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Abstract

We show that well-known invariants like Lusternik–Schnirelmann category and topologi-
cal complexity are particular cases of a more general notion, that we call homotopic distance
between two maps. As a consequence, several properties of those invariants can be proved
in a unified way and new results arise.
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1. Introduction

In this paper we prove that well-known homotopic invariants like the Lusternik–
Schnirelmann category cat(X) of the topological space X ([2]) or the topological complexity
TC(X) ([3]) can be seen as particular cases of a more general notion, that we call homotopic
distance between two continuous maps f, g, denoted D( f, g). As a consequence, the proofs
of several properties of those invariants can be unified in a systematic way, and new results
arise.

It can be conjectured that this unifying approach will give a new insight about the relation-
ship between cat(X) and TC(X); moreover, the inequalities we found could serve as new
lower bounds for the difficult problem of computing the category and topological complexity
in explicit examples.

The contents of the paper are as follows.
Section 2 is devoted to the basic definitions and examples. Given two continuous maps

f, g : X → Y between topological spaces, we say that D( f, g)� n if there exists an open
covering {U0, . . . ,Un} of X such that the restrictions f|U j , g|U j : U j → Y are homotopic
maps, for all j = 0, . . . , n. Then, by definition, cat(X) is the distance between idX and a con-
stant map. We show that cat(X) also equals the homotopic distance D(i1, i2) between the two
axis inclusions i1, i2 : X → X × X (Proposition 2·5), while TC(X) equals the homotopic
distance D(p1, p2) between the projections p1, p2 : X × X → X (Proposition 2·6).
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74 E. MACÍAS–VIRGÓS AND D. MOSQUERA–LOIS

In Section 3 we prove several properties of the homotopic distance, namely its behaviour
under compositions and products, and its homotopical invariance. They imply as particular
cases well-known inequalities like cat(X)� TC(X)� cat(X × X) (Corollary 3·6 and
Corollary 3·9), or TC(X × X ′)� TC(X)+ TC(X ′) (Example 3·21).

In Section 4 we study H-spaces. For instance we prove that for any pair of maps f, g : G ×
G → G, where G is an H-space, we have D( f, g)� cat(G) (Theorem 4·1), thus generalising
the theorem of Farber, Lupton, and Scherer TC(G)= cat(G) [4, 15].

In Section 5 we give a lower cohomological bound for the homotopic distance, in terms
of the length of the cup product, namely D( f, g)� l.c.p. J ( f, g) (Theorem 5·2), where we
denote by J ( f, g) the image of f ∗ − g∗ in H(X). Similar results are well known for the
particular cases of cat(X) or TC(X).

A better result is obtained after defining the so-called homotopy weight hw f,g(u)� 1 of
the non-zero cohomology class u ∈J ( f, g)⊂ H(X). This generalises ideas from Fadell–
Husseini and other authors, and we are able to prove (Theorem 5·9) that if u0 � · · ·� uk

�= 0, then

D( f, g)�
k∑

j=0

hw(u j ).

Section 6 is about fibrations. We generalise both Varadarajan’s result [25] about the rela-
tionship between the LS-category of the total space E , the fiber F and the base B, and
a similar result for the topological complexity, due to Farber and Grant [6, lemma 7].
Explicitly, we prove (Theorem 6·1) that, when the base B is path-connected,

D( f, g)+ 1 �
(
D( f0, g0)+ 1

)(
cat(B)+ 1

)
for fibre preserving maps f, g that induce maps f0, g0 : F0 → F ′

0 between the fibers.
In Section 7 we show an example of a Lie group G and two maps f, g : G → G such that

D( f, g)= 2 = l.c.p. H(G), while TC(G)= cat(G)= 3.
Finally, Section 8 contains an overview of possible generalisations, like a version in the

simplicial setting or an analog of higher topological complexity.

2. Basic notions

All along the paper we work with unpointed spaces, unless otherwise stated.

2·1. Homotopic distance

Let f, g : X → Y be two continuous maps.

Definition 2·1. The homotopic distance D( f, g) between f and g is the least integer n � 0
such that there exists an open covering {U0, . . . ,Un} of X with the property that f|U j 	 g|U j ,
for all j = 0, . . . , n. If there is no such covering, we define D( f, g)= ∞.

Remark. In order to simplify several proofs, we shall denote by U = U0 � · · · � Un the dis-
joint union, and by u : U → X the map induced by the inclusions, by the coproduct property.
Then, f ◦ u 	 g ◦ u, if and only if f|U j 	 g|U j , for all j = 0, . . . , n.

Notice that:

(i) D( f, g)= D(g, f );
(ii) D( f, g)= 0 if and only if the maps f, g are homotopic.

https://doi.org/10.1017/S0305004121000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000116
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In fact, the homotopic distance only depends on the homotopy class.

PROPOSITION 2·2. If f 	 f ′ and g 	 g′ then D( f, g)= D( f ′, g′).

Later (Proposition 3·13) we shall show that D(−,−) is an invariant of the homotopy class
of a pair of maps.

Example 2·3. Let X = S1 be the Lie group of unit complex numbers. The distance between
the identity z and the inversion 1/z is 1. Let X = S2 be the unit sphere. The distance between
the identity and the antipodal map is 1 (see Corollary 3·8).

Example 2·4. Let G be the unitary group U(2). The distance between the identity idG and
the inversion I (A)= A∗ is D(idG, I )= 2 (see Equation (5·1)).

The two key examples of homotopic distance are Lusternik–Schnirelmann category ([2])
and Farber’s topological complexity ([3]), as we shall show in the next paragraphs.

2·2. Lusternik–Schnirelmann category

Assume the space X to be path-connected. An open set U ⊂ X is categorical in X if the
inclusion is null-homotopic. The (normalised) LS-category cat(X) is the least integer n � 0
such that X can be covered by n + 1 categorical open sets. Then, cat(X) is the homotopic
distance between the identity idX and any constant map, that is, cat(X)= D(idX , ∗).

More generally, the Lusternik–Schnirelmann category of the map f : X → Y ([2,
exercise 1·16, p. 43]) is the distance between f and any constant map, cat( f )= D( f, ∗),
when Y is path-connected. For instance, the category of the diagonal �X : X → X × X
equals cat(X).

Given a base point x0 ∈ X we define the inclusion maps i1, i2 : X → X × X as i1(x)=
(x, x0) and i2(x)= (x0, x).

PROPOSITION 2·5. The homotopic distance between i1 and i2 equals the LS-category of X ,
that is, D(i1, i2)= cat(X).

Proof. First, we show that D(i1, i2)� cat(X).
Let X = U0 ∪ · · · ∪ Un be a categorical cover and let u : U → X as in the Remark after

Definition 2·1; thus idX ◦ u 	 ∗ ◦ u. But then

i1 ◦ u = (idX , ∗) ◦ u = (idX ◦ u, ∗ ◦ u)	 (∗ ◦ u, idX ◦ u)= (∗, idX ) ◦ u = i2 ◦ u.

Second, we show that cat(X)� D(i1, i2). Assume that there is a homotopy H : U ×
[0, 1] → X × X between (i1)|U and (i2)|U , i.e. H(x, 0)= (x, x0) and H(x, 1)= (x0, x). Let
p1 ◦F be the first component of F . Then p1 ◦F is a homotopy between the inclusion
U ⊂ X and the constant map x0.

2·3. Topological complexity

Let P X = X I be the path space of X . Let π : P X → X × X , with π(γ )= (
γ (0), γ (1)

)
,

be the path fibration sending each continuous path γ : [0, 1] → X onto its initial and final
points. By definition, the (normalised) topological complexity TC(X) of X is the least
integer n such that X × X can be covered by n + 1 open subsets U j where the fibration π
admits a continuous local section.
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PROPOSITION 2·6. The topological complexity of X equals the homotopic distance between
the two projections p1, p2 : X × X → X , that is, TC(X)= D(p1, p2).

This result will be a consequence of Theorem 2·7 below.

2·4. Švarc genus

Both cat(X) and TC(X) are particular cases of the Švarc genus (also called sectional cat-
egory) of some fibrations. Explicitly ([2]) the Švarc genus secat(π) of a fibration π : E → B
is the minimum integer n � 0 such that the base B can be covered by open sets V0, . . . , Vn

with the property that over each Vj there exists a local section s of π . For instance, cat(X)
is the Švarc genus of the fibration π0 : P0 X → X sending each path γ with initial point x0

into the end point γ (1).
What follows is an interpetation of the homotopic distance in terms of the Švarc genus.

THEOREM 2·7. Let f, g : X → Y be two maps, and consider the pull-back q : P → X of
the path fibration π : PY → Y × Y by the map ( f, g) : X → Y × Y :

P PY

X Y × Y.

q π
(f,g)

Then D( f, g)= secat(q).

Proof. The elements of P are the pairs (x, γ ) where x ∈ X and γ is a path on Y with γ (0)=
f (x) and γ (1)= g(x). The map q is the projection onto the first factor. Then, if U ⊂ X is an
open set where there exists a homotopy H : U × I → Y between f|U and g|U , we can define
a section s : X → P as s(x)= (

x,H(x,−)). Then secat(q)� D( f, g).
Conversely, if there is a map s : U → P such that q ◦ s is the inclusion iU : U ⊂ X , we

have s(x)= (x, γx) for some path γx from f (x) to g(x). Then, the homotopy H(x, t)=
γx(t) proves that f 	 g on U .

As a consequence, if we take f = p1 and g = p2 to be the projections from X × X → X
we have ( f, g)= idX×X and q = π , thus proving Proposition 2·6, that is,

D(p1, p2)= secat(π)= TC(X).

3. Properties

3·1. Compositions

We now prove several elementary properties, starting with the behaviour of the homotopic
distance under compositions. Several known properties of cat and TC can be deduced from
our general results.

PROPOSITION 3·1. Suppose we have maps f, g : X → Y and h : Y → Z . Then

D(h ◦ f, h ◦ g)� D( f, g).
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Proof. Let D( f, g)� n and let X = U0 ∪ · · · ∪ Un be an open covering with f j = f|U j

homotopic to g j = g|U j . Then D(h ◦ f, h ◦ g)� n because

(h ◦ f ) j = h ◦ f j 	 h ◦ g j = (h ◦ g) j .

COROLLARY 3·2. Let f : X → Y be a map with path-connected domain X and
codomain Y . Then cat( f )� cat(X).

Proof. Take idX and a constant map x0. Then D( f ◦ idX , f (x0))� D(idX , x0).

PROPOSITION 3·3. Suppose we have maps f, g : X → Y and h : Z → X . Then

D( f ◦ h, g ◦ h)� D( f, g).

Proof. Let D( f, g)� n and let X = U0 ∪ · · · ∪ Un be an open covering with f j 	 g j :
U j → Y . Let Vj = h−1(U j )⊂ Z . The restriction h j : Vj → X can be written as the com-
position of a map h̄ j : Vj → U j , where h̄ j (x)= h(x), and the inclusion I j : U j ⊂ X . Then
we have that

( f ◦ h) j = f j ◦ h̄ j 	 g j ◦ h̄ j = g ◦ I j ◦ h̄ j = g ◦ h j = (g ◦ h) j ,

hence D( f h, gh)� n.

COROLLARY 3·4. If f : X → Y is a continuous map with a path-connected codomain Y ,
then cat( f )� cat(Y ).

Proof. Take idY and a constant map y0. Then D(idY ◦ f, y0 ◦ f )� D(idY , y0).

The latter result result can be extended.

COROLLARY 3·5. Let f, g : X→Y be continuous maps with a path-connected
codomain Y . Then

D( f, g)+ 1 � (cat( f )+ 1)(cat(g)+ 1).

Proof. Denote by y0 a constant map from X to Y . Assume that cat( f )= D( f, y0)� m,
cat(g)= D(g, y0)� n and let {Ui }m

i=0, {Vj }n
j=0 be the corresponding coverings of X . The

open sets Wi, j = Ui ∩ Vj cover X . Moreover, f 	 y0 	 g on Wi, j , so D( f, g)� m × n.

The latter result will be greatly improved for normal spaces (see the remark after
Proposition 3·16).

COROLLARY 3·6 ([3]). cat(X)� TC(X).

Proof. In Proposition 3·3 consider the inclusion maps i1, i2 : X → X × X , so

D(∗, idX )= D(p1 ◦ i2, p2 ◦ i2)� D(p1, p2).

In the next Proposition we shall prove a non-obvious inequality.
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PROPOSITION 3·7. Let h, h′ : Z →X and f, g : X →Y be maps such that f ◦ h′ 	 g ◦ h′.
Then

D( f ◦ h, g ◦ h)� D(h, h′).

Proof. Assume D(h, h′)� n, and let Z = U0 ∪ · · · ∪ Un be a covering such that h ◦ u 	
h′ ◦ u, with the coproduct notation.

Then

f ◦ h ◦ u 	 f ◦ h′ ◦ u 	 g ◦ h′ ◦ u 	 g ◦ h ◦ u,

which implies that D( f ◦ h, g ◦ h)� n, and the proof is complete.

3·2. Domain and codomain

Recall that the geometric LS-category of X , denoted by gcat(X), is the least integer n � 0
such that X can be covered by n + 1 open sets which are contractible in themselves. This
subtle difference with the LS-category —where the open sets are contractible in the ambient
space— is important, because in general gcat is not a homotopy invariant. Since any map
with a contractible domain is homotopic to a constant map, it is obvious that D( f, g)�
gcat(X) for any pair of continuous maps f, g : X → Y .

The inequality D( f, g)� cat(X) is less evident, but it follows directly from
Proposition 3·7.

COROLLARY 3·8. Let f, g : X → Y be two maps with path-connected domain X and
codomain Y . Then

D( f, g)� cat(X).

Proof. In Proposition 3·7, take Z = X , h = idX and h′ = x0 a constant map, then the constant
maps f (x0), g(x0) : X → Y are homotopic because Y is path-connected, so

D( f, g)= D( f ◦ idX , g ◦ idX )� D(idX , x0)= cat(X).

Another proof of this Corollary follows from Theorem 2·7: we have D( f, g)= secat(q).
Since q is a fibration, the homotopy lifting property implies that secat(q)� cat(X).

COROLLARY 3·9 ([3]). TC(X)� cat(X × X).

Proof. In Corollary 3·8 take the maps p1, p2 : X × X → X .

For the codomain, we have the following result.

PROPOSITION 3·10. For maps f, g : X → Y we have D( f, g)� TC(Y ).

Proof. This follows from Theorem 2·7, because if the fibration q is a pullback of the fibration
π then secat(q)� secat(π), which is exactly D( f, g)� TC(Y ).

Notice that in general it is not true that D( f, g)� cat(Y ). In fact, by taking the projections
p1, p2 : Y × Y → Y this would imply that TC(Y )� cat(Y ), which is not true in general.
However, this is true for H-spaces (see Section 4).
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3·3. Invariance

We prove the homotopy invariance of the homotopic distance.

PROPOSITION 3·11. Let f, g : X → Y be maps and let α : Y → Y ′ be a map with a left
homotopy inverse. Then D(α ◦ f, α ◦ g)= D( f, g).

Proof. By Propositions 3·1 and 2·2, we have

D( f, g)� D(α ◦ f, α ◦ g)� D(β ◦ α f, β ◦ α ◦ g)= D( f, g),

because β ◦ α 	 idY implies β ◦ α ◦ f 	 f and β ◦ α ◦ g 	 g.

Analogously:

PROPOSITION 3·12. Let f, g : X → Y be maps and let β : X ′ → X be a map with a right
homotopy inverse. Then D( f ◦ β, g ◦ β)= D( f, g).

As a consequence, D(,) is a homotopy invariant in the following sense:

PROPOSITION 3·13. Assume that there exist homotopy equivalences β : X ′ 	 X and
α : Y 	 Y ′ such that f : X → Y (resp. g) and f ′ : X ′ → Y ′ (resp. g′) verify α ◦ f ◦ β 	 f ′

(resp. α ◦ g ◦ β 	 g′):

X
f

g
Y

α

X′

β
f ′

g′ Y .′

Then D( f, g)= D( f ′, g′).

COROLLARY 3·14. Both cat( ) and TC( ) are homotopy invariant, that is, if there exist
homotopy equivalences X 	 X ′, then cat(X)= cat(X ′) and TC(X)= TC(X ′).

3·4. Normal spaces

For normal spaces we shall use the following strikingly general Lemma, proved by Oprea
and Strom [17, lemma 4·3].

LEMMA 3·15. Let Z be a normal space with two open covers U = {U0, . . . ,Um} and
V = {V0, . . . , Vn} such that each set of U satisfies Property (A) and each set of V satisfies
Property (B). Assume that Properties (A) and (B) are inherited by open subsets and disjoint
unions. Then Z has an open cover W = {W0, . . . ,Wm+n} by open sets, each satisfying both
Property (A) and Property (B).

As a first consequence, we prove that the homotopic distance verifies the triangular
inequality, thus being a true distance in the space of homotopy classes.
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PROPOSITION 3·16. Let f, g, h : X → Y be maps defined on the normal space X . Then

D( f, h)� D( f, g)+ D(g, h).

Proof. Let D( f, g)= m and D(g, h)= n. Take coverings {U0, . . . ,Um} and {V0, . . . , Vn} of
X such that f|Ui 	 g|Ui for all i = 0, . . .m and g|Vj 	 h|Vj for all j = 0, . . . , n. Clearly these
properties are closed for open subsets and disjoint unions. Then, by Lemma 3·15, there is
a third covering {W0, . . . ,Wm+n} such that f|Wk 	 g|Wk 	 h|Wk , for all k, thus proving that
D( f, h)� m + n.

Remark. Proposition 3·16 does not hold in general for arbitrary topological spaces, as we
shall show in Subsection 3·6.

Note that Corollary 3·5 could be improved (in normal spaces), because D( f, g)�
D( f, ∗)+ D(∗, g) means that D( f, g)� cat( f )+ cat(g).

Another result also follows from Lemma 3·15.

PROPOSITION 3·17. Let X be a normal space. For maps f, g : X → Y and f ′, g′ : Y → Z
we have

D( f ′ ◦ f, g′ ◦ g)� D( f, g)+ D( f ′, g′).

Proof. If D( f, g)= m there is a covering U0, . . . ,Um of X where f 	 g. It follows that
g′ ◦ f 	 g′ ◦ g for this covering. Clearly, the criteria of Lemma 3·15 are verified.

Now, if D( f ′, g′)= n, there is a covering V0, . . . , Vn of Y where f ′ 	 g′. But then, the
covering f −1(V0), . . . , f −1(Vn) of X verifies f ′ ◦ f 	 g′ ◦ f . This property also fullfils the
criteria of Lemma 3·15.

Hence there is a third covering W0, . . . ,Wm+n of X where f ′ ◦ f 	 g′ ◦ f 	 g′ ◦ g, which
implies D( f ′ ◦ f, g′ ◦ g)� m + n.

The latter result generalises Propositions 3·1 and 3·3, at least for normal spaces, because
D = 0 for homotopic maps.

3·5. Products

We study the behaviour of the homotopic distance under products.

LEMMA 3·18. Let f, g : X → Y and h : X ′ → Y ′. Then the maps f × h, g × h :
X × X ′ → Y × Y ′ verify D( f × h, g × h)= D( f, g).

Proof. The inequality D( f × h, g × h)� D( f, g) follows from a simple argument, because
if f 	 g on the open set U ⊂ X , then f × h 	 g × h on U × X ′.

On the other hand, for a fixed point x0 ∈ X , let i1 : X → X × X be the map i1(x)= (x, x0),
and let p1 : X × X → X be the projection onto the first factor. Then f = p1 ◦ ( f × h) ◦ i1,
an analogously for g. By the composition properties (Propositions 3·1 and 3·3), it follows

D( f, g)= D (p1 ◦ ( f × h) ◦ i1, p1 ◦ (g × h) ◦ i1) � D( f × h, g × h).
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THEOREM 3·19. Given f, g : X → Y and f ′, g′ : X ′ → Y ′, assume that the space X × X ′

is normal. Then

D( f × f ′, g × g′)� D( f, g)+ D( f ′, g′).

It is possible to give a proof identical to that given in [2, section 1·5] for the particular case
of LS-category, just by replacing the notion of categorical sequence by a similar notion of
homotopical sequence. However, a much simpler proof follows from Proposition 3·15 and
Lemma 3·18.

Proof of Theorem 3·19. First note that f × f ′ = ( f × idY ′) ◦ (idX ◦ f ′), and similarly for
g × g′. We can just compute

D( f × f ′, g × g′)= D(( f × id) ◦ (id × f ′), (g × id) ◦ (id × g′))
= D(( f × id) ◦ (id × f ′), (g × id) ◦ (id × f ′))

+ D((g × id) ◦ (id × f ′), (g × id) ◦ (id × g′))
� D( f × id, g × id)+ D(id × f ′, id × g′)
= D( f, g)+ D( f ′, g′).

Example 3·20. Set f : X → X and f ′ : X ′ → X ′ to be the identity maps and g : X → X and
g′ : X ′ → Y ′ to be constant maps. Then

cat(X × X ′)� cat(X)+ cat(X ′).

Example 3·21. Set f : X × X → X and f ′ : X ′ × X ′ → X ′ to be the projection maps onto
the first factor and g : X × X → X and g′ : X ′ × X ′ → X ′ to be the projection maps onto the
second factor. Then

TC(X × X ′)� TC(X)+ TC(X ′).

3·6. Finite topological spaces

It has been shown (Proposition 3·16) that the homotopic distance satisfies the triangular
inequality under the assumption that the domains of the maps involved are normal spaces.
This subsection is devoted to show that this does not hold for T0 finite topological spaces.

We recall some basic facts about finite topological spaces; for a detailed exposition we
refer the reader to [1]. Finite posets and finite T0-spaces are in bijective correspondence. If
(X,�) is a poset, a basis for a topology on X is given by the sets

Ux = {y ∈ X : y � x}, x ∈ X.

Conversely, if X is a finite T0-space, define, for each x ∈ X , the minimal open set Ux as the
intersection of all open sets containing x . Then X may be given a poset structure by defining
y � x if and only if Uy ⊂ Ux . Given two finite spaces X and Y , the product topology is given
by the basic open sets

U(x,y) = Ux × Uy, (x, y) ∈ X × Y.
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x2

y2

x1

y1

Fig. 1. The finite topological space S.

Example 3·22. Let S be the finite space corresponding to the poset depicted in Figure 1.
Consider the finite space X = S × S and the continuous maps f, g, h : X → X given by
f = idX , g = idS × c and h = c × c where c : S → S is a constant map. Recall from [1]
that for any finite space Y and y ∈ Y , the subspace Uy is contractible. Therefore {S × Ux1,

S × Ux2} is an open cover of X such that the restrictions of f and g to each of the members
of the cover are homotopic. This proves that D( f, g)� 1. A symmetrical argument shows
that D(g, h)� 1. However D( f, h)= cat(X)� 3 [22, example 3·5]. Therefore, the maps
f, g and h do not satisfy the triangular inequality.

4. H-spaces

A well-known result from Farber [4, lemma 8·2] states that for a Lie group G the topo-
logical complexity TC(G) equals the LS-category cat(G). This result was later extended to
all H-spaces by Lupton and Scherer [15].

Here, an H-space is a topological space G endowed with a multiplicationμ : G × G → G,
a division δ : G × G → G and an identity element x0 ∈ G such that μ(p1, δ)	 p2 and
μ(−, x0)	 idG . Note that we do not ask the multiplication to be associative.

This definition is inspired by the discussion in [15, proof of theorem 1] of the results
of James [13]. As an example, let G be a Lie group, with multiplication μ(x, y)= xy and
division δ(x, y)= x−1 y.

Farber and Lupton–Scherer results are particular cases of the following theorem.

THEOREM 4·1. Let G be a path-connected H-space and let f, g : G × G → G be two
maps. Then D( f, g)� cat(G).

In fact we know that D( f, g)� TC(G) (Proposition 3·10), so Theorem 4·1 is equivalent
to the result of Lupton and Scherer. For the sake of completeness we shall give a direct proof.

Proof. Let U ⊂ G be a categorical open set, that is, iU 	 x0, and consider the preimage
	⊂ G × G of U by the map δ ◦ ( f, g) : G × G → G. Then

p2 ◦ ( f, g) ◦ i	 	μ ◦ (p1, δ) ◦ ( f, g) ◦ i	,

that is,

g|	 	μ ◦ ( f|	, δ ◦ ( f, g) ◦ i	).

But δ ◦ ( f, g) ◦ i	 factors through iU , by the definition of 	, so it is homotopic to the
constant map (x0)|	 : 	→ G. Then

g|	 	μ ◦ ( f|	, x0)	 f|	.
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COROLLARY 4·2 ([15]). For a path-connected H-space G we have TC(G)= cat(G).

Proof. Take f = p1 and g = p2 and apply Theorem 2·6. Then TC(G)� cat(G). The other
inequality was proven in Corollary 3·6.

In the next proposition we shall use the multiplication f · h of maps f, h : X → G into an
H-space, defined as usual by the composition

X
�−→ X × X

f ×h−→ G × G
μ−→ G.

PROPOSITION 4·3. If G is an H-space and f, g, h : X → G, then

D( f · h, g · h)� D( f, g).

Proof. The proposition follows by applying the composition rules and Lemma 3·18.
Namely, since

f · h =μ ◦ (id × h) ◦ ( f × id) ◦�,
and analogously for g · h, we have

D( f · h, g · h)� D( f × id, g × id)= D( f, g).

COROLLARY 4·4. In a Lie group, the distance between the multiplication μ and the
division δ equals the distance between the identity idG and the inversion map I : G → G,
I (x)= x−1, that is, D(μ, δ)= D(idG, I ).

Proof. Let x0 = e be the identity element, and consider the map i1(x)= (x, x0). Then
μ ◦ i1 = idG and δ ◦ i1 = I . From Proposition 3·3 it follows that D(idG, I )� D(μ, δ).

On the other hand, we have μ= (idG ◦ p1) · p2, while δ = (I ◦ p1) · p2. Then

D(μ, δ)� D(idG ◦ p1, I ◦ p1)� D(idG, I ).

Note that Corollary 4·2 and Proposition 3·10 imply that D(μ, δ)� cat(G).

COROLLARY 4·5. In any Lie group, the distance D(μa, μb) between two power maps
μa, μb : G → G, where μc(x)= xc, equals D(μa−b, e).

Proof. The result follows from Proposition 4·3 applied to xa = xa−b · xb and xb = e · xb.

5. Cohomology

5·1. Cup length

For the LS category it is well known ([2]) that

l.c.p. H(X; R)� cat(X),

where l.c.p. denotes the length of the cup product of the cohomology (with coefficients in
any commutative ring R with unit).
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Analogously, Farber [3] proved that l.c.p. ker�∗ � TC(X). When the coefficients are a
field K , ker�∗ is isomorphic to the kernel of the cup product

H(X; K )⊗ H(X; K )
�−→ H(X; K ).

We shall give a general cohomological lower bound for the homotopic distance between
two maps.

Let f, g : X → Y be two maps and let f ∗, g∗ : H(Y ; R)→ H(X; R) be the induced mor-
phisms in cohomology (for an arbitrary unitary commutative ring of coefficients). We denote
by J ( f, g)⊂ H(X; R) the image of the linear morphism f ∗ − g∗ : H(Y ; R)→ H(X; R).

Definition 5·1. We denote by l.c.p. J ( f, g) the least integer k such that any product
u0 � · · ·� uk of elements of J ( f, g) is null in H(X).

Note that we do not ask J ( f, g) to be a ring. Also note that

l.c.p. J ( f, g)� l.c.p. H(X; R).

THEOREM 5·2. Let J ( f, g)⊂ H(X; R) be the image of the morphism f ∗ − g∗ :
H(Y ; R)→ H(X; R). Then l.c.p.J ( f, g)� D( f, g).

Proof. Assume D( f, g)� n and let X × X = U0 ∪ · · · ∪ Un be a covering such that the
restrictions of p1 and p2 to each open set Uk , k = 0, . . . , n, are homotopic. For U = Uk

let us consider the long exact sequence of the pair (X,U ) (from now on we shall not make
explicit the ring R):

H m(Y )

· · · H m(X,U ) H m(X) H m(U ) · · ·
f ∗−g∗ ( f|U )∗−(g|U )∗=0

jU (iU )
∗

Then ( f|U )∗ = (g|U )∗ : H(Y )→ H(U ), which implies that every element ω in J belongs to
ker(iU )

∗ = im jU , then ω= jU (ω̃) for some ω̃ ∈ H(X,U ).
Now, let us remember the relative cup product ([12, p. 209])

� : H m(X,U )⊗ H n(X, V )→ H m+n(X,U ∪ V ),

where U, V are open subsets of X . From [23, p. 251] it follows that the following diagram
is commutative:

H(X,U0)⊗ · · · ⊗ H(X,Un) H ∗(X,
⋃n

k=0 Uk)

H(X)⊗ · · · ⊗ H(X) H(X).

�

jU0 ⊗···⊗ jUn jU0∪...∪Un

�

If ω0 � · · ·�ωn is a product of length n + 1 of elements ωk ∈J , there exist elements
ω̃k ∈ H(X,Uk) such that ωk = jk(ω̃k), hence

ω0 � · · ·�ωn = j0(ω̃0)� · · ·� jn(ω̃n)= j0...n(ω̃0 � · · ·� ω̃n)= 0

because ω̃0 � · · ·� ω̃n ∈ H(X, X)= 0. Then l.c.p. J � n.
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Example 5·3. Consider the inclusion maps i1, i2 : X → X × X as in Proposition 2·5. Then
J (i1, i2) is isomorphic to H(X). Therefore, we recover the classical cohomological lower
bound for the LS category.

Example 5·4. Let G = U(2) be the Lie group of 2 × 2 complex matrices A such that
A−1 = A∗. It is known ([21]) that cat(G)= 2. In fact, topologically G is the product S1 × S3,
so its real cohomology is H(G)= H(S1)⊗ H(S3), the exterior algebra

∧
(x1, x3). Consider

the maps f = idG the identity and g = I the inversion I (A)= A∗. Then I ∗(x1)= −x1 and
I ∗(x3)= −x3, so J ( f, g)= H(G). Then

2 = l.c.p. J � D( f, g)� cat(G)= 2.

Hence, the distance between the identity and the inversion is 2, and the distance between the
multiplication and the division is 2 too (Proposition 4·4). The same argument applies to the
groups U (n), n � 2, that is, D(idG, I )= n = cat(G).

5·2. Homotopy weight

Following the ideas of Fadell–Husseini for the LS-category and Farber–Grant for the
Topological Complexity ([6]), we can define a notion of homotopy weight that serves to
improve inequality (5·2). Our proofs follow the lines of those in [5, section 6] for the TC-
weight, which is a particular case.

Let f, g : X → Y be two maps, and let u ∈ H(X; R) be a cohomology class.

Definition 5·5. We say that u has homotopy weight hw(u)= k + 1 (with respect to f, g)
if k is the greatest integer such that the following condition is satisfied: given any continuous
map φ : A → X with D( f ◦ φ, g ◦ φ)� k, then φ∗u = 0 ∈ H(A; R). We put hw(0)= ∞.

In other words, hw(u)� k + 1 means that φ∗u = 0 ∈ H(A; R) for all maps φ : A → X
with D( f ◦ φ, g ◦ φ)� k.

We first prove the homotopy invariance of the homotopy weight.

PROPOSITION 5·6. If α, β in the following commutative diagram are homotopy
equivalences,

X′ Y ′

X Y

f ′

g′
α β

f

g

then hw f ′,g′(α∗u)= hw f,g(u) for u ∈ H(X).

Proof. Let hw′(α∗u)� k + 1, and consider φ : A → X such that D( f ◦ φ, g ◦ φ)� k. If
ᾱ : X → X ′ is the homotopy inverse of α, then (Corollaries 3·11 and 3·12),

D( f ′ ◦ ᾱ ◦ φ, g′ ◦ ᾱ ◦ φ)= D(β ◦ f ′ ◦ ᾱ ◦ φ, β ◦ g′ ◦ ᾱ ◦ φ)
= D( f ◦ α ◦ ᾱ ◦ φ, g ◦ α ◦ ᾱ ◦ φ)= D( f, g)� k
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because α ◦ ᾱ ◦ φ 	 φ, so 0 = (ᾱ ◦ φ)∗(α∗u)= φ∗u. This proves that hw(u)� k + 1. The
other implication is analogous.

Our invariant can be seen as a generalization of those introduced by several authors,
including Rudyak [18] and Strom [24].

From now on we shall assume that our cohomology classes are in J ( f, g)= im ( f ∗ − g∗)
because it is there where hw is defined, as the following Lemma proves.

LEMMA 5·7. If u ∈J ( f, g) then hw(u)� 1.

Proof. If D( f ◦ φ, g ◦ φ)= 0 then f ◦ φ 	 g ◦ φ, so φ∗( f ∗−g∗)= ( f ◦ φ)∗−(g ◦ φ)∗ = 0.
Since u = ( f ∗−g∗)v for some v ∈ H(Y ; R), we have φ∗u=0, and the result follows.

LEMMA 5·8. For any non-zero class u ∈J ( f, g)⊂ H(X) we have hw(u)� D( f, g).

Proof. If hw(u)� D( f, g)+ 1 = k + 1, then D( f ◦ idX , g ◦ idX )� k, so u = id∗
X u = 0.

THEOREM 5·9. Let u = u0 � · · ·� uk be a cup product of cohomology classes in
J ( f, g). Then

hw(u)�
k∑

j=0

hw(u j ).

Proof. It is enough to prove the result when k = 1. Let hw(u0)= m + 1 and hw(u1)=
n + 1. We want to prove that hw(u0 � u1)� m + n + 2. Let φ : A → X such that D( f ◦ φ,
g ◦ φ)� m + n + 1, then there exists an open covering {U0, . . . ,Um+n+1} of A such that
f ◦ φ|U j 	 g ◦ φ|U j for all j . Define V0 = U0 ∪ · · · ∪ Um and V1 = Um+1 ∪ · · · ∪ Um+n+1.
Then D( f ◦ φ|V0, g ◦ φ|V0)= m, so φ∗

|V0
u0 = 0. Analogously, D( f ◦ φ|V0, g ◦ φ|V0)= n

implies φ∗
|V1

u1 = 0.
Now, we consider the long exact sequence of the pair (A, V0),

H m(X)

· · · H m(A, V0) H m(A) H m(V0) · · ·
φ∗

j0 i∗
0

Since i∗
0φ

∗u0 = 0, there exists ξ0 ∈ H(A) such that j0(ξ)= φ∗(u0). Analogously, φ∗(u1)=
j1(ξ1). Then, as in the proof of Theorem 5·2, we have

φ∗(u0 � u1)= φ∗(u0)� φ∗(u1)= j0(ξ0)� j1(ξ1)

= j01(ξ0 �ξ1)= 0 ∈ H(A; V0 ∪ V1).

Theorem 5·2 can be read as follows: if u = u1 � · · ·� uk �= 0 is a non-zero product of
k cohomology classes in J ( f, g), then D( f, g) > k. Combining the latter Lemmas and
Proposition we have proved:

THEOREM 5·10. If u0 � · · ·� uk �= 0 is a non-zero product of k + 1 cohomology classes
in J ( f, g) then D( f, g)�

∑k
j=0 hw(u j ).
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The interest of this result is that it is possible to find elements of high category weight.
For instance, we can mimic [6, theorem 6], originally stated only for the TC weight. For
simplicity we only consider Steenrod squares, but it is possible to state it in a much larger
context for other cohomology operations.

Let θ = Sqi : H p(X;Z2)→ H p+i (X;Z2), for 0 � i � p, be a Steenrod square. Each one
of these squaring operations is a morphism of abelian groups that is natural and commutes
with the connecting morphisms in the Mayer–Vietoris sequence. Its excess equals i , so
θ(u)= 0 if u ∈ H n−1(X;Z2) with n � i [16, theorem 1].

THEOREM 5·11. If n � i and u ∈J ( f, g)⊂ H n(X;Z2), then hw(θ(u))� 2.

Proof. Let φ : A → X with D( f ◦ φ, g ◦ φ)� 1, so A = U0 ∪ U1 with f ◦ φ|U j 	 g ◦ φ|U j ,
for j = 0, 1. Consider the Mayer–Vietoris sequence

· · · H n−1(U0 ∩ U1) H n(A) H n(U0)⊕ H n(U1) · · ·δ

Since φ∗u = φ∗( f ∗ − g∗)v = (
f ◦ φ)∗ − (g ◦ φ)∗)v is zero on each U j , there exists w ∈

H n−1(U0 ∩ U1) such that δω= φ∗u. But then

φ∗(θu)= θ(φ∗u)= θ(δω)= δ(θω)= 0,

where the nullity holds because ω has degree n − 1< i .

6. Fibrations

6·1. Statement of results

A well-known result from Varadarajan [25] states that if π : E → B is a (Hurewicz)
fibration with generic fiber F and path-connected base B, then

cat(E)+ 1 �
(
cat(B)+ 1

)(
cat(F)+ 1

)
. (6·1)

On the other hand, Farber and Grant [6] proved that

TC(E)+ 1 �
(
T C(F)+ 1

) × cat
(
B × B

)
. (6·2)

We shall see that both results are particular cases of a much more general situation. Let
π ′ : E ′ → B ′ be another fibration with path-connected base B ′ and generic fibre F ′, and take
two fiber-preserving maps f, g : E → E ′, with induced maps f̄ , ḡ : B → B ′. That is, we
have π ′ ◦ f = f̄ ◦ π and π ′ ◦ g = ḡ ◦ π , as in the commutative diagram below:

E E ′

B B .′

′
¯

¯

π

f

g
π

f

g

Our aim is to prove the following result (both B and B ′ are assumed to be path-connected):
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THEOREM 6·1. Let b0 ∈ B with f̄ (b0)= b′
0 = ḡ(b0). If f0, g0 : F0 → F ′

0 are the induced
maps between the fibers of b0 and b′

0, then

D( f, g)+ 1 �
(
D( f0, g0)+ 1

) × (
cat(B)+ 1

)
.

It is well known that all the fibers Fb = π−1(b) of the fibration π have the same homotopy
type ([12, proposition 4·61]). Also it is known that if the base B is contractible then the
fibration is fiber homotopy equivalent to a product fibration ([12, corollary 4·63]). We need
a similar statement that will allow us to establish our notations.

LEMMA 6·2. If U is a categorical open set in B, which contracts to the point b0, then
the fibration π−1(U )→ U is fiber homotopy equivalent to the trivial fibration F0 × U.
Moreover, on each fiber Fb, b ∈ U, the restriction of the homotopy equivalence is a homotopy
equivalence Fb 	 F0.

Proof. There is a homotopy C : U × I → B with C0 the inclusion U ⊂ B and C1 the constant
map b0 : U → B. Then, the homotopy lifting property in the following diagram

π−1(U )× {0} E

π−1(U )× I U × I B

i0 π
C̃

π×id

C

(6·3)

gives us a map C̃ : π−1(U )× I → E such that C̃0 is the inclusion π−1(U )⊂ E and (π ◦ C̃)
(x, t)= C(π(x), t). As a consequence, we have a map (we use the same name with a slight
abuse of notation)

C̃1 : π−1(U )−→ F0 = π−1(b0). (6·4)

For each b ∈ U , the path Ct(b) in B connects the points b and b0, and it lifts, for each
x ∈ Fb, to the path C̃t(x), so the map (C̃1)|Fb : Fb → F0 is the usual one giving the homotopy
equivalence between the fibers.

The rest of the proof is similar to the usual one.

6·2. Proof of Theorem 6·1
Proof. We now start the proof of Theorem 6·1. Assume that cat(B)� m and let B = U0 ∪
· · · ∪ Um be a covering by categorical open sets.

For each U = Ui take the homotopy C̃ in (6·3) and the map C̃1 in (6·4). We shall use
the “coproduct notation” introduced after Definition 2·1. Then i0 ◦ C̃1 : P → E is homotopic
to the map p : P → E induced by the inclusion, for the disjoint union P = π−1(U0) � · · · �
π−1(Um) and the inclusion i0 : F0 ⊂ E .

If D( f0, g0)� n, let F0 = V0 ∪ · · · ∪ Vn with f0 ◦ v 	 g0 ◦ v, for the coproduct map v : V =
V0 � · · · � Vn → F0.

For each V = Vj ⊂ F0 take the open set

	(U, V )= π−1(U )∩ (C̃1)
−1(V )⊂ E .

It is clear that {	(Ui , Vj )} is an open covering of E .
We claim that f and g are homotopic in each 	(U, V ).
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To see it, we have that the map ω : Ω → E , induced by the inclusions in the disjoint union
Ω = �i j	(Ui , Vj ), is homotopic to the map i0 ◦ C̃1|Ω , because i0 ◦ C̃1 	 p. Hence f ◦ ω 	
( f ◦ C̃1)|Ω and g ◦ ω 	 (g ◦ C̃1)|Ω .

But C̃1(Ω) is contained in V, so in fact C̃1|Ω can be written as v ◦ C̃1|Ω .
Moreover, there is a homotopy between f0 ◦ v and g0 ◦ v, hence i ′

0 ◦ f0 ◦ v 	 i ′
0 ◦ g0 ◦ v,

where i ′
0 : F ′

0 ⊂ E ′ is the inclusion.
Finally we have

f ◦ω	 f ◦ i0 ◦ v ◦ C̃1|Ω = i ′
0 ◦ f0 ◦ v ◦ C̃1|Ω

	 i ′
0 ◦ g0 ◦ v ◦ C̃1|Ω = g ◦ i0 ◦ v ◦ C̃1|Ω

	 g ◦ω.

So the result follows.

Example 6·3. By taking E = E ′, B = B ′, f = idE , f̄ = idB , g = e0 a constant map and ḡ the
constant map b0 = π(e0) one obtains

D(idE , e0)+ 1 �
(
D(id0, e0)+ 1)× (cat(B)+ 1),

and we recover (6·1).

Example 6·4. In Theorem 6·1, take the projections p1, p2 as in the following diagram:

E × E E

B × B B

π×π

p1

p2
π

p1

p2

and use Theorem 2·6. We have p1(b0, b0)= b0 = p2(b0, b0). Since (p1)0, (p2)0 :
F0 × F0 → F0 are the projections, (6·2) follows.

7. Example

In this section we show an example of a Lie group G and two maps f, g : G → G such
that D( f, g)= 2 = l.c.p. H(G), while TC(G)= cat(G)= 3.

7·1. Description of the example

Let G = Sp(2) be the Lie group of 2 × 2 quaternionic matrices such that AA∗ = I (where
A∗ denotes the conjugate transpose and I = I2 is the identity matrix). Its dimension is 10. Its
cohomology is H(G)=�(x3, x7), the exterior algebra with two generators, so the length of
the cup product is l.c.p. H(G)= 2. It is also known that TC(G)= cat(G)= 3 [20].

Let f =μ2 : G → G be the map μ2(A)= A2 and let g = I be the constant map. We have
f ∗ω= 2ω for any bi-invariant form, while g∗ = 0. Then

l.c.p. J ( f, g)= 2 � D( f, g)� 3 = cat(G).
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I

Σ

−I

Fig. 2. The flow of the negative gradient of h.

We want to find a covering of G by three open sets where f, g are homotopic, by means of
the gradient flow of the function h : G →R given by the real part of the trace,

h(A)= � Tr(A).

The reader can find more information about this map in [10]. It is a Morse–Bott function,
whose critical set is

Crit h = {B ∈ G : B2 = I }.
That set has three connected components: the two points {±I} and the the orbit

� = {U PU ∗ : U ∈ Sp(2)} of the matrix

P =
[

1 0
0 −1

]
(7·1)

under the action of the group onto itself by conjugation. Hence � ∼= Sp(2)/(Sp(1)× Sp(1))
is a compact Grassmannian manifold with dim� = 4. Note that −P ∈�.

To end this preliminaries, we describe the foliated local structure of the gradient flow
near the critical set (see Figure 2). The stable manifold W +(�) of the critical submanifold
� (that is, the points of G whose flow line ends at �) fibers over �, and this fiber bundle
W +(�)→� is isomorphic to the positive normal bundle p+ : ν+(�)→� defined as fol-
lows: for the critical point B = U PU ∗ ∈�, the Hessian HB : TB G → TB G is given by [11]:

HB(X)= −1

2
(X B + B X).

Its kernel is the tangent space TB� to the critical orbit, and the normal space νB� decom-
poses as ν+

B ⊕ ν−
B depending on the sign of the eigenvalues of HB . All these constructions

are invariant by conjugation, so a simple computation for the particular case B = P shows

that ν+
B = Uν+

P U ∗, where X ∈ ν+
P if and only if X =

[
0 0
0 b

]
, with �(b)= 0, so dim ν+

B = 3.

Hence, the index of the critical manifold � equals 3. Analogously, W s(−I ) is a cell of
dimension 10.

7·2. Contractible open sets

We also need to describe the explicit categorical covering of Sp(2) given by the first author
in [11]. For that, for each of the matrices B = ±I,±P (see (7·1)), let us consider the open
neighbourhood

	G(B)= {A ∈ G : B + A invertible}.
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There are global diffeomorphisms (called Cayley transforms)

cB : 	G(B)−→ TB∗ G,

given by

cB(A)= (I − B∗ A)(B + A)−1,

which prove that each 	G(B) is a contractible open set. The inverse map of cB is cB∗ .
Moreover

	(I )∪	(−I )= G \� (7·2)

and

� ⊂	(P)∪	(−P).

7·3. Homotopies

We shall describe the following three open sets, covering G, where the maps f =μ2 and
g = I are homotopic.

(i) Let U0 = G \ (� ∪ {I }). Since h is a Morse–Bott function, there is a well defined
map sending each point A ∈ U0 to the final point φA(+∞) ∈� ∪ {−I } of the flow
line φA(t) passing through it. This map is not continuous, but we shall use the fact
that μ2(Crit h)= {I}.

We define

H : U0 × [0,+∞] −→ G

to be the map

H(A, t)=
{
φA(t) if 0 � t <+∞,

lim
t→∞ φA(t) if t = +∞.

Then μ2 ◦H0 = (μ2)|U0 while μ2 ◦H∞ is the constant map I. The explicit formulas
for the flow φA(t) given in [11] allow to prove that the map μ2 ◦H is continuous.

(ii) The second open set is the Cayley domain U1 =	G(I) (see 7·2), which is con-
tractible, hence μ2 	 I on it.

(iii) Finally, the third one will be a tubular open neighbourhood U2 = N (�) of the crit-
ical Grassmannian manifold �, in such a way that � is a deformation retract of
N (�), by a retraction

R : N (�)× [0, 1] −→ N (�)⊂ G.

That is, R0 is the inclusion N (�)⊂ G; and the image of R1 is contained in �.
Since the square of any critical point is I, we have that μ2 ◦R : N (�)× [0, 1] → G
is a homotopy between μ2 ◦R0 = (μ2)|N (�) and the constant map μ2 ◦R1 = I.

It is clear that G = U0 ∪ U1 ∪ U2, so D(I, μ2)� 2, as stated.
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8. Further ideas

8·1. Contiguity distance between simplicial maps

It is easy to adapt our definitions to the simplicial setting. For instance, in [7, 8, 9] simpli-
cial versions of LS-category and topological complexity were given by one of the authors.
With the classical notion of contiguous simplicial maps replacing that of homotopical
continuous maps, one can define a notion of distance between simplicial maps.

Definition 8·1. The contiguity distance SD(ϕ, ψ) between two simplicial maps ϕ, ψ :
K → K ′ is the least integer n � 0 such that there is a covering of K by subcomplexes
K0, . . . , Kn such that the restrictions ϕ|K j , ψ|K j : K j → K ′ are in the same contiguity class,
for all j = 0, . . . , n. If there is no such covering, we define SD( f, g)= ∞.

As expected, this notion of contiguity distance generalizes those of simplicial LS category
scat(K ) and discrete topological complexity TC(K ):

Example 8·2. Given two simplicial complexes K and L , denote by K
∏

L their categorical
product ([14]). The contiguity distance between the projections p1, p2 : K

∏
K → K equals

TC(K ), as follows from [7, theorem 3·4].

8·2. Higher homotopic distance

The notion of topological complexity has been extended to higher analogs ([19]). The
same can be done for the homotopy distance.

Definition 8·3. Given m continuous maps f1, . . . , fm : X → Y , their mth homotopy dis-
tance D( f1, . . . , fm) is the least integer n � 0 such that there exists a covering of X by
open subspaces {U0, . . . ,Un}, such that the restrictions f1|U j

	 . . .	 fm|U j
: U j → Y , for all

j = 0, . . . , n.

We denote the mth topological complexity of the space X by TCm(X). As expected, the
notion of mth homotopic distance generalizes the notion of higher topological complexity:

THEOREM 8·4. Given a path-connected topological space X , consider the projections

p1, . . . , pm : X× m)· · · ×X → X. Then D(p1, . . . , pm)= TCm(X).
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