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Abstract

Stochastic encounter-mating (SEM) models describe monogamous permanent pair
formation in finite zoological populations of multitype females and males. In this paper
we study SEM models with Poisson firing times. First, we prove that the model enjoys
a fluid limit as the population size diverges, that is, the stochastic dynamics converges
to a deterministic system governed by coupled ordinary differential equations (ODEs).
Then we convert these ODEs to the well-known Lotka–Volterra and replicator equations
from population dynamics. Next, under the so-called fine balance condition which
characterizes panmixia, we solve the corresponding replicator equations and give an exact
expression for the fluid limit. Finally, we consider the case with two types of female and
male. Without the fine balance assumption, but under certain symmetry conditions, we
give an explicit formula for the limiting mating pattern, and then use it to characterize
assortative mating.
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1. Introduction

1.1. The model

Consider a zoological population consisting of n females and n males, divided into k types
which are labeled 1, . . . , k. We denote by x

(n)
i ≥ 0 the number of type-i females and by

y
(n)
j ≥ 0 the number of type-j males for i, j ∈ [k] := {1, . . . , k}. To each type-i female

(respectively, type-j male) a Poisson process with rate αi (respectively, βj ) is attached. These
Poisson processes are mutually independent and they give the so-called firing times of the
animals. The mating preferences of the animals depend on their types, and form a k × k matrix
P = (pij )i,j∈[k] with 0 < pij ≤ 1. Under these assumptions, the dynamics of the population
is as follows. Initially all individuals are single. At any time, when the Poisson clock of one
of the single individuals rings (by the Poisson assumption no two individuals’ clocks ring at
the same time), it chooses a single individual from the opposite sex, uniformly at random, to
form a temporary pair. Next, if this temporary pair is comprised of a type-i female and a type-j
male, it becomes a permanent pair with probability pij and the individuals in that pair leave the
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singles pool; otherwise the temporary pair is broken and the individuals go back to the singles
pool. We refer to this two-stage permanent pair formation model as Poisson encounter mating
(Poisson EM). Observe that the number of types present in the female and male populations
need not be the same. Indeed, setting, for example, x

(n)
i = 0 would take type-i females out of

the pool.
We designate by Q

(n)
ij (t), t ≥ 0, the number of (permanent) type-ij pairs at time t . Here,

the first index always refers to the type of the female and the second to the type of the male. We
call the k × k matrix-valued process Q(n)(t) = (Q

(n)
ij (t))i,j∈[k] the pair-type process. Since the

Poisson processes are memoryless, Q(n) is a pure jump continuous-time Markov process. In
order to formally define Q(n), we briefly introduce some notation. Let Mk×k(A) denote the set
of k × k matrices whose entries are in A ⊆ R. For M = (Mij )i,j∈[k] ∈ Mk×k(A), we define
the ith row sum, the j th column sum, and the grand total of M , respectively, as

Mi,· =
k∑

j ′=1

Mij ′ , M·,j =
k∑

i′=1

Mi′j , Mtot =
k∑

i′=1

k∑
j ′=1

Mi′j ′ .

We denote by I ij the k × k matrix whose entries are zero except the ij th entry, which is 1.
Throughout this paper we use the max norm on Mk×k(A) given by |M| = maxi,j∈[k] |Mij |.
Since all matrix norms are equivalent, our results are valid for any choice of norm.

The pair-type process Q(n) is a continuous-time Markov process taking values in Mk×k(N∪
{0}) that has jumps of size 1, more precisely, the transitions are from M to M+I ij for i, j ∈ [k].
The transition rates are given by

ρ(n)(M, M + I ij ) = πij (x
(n)
i − Mi,·)(y(n)

j − M·,j )
n − Mtot

, (1.1)

where
� = (πij )i,j∈[k], πij = pij (αi + βj )

with the convention that ρ(n)(M, ·) ≡ 0 for M with Mtot = n.
Let us explain (1.1). When the pair-type formation at a time is M , the number of type-i

females (respectively, type-j males) in the singles pool isx
(n)
i − Mi,· (respectively, y(n)

j − M·,j ).
Also, by the description of the model, the total number of single females is always equal to that
of single males and given by n−Mtot. A new type-ij pair is formed in two ways: either the clock
of a type-i single female rings, this female encounters a type-j single male to form a temporary
pair, and finally, this pair becomes permanent; or similar has to happen with a type-j single
male’s clock ringing. In the first scenario, the total rate with which the clock of a type-i single
female rings is αi(x

(n)
i − Mi,·), the probability that it samples a type-j male from single males

is (y
(n)
j − M·,j )/(n − Mtot), the probability that the temporary pair formed becomes permanent

is pij , and the product of these terms yields the rate of this event. The corresponding terms in
the second scenario are βj (y

(n)
j − M·,j ), (x

(n)
i − Mi,·)/(n − Mtot), and pij . Finally, the sum

of the rates of these two events yields (1.1).
Since Q(n) is a pure jump Markov process for every n, it is possible to define the whole

family {Q(n) : n ∈ N} via a collection of independent standard Poisson processes whose joint
distribution we denote by P (see Section 2.1). We are interested in the infinite population
asymptotics of the model, therefore we assume that there are nonnegative numbers x1, . . . , xk

and y1, . . . , yk such that, for all i, j ∈ [k], as n → ∞,

n−1x
(n)
i → xi, n−1y

(n)
j → yj . (1.2)
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Fluid limit for the Poisson encounter-mating model 1203

Note that x1 + · · · + xk = y1 + · · · + yk = 1. We refer to such a collection of numbers
x1, . . . , xk, y1, . . . , yk as an infinite population from the species.

