
A⊆Kn

sep(Z , ρFn , 2η) sep(Z , ρF , η)
−|A|

= sep(Z , ρFn , 2η)(1+ sep(Z , ρF , η)
−1)|Kn |.

Thus by Lemma 2.3 we have

htop(Y )= lim
n→∞

1
|Fn|

log sep(Y, ρFn , η/2)

≥ lim
n→∞

1
|Fn|

log sep(Z , ρFn , 2η)+ lim sup
n→∞

1
|Fn|

log(1+ sep(Z , ρF , η)
−1)|Kn |

≥ htop(Z)+
1
|F |

log(1+ sep(Z , ρF , η)
−1)

> htop(Z)

as desired. �

Proposition 3.1 was proved before under the further assumption that Y is a
subshift of finite type by Fiorenzi in the proof of [15, Proposition 4.6], and under
the further assumption that Y is a subshift by Ceccherini-Silberstein and Coornaert
[5, Proposition 4.2].

PROPOSITION 3.2. Assume that the action 0y X is expansive and has the weak
specification property. Let 0y Y be a factor of 0y X such that 0y Y is expansive
and htop(Y ) < htop(X). Then for any homoclinic equivalence class4 of X, the factor map
T : X→ Y fails to be injective on 4.

Proof. Take compatible metrics ρX and ρY on X and Y respectively. Take a common
expansive constant κ > 0 for the action 0y X with respect to ρX and the action 0y Y
with respect to ρY . Write ε = κ/15. As T is continuous and X is compact, there exists
0< δ < ε such that for any x, x ′ ∈ X with ρX (x, x ′)≤ δ one has ρY (T x, T x ′)≤ ε.

Fix a point z ∈4. Since the action 0y X has the weak specification property,
there exists a symmetric finite set F ⊆ 0 containing e0 such that for any x ∈
X and any finite set K ⊆ 0 there exists x ′ ∈ X with maxs∈K ρX (sx ′, sx)≤ δ and
sups∈0\(F K ) ρX (sx ′, sz)≤ δ. Set C = span(Y, ρY , ε).
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By Lemma 2.3 we have

htop(X)= lim
n→∞

1
|Fn|

log sep(X, ρX,Fn , 3ε),

and

htop(Y )= lim
n→∞

1
|Fn|

log span(Y, ρY,Fn , ε).

Take η > 0 with htop(X) > 3η + htop(Y ). When n is large enough, we have
span(Y, ρY,Fn , ε)≤ e|Fn |(htop(Y )+η) and

sep(X, ρX,Fn , 3ε)≥ e|Fn |(htop(X)−η) ≥ eη|Fn | span(Y, ρY,Fn , ε).

Let �n be a (ρX,Fn , 3ε)-separated subset of X with maximum cardinality, and 3n

be a (ρY,Fn , ε)-spanning subset of Y with minimal cardinality. Then there exist
a set �′n ⊆�n with |�′n| ≥ eη|Fn | and y ∈3n such that maxs∈Fn ρY (sT x, sy)≤ ε
for all x ∈�′n . For each x ∈�′n , take x ′ ∈ X with maxs∈Fn ρX (sx ′, sx)≤ δ <
ε and sups∈0\(F Fn)

ρX (sx ′, sz)≤ δ. Then sups∈0\(F Fn)
ρX (sx ′, sz)≤ κ , and hence

by [11, Lemma 6.2] the pair (x ′, z) is homoclinic. Thus x ′ ∈4. By our choice of δ,
we get

max
s∈Fn

ρY (sT x ′, sy)≤max
s∈Fn

ρY (sT x ′, sT x)+max
s∈Fn

ρY (sT x, sy)

≤max
s∈Fn

ρY (T (sx ′), T (sx))+ ε

≤ ε + ε = 2ε,

and
sup

s∈0\(F Fn)

ρY (sT x ′, sT z)= sup
s∈0\(F Fn)

ρY (T (sx ′), T (sz))≤ ε.

Now take a set �′′n ⊆�
′
n with |�′′n| ≥ |�

′
n|/C |F Fn\Fn | such that for any x, ω ∈

�′′n we have maxs∈F Fn\Fn ρY (sT x ′, sTω′) < 2ε. Then for any x, ω ∈�′′n we have
sups∈0 ρY (sT x ′, sTω′)≤ 4ε, whence T x ′ = Tω′. If x 6= ω, then

max
s∈Fn

ρX (sx ′, sω′)≥max
s∈Fn

ρX (sx, sω)−max
s∈Fn

ρX (sx, sx ′)−max
s∈Fn

ρX (sω, sω′) > ε,

and hence x ′ 6= ω′. When n is large enough, we have C |F Fn\Fn | < eη|Fn |, and hence
|�′′n|> 1. �

Proposition 3.2 was proved before under the further assumption that X is a subshift
of finite type and Y is a subshift by Fiorenzi [15, Proposition 4.5], and under the
further assumption that X and Y are subshifts by Ceccherini-Silberstein and Coornaert
[5, Theorem 5.1].

From Propositions 3.1 and 3.2 we obtain the following.

THEOREM 3.3. Let 0y X and 0y Y be expansive actions with the weak specification
property. Assume that htop(X)= htop(Y ). Then every pre-injective continuous 0-
equivariant map X→ Y is surjective.
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Theorem 3.3 was proved before under the further assumption that X is a subshift
of finite type and Y is a subshift by Fiorenzi [15, Theorem 4.7], and under the
further assumption that X and Y are subshifts by Ceccherini-Silberstein and Coornaert
[5, Corollary 5.2].

Theorem 1.1 follows from Theorem 3.3 directly.

4. Moore property
In this section we prove Theorem 1.2. Throughout this section 0 will be a countable
amenable group and {Fn}n∈N will be a left Følner sequence of 0.

LEMMA 4.1. Let 0 act on compact metrizable groups X and Y by automorphisms. Denote
by µX and µY the normalized Haar measure of X and Y respectively. Suppose that the
action 0y (X, µX ) has CPE. Also assume that htop(X)= htop(Y ) <+∞. Let T : X→
Y be a 0-equivariant continuous surjective map. Then T∗µX = µY .

Proof. Since 0 is amenable and T is surjective, there is a 0-invariant Borel probability
measure ν on X satisfying T∗ν = µY . Then

htop(X)≥ hν(X)≥ hµY (Y )= htop(Y ),

where the equality is from [12, Theorem 2.2] or [19, Proposition 13.2]. Thus hν(X)=
htop(X). Since the action 0y (X, µX ) has CPE and hµX (X)≤ htop(X) <+∞, by [11,
Theorem 8.6] we have hν′(X) < hµX (X) for every 0-invariant Borel probability measure
ν′ on X different from µX . Therefore ν = µX . Thus T∗µX = µY . �

THEOREM 4.2. Let 0y X be an expansive algebraic action with CPE with respect
to the normalized Haar measure and 0y Y be an expansive action on a compact
metrizable group by automorphisms. Assume that htop(X)= htop(Y ). Then every
surjective continuous 0-equivariant map T : X→ Y is pre-injective.

Proof. When 0 is finite, we have log |X | = |0|htop(X)= |0|htop(Y )= log |Y |<+∞.
Then T is actually injective. Thus we may assume that 0 is infinite.

Assume that T is not pre-injective. Then there is a homoclinic pair (x, ω) ∈ X2 such
that x 6= ω and T x = Tω. We get ω − x ∈1(X).

By Lemma 2.2 we can find a compatible translation-invariant metric ρX on X such
that

∑
s∈0 ρX (sx ′, 0X ) <+∞ for all x ′ ∈1(X). We also take a compatible translation-

invariant metric ρY on Y .
Denote by µX and µY the normalized Haar measure of X and Y respectively.
Take a common expansive constant κ > 0 for the action 0y X with respect to ρX and

the action 0y Y with respect to ρY . Let 0< ε < κ/4. By Lemma 2.3 we have

htop(Y )= lim
n→∞

1
|Fn|

log sep(Y, ρY,Fn , ε).

For each n ∈ N, denote by Dn the set of y ∈ Y satisfying maxs∈Fn ρY (sy, eY ) < ε/2, where
eY denotes the identity element of Y , and take a (ρY,Fn , ε)-separated subset Wn of Y
with maximal cardinality. For any distinct y, z ∈Wn , one has (y Dn) ∩ (zDn)= ∅. Thus
µY (Dn)|Wn| ≤ 1, and hence

1/µY (Dn)≥ |Wn|.
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Since T is continuous and X is compact, we can find 0< δ <min(κ/4, ρX (ω −

x, 0X )/2) such that for any x1, x2 ∈ X with ρX (x1, x2)≤ 2δ, one has ρY (T x1, T x2) <

ε/16. Since
∑

s∈0 ρX (s(ω − x), 0X ) <+∞, we can find a symmetric finite set F ⊆ 0
containing e0 such that ∑

s∈0\F

ρX (s(ω − x), 0X ) < δ.

Take 0< τ < δ such that for any x1, x2 ∈ X with ρX (x1, x2)≤ τ , one has
maxs∈F ρX (sx1, sx2)≤ δ.

Denote by B the set of all x ′ ∈ X satisfying ρX (x ′, x)≤ τ . Then µX (B) > 0. Since the
action 0y (X, µX ) has CPE, µX is ergodic. By the mean ergodic theorem [19, Theorem
4.22], we have ‖(1/|Fn|)

∑
s∈Fn

s−11B − µX (B)‖2→ 0 as n→∞, where 1B denotes
the characteristic function of B. For each n ∈ N, denote by Xn the set of x ′ ∈ X satisfying
|{s ∈ Fn : sx ′ ∈ B}| ≥ |Fn|µX (B)/2. Then Xn is closed and µX (Xn)→ 1 as n→∞.

Since the action 0y X is expansive, by Lemma 2.3 we have htop(X) <+∞.
By Lemma 4.1 we have T∗µX = µY . Then µY (T (Xn))≥ µX (Xn), and hence
µY (T (Xn))→ 1 as n→∞. Take a maximal (ρY,Fn , ε/2)-separated subset W ′n of T (Xn).
Then y Dn for y ∈W ′n covers T (Xn). Thus µY (T (Xn))≤ µY (Dn)|W ′n|, whence

|W ′n| ≥ µY (T (Xn))/µY (Dn)≥ µY (T (Xn))|Wn|.

Take a subset Vn of Xn with |Vn| = |W ′n| and T (Vn)=W ′n . Then

lim inf
n→∞

1
|Fn|

log |Vn| = lim inf
n→∞

1
|Fn|

log |W ′n|

≥ lim inf
n→∞

1
|Fn|

log µY (T (Xn))+ lim inf
n→∞

1
|Fn|

log |Wn|

= htop(Y ).

For any n ∈ N and v ∈ Vn , write En,v = {s ∈ Fn : sv ∈ B} and take a maximal set
E ′n,v ⊆ En,v subject to the condition Ft ∩ Fs = ∅ for all distinct s, t ∈ E ′n,v . Then
F2 E ′n,v ⊇ En,v , and hence

|E ′n,v| ≥ |En,v|/|F |2 ≥ |Fn|µX (B)/(2|F |2).

For each set A ⊆ E ′n,v , define

vA = v +
∑
s∈A

s−1(ω − x) ∈ X.

We claim that T vA = T v. It suffices to show ρY (tT vA, tT v)= ρY (T (tvA), T (tv)) < ε/8
for all t ∈ 0. Let t ∈ 0. If t 6∈ F A, then

ρX (tvA, tv)= ρX

(∑
s∈A

ts−1(ω − x), 0X

)
≤

∑
s∈0\F

ρX (s(ω − x), 0X ) < δ,

and hence ρY (T (tvA), T (tv)) < ε/16. Now consider the case t ∈ F A. Say t = γ s′ for
some γ ∈ F and s′ ∈ A. Then

ρX (tvA, γω)= ρX (γ s′v +
∑

s∈A\{s′}

ts−1(ω − x), γ x)

≤ ρX (γ s′v, γ x)+
∑

s∈0\F

ρX (s(ω − x), 0X ) < 2δ,
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and
ρX (tv, γ x)= ρX (γ s′v, γ x)≤ δ.

Therefore

ρY (T (tvA), γ T x)= ρY (T (tvA), T (γω)) < ε/16,

and
ρY (T (tv), γ T x)= ρY (T (tv), T (γ x)) < ε/16.

Consequently,

ρY (T (tvA), T (tv))≤ ρY (T (tvA), γ T x)+ ρY (T (tv), γ T x) < ε/8.

This proves our claim.
Write V †

n := {vA : v ∈ Vn, A ⊆ E ′n,v}. For any v ∈ Vn and distinct A, A′ ⊆ E ′n,v , say
t ∈ A\A′, we have

ρX (tvA, tvA′)≥ ρX (ω − x, 0X )−
∑

s∈(A\{t})1A′
ρX (ts−1(ω − x), 0X )

≥ ρX (ω − x, 0X )−
∑

s∈0\F

ρX (s(ω − x), 0X )

≥ δ.

For any distinct v, z ∈ Vn , and A ⊆ E ′n,v and A′ ⊆ E ′n,z , we have

max
s∈Fn

ρY (T svA, T sz A′)=max
s∈Fn

ρY (sT vA, sT z A′)=max
s∈Fn

ρY (sT v, sT z)≥ ε/2,

whence maxs∈Fn ρX (svA, sz A′) > 2δ. Thus V †
n is (ρX,Fn , δ)-separated, and

|V †
n | ≥ |Vn|2|Fn |µX (B)/(2|F |2).

Therefore by Lemma 2.3 we have

htop(X)= lim
n→∞

1
|Fn|

log sep(X, ρX,Fn , δ)

≥ lim inf
n→∞

1
|Fn|

log |Vn| +
µX (B) log 2

2|F |2

≥ htop(Y )+
µX (B) log 2

2|F |2
,

which is a contradiction to the hypothesis htop(X)= htop(Y ). Thus T is pre-injective. �

Now Theorem 1.2 follows from Theorem 4.2 directly.

5. Weak specification and independence
In this section we discuss implications of weak specification to combinatorial
independence and prove Corollary 5.3.

Let a countable (not necessarily amenable) group 0 act on a compact metrizable space
X continuously. Let A= (A1, . . . , Ak) be a tuple of subsets of X . A non-empty finite set
K ′ ⊆ 0 is called an independence set for A if

⋂
s∈K ′ s−1 Aω(s) 6= ∅ for all maps ω : K ′→
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{1, . . . , k} [19, Definition 8.7]. For any non-empty finite set K ⊆ 0 write ϕA(K ) for the
maximal cardinality of independence sets K ′ of A satisfying K ′ ⊆ K . The independence
density of A is defined as

I (A) := inf
K

ϕA(K )
|K |

,

where K ranges over all non-empty finite subsets of 0 [18, Definition 3.1]. A tuple
x= (x1, . . . , xk) ∈ X k is called an orbit IE-tuple if for every product neighborhood
U1 × · · · ×Uk of x, the tuple (U1, . . . ,Uk) has positive independence density
[18, Definition 3.2].

PROPOSITION 5.1. For any action 0y X with the weak specification property, every
tuple is an orbit IE-tuple.

Proof. Let k ∈ N and x1, . . . , xk ∈ X . We shall show that (x1, . . . , xk) ∈ X k is an orbit
IE-tuple.

Let ρ be a compatible metric on X , and let ε > 0. Denote by Di the set of all x ∈ X
satisfying ρ(x, xi )≤ ε. By the weak specification property there is some symmetric finite
subset F of 0 containing e0 such that for any finite collection {F j } j∈J of finite subsets of
0 satisfying F Fi ∩ F j = ∅ for all distinct i, j ∈ J and any collection {y j } j∈J of points in
X , there is some y ∈ X such that ρ(sy, sy j )≤ ε for all j ∈ J and s ∈ F j .

Let K be a non-empty finite subset of 0. Take a maximal subset K ′ of K subject to the
condition that s 6∈ Ft for all distinct s, t ∈ K ′. Then F K ′ ⊇ K , and hence |K ′| ≥ |K |/|F |.
Let ω be a map K ′→ {1, . . . , k}. Then there is some x ∈ X such that ρ(sx, xω(s))≤ ε
for all s ∈ K ′. Thus K ′ is an independence set for the tuple (D1, . . . , Dk). It follows that
(D1, . . . , Dk) has independence density at least 1/|F |. Therefore (x1, . . . , xk) is an orbit
IE-tuple. �

Now we consider the case 0 is amenable. An action 0y X has positive entropy if and
only if there is at least one non-diagonal orbit IE-pair in X2 [19, Definition 12.5, Theorem
12.19]. Thus we get the following.

COROLLARY 5.2. For any countable amenable group, every continuous action on a
compact metrizable space with the weak specification property and more than one point
has positive entropy.

Corollary 5.2 was proved before under the further assumption of subshifts by
Ceccherini-Silberstein and Coornaert [5, Proposition 4.5].

For any action of a countable amenable group 0 on a compact metrizable group X
by automorphisms, every pair in X2 is an orbit IE-pair if and only if the action has CPE
with respect to the normalized Haar measure [19, Definition 12.5] and [11, Theorem 7.3,
Corollary 8.4]. Thus we get the following.

COROLLARY 5.3. Every weak specification action of a countable amenable group on a
compact metrizable group by automorphisms has CPE with respect to the normalized Haar
measure.
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A. Appendix. Subshifts with weak specification
Let 0 be a countable (not necessarily amenable) group, and let A be a finite set. We
consider the shift action 0y A0 given by (sx)t = xs−1t for all x ∈ AG and s, t ∈ 0. A
closed 0-invariant subset X of A0 is called strongly irreducible [15, Definition 4.1] if there
exists a non-empty symmetric finite set F ⊆ 0 such that for any finite sets F1, F2 ⊆ 0 with
F1 F ∩ F2 = ∅ and any x1, x2 ∈ X , there exists x ∈ X such that x = x1 on F1 and x = x2

on F2.

PROPOSITION A.1. For any closed 0-invariant subset X of A0 , X is strongly irreducible
if and only if it has the weak specification property.

Proof. Take a compatible metric ρ of X .
Suppose that X is strongly irreducible. Let F ⊆ 0 witness the strong irreducibility of

X . By induction it is easy to see that for any finite collection {F j } j∈J of finite subsets
of 0 satisfying Fi F ∩ F j = ∅ for all distinct i, j ∈ J and any collection {x j } j∈J of points
in X , there is some x ∈ X such that x = x j on F j for all j ∈ J . Let ε > 0. Then there
is some non-empty finite subset K of 0 such that for any y, z ∈ X with y = z on K one
has ρ(y, z)≤ ε. Now let {F j } j∈J be a finite collection of finite subsets of 0 satisfying
(K F K−1)Fi ∩ F j = ∅ for all distinct i, j ∈ J and {x j } j∈J be a collection of points in
X . Then (F−1

i K )F ∩ (F−1
j K )= ∅ for all distinct i, j ∈ J . Thus there is some x ∈ X

satisfying x = x j on F−1
j K for all j ∈ J . For any j ∈ J and s ∈ F j , we get sx = sx j on

K , and hence ρ(sx, sx j )≤ ε. Therefore X has the weak specification property.
Conversely suppose that X has the weak specification property. Take ε > 0 such that

any two points y, z ∈ X satisfying ρ(y, z)≤ ε must coincide at e0 . Then there is some
non-empty symmetric finite subset F of 0 such that for any finite subsets F1 and F2

of 0 satisfying F F1 ∩ F2 = ∅ and any points x1, x2 ∈ X , there is some x ∈ X such that
ρ(sx, sx j )≤ ε for all j = 1, 2 and s ∈ F j . Now let F1 and F2 be finite subsets of 0
satisfying F1 F ∩ F2 = ∅ and x1, x2 ∈ X . Then F F−1

1 ∩ F−1
2 = ∅. Thus there is some

x ∈ X such that ρ(sx, sx j )≤ ε for all j = 1, 2 and s ∈ F−1
j . Then sx = sx j at e0 , which

means x = x j at s−1. Therefore X is strongly irreducible. �
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1995.
[28] P. Walters. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York,

1982.
[29] B. Weiss. Sofic groups and dynamical systems. Ergodic Theory and Harmonic Analysis (Mumbai, 1999)

Sankhyā Ser. A 62 (2000), 350–359.

https://doi.org/10.1017/etds.2018.6 Published online by Cambridge University Press

http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1706.06548
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
http://www.arxiv.org/abs/1707.08898
https://doi.org/10.1017/etds.2018.6

	Introduction
	Preliminaries
	Expansiveness and weak specification
	Group rings and algebraic actions
	Homoclinic pairs
	Amenable groups and entropy

	Myhill property
	Moore property
	Weak specification and independence
	Acknowledgements
	Subshifts with weak specification
	References