The pair-type process Q(n) naturally stops at

Tn := inf{t ≥ 0 : Q
(n)
tot (t) = n},

that is, when the singles pool is depleted and every individual is in a permanent pair. We call
Q(n)(Tn) the mating pattern of the population and it is of central importance in this paper. Note
that Q(n)(Tn) is a random k × k matrix (or contingency table) whose ith row sum is x

(n)
i and

j th column sum is y
(n)
j for all i, j ∈ [k]. We always assume that pij > 0 and αi + βj > 0 for

all i, j ∈ [k]. Hence, almost surely Tn < ∞.

1.2. Panmixia, homogamy, and heterogamy

One fundamental question about the mating pattern is whether correlations exist between
female and male types. Zero correlations correspond to the case where the relative frequency
of type-ij pairs is given by the product of the relative frequencies of type-i females and type-j
males, which has been called ‘panmixia’ in the literature. Since we investigate Poisson EM
as the population size diverges and establish a strong limit theorem for the mating pattern
Q(n)(Tn), we naturally use the following definition of panmixia.

Definition 1.1. An infinite population x1, . . . , xk, y1, . . . , yk is said to be panmictic if P-almost
surely (P-a.s.)

lim
n→∞ n−1Q

(n)
ij (Tn) = xiyj for all i, j ∈ [k].

The species is said to be panmictic if every infinite population from the species is panmictic.

Complementing the concept of panmixia is assortative mating. Homogamy (respectively,
heterogamy) describes the situations where there are positive (respectively, negative) correla-
tions in the mating pattern between females and males with similar types. In order to make the
definition of assortative mating precise, one needs a (genotypical or phenotypical) distance on
the set of types. Such a structure for types must be reflected on preferences and this requires
a more complex model. However, when k = 2, we can conveniently define assortative mating
since there is a unique metric on {1, 2}. Moreover, in this case, there is homogamy (respectively,
heterogamy) for type-1 if and only if there is homogamy (respectively, heterogamy) for type-2.
These observations lead to the following definition.

Definition 1.2. For k = 2, an infinite population x1, x2, y1, y2 with x1x2y1y2 �= 0 is said to be
homogamous if P-a.s.

lim
n→∞ n−1Q

(n)
12 (Tn) < x1y2,

and heterogamous if P-a.s.
lim

n→∞ n−1Q
(n)
12 (Tn) > x1y2.

The species is said to be homogamous (respectively, heterogamous) if every such infinite
population from the species is homogamous (respectively, heterogamous).

Note that definitions of both panmixia and homogamy/heterogamy assume the existence of
the infinite population limit of the normalized mating pattern and that this limit is the same
for all sequences of finite populations satisfying (1.2), which are shown in Section 2. For
the corresponding definitions in the context of finite populations, one has to replace limits with
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expectations (see (1.4) for k = 2). Also, observe that in the definition of homogamy/heterogamy
we exclude the cases where one type is absent, since otherwise the system is trivial and there
is panmixia for all choices of parameters.

1.3. Previous results

In [9], Gimelfarb introduced two discrete-time models for permanent monogamous pair
formation: individual and mass encounter mating. In the first model, at each time step, one
single female and one single male are selected, both uniformly at random, to form a temporary
pair and this pair becomes permanent exactly as in the Poisson EM model with probability pij .
Observe that if we set, say, αi = 0 and βj = 1 for all i, j ∈ [k], then the dynamics of
Gimelfarb’s individual encounter-mating model is the same as the embedded discrete-time
chain of the pair-type process Q(n) of Poisson EM, and, in particular, the mating patterns of
the two models coincide. The mass encounter-mating model has a very different encounter
mechanism where, at each time step, all the single females and males form temporary pairs
according to a permutation chosen uniformly at random, while the mechanism of permanent pair
formation from temporary pairs is as before. The main conceptual conclusion of Gimelfarb
was that the mating pattern depends not only on the preferences, but also on the encounter
mechanism. Moreover, given the encounter mechanism, different mating preferences can lead
to the same mating pattern. He then stated conditions on the parameters of the models that
he conjectured to be sufficient for panmixia, supported the one for mass encounter with a
nonrigorous argument, and provided numerical evidence only in the individual encounter case.

In [10], we introduced the stochastic encounter-mating (SEM) model to unify and generalize
Gimelfarb’s models. The key feature of this generalization is the introduction of firing times
which allows one to define a wide range of models and take advantage of their invariance under
certain changes of parameters. We investigated in detail the special case where pij = 1 for all
i, j ∈ [k], that is, definite mating upon encounter, and proved among other things that there
is panmixia for all firing time distributions and that the firing times and the mating pattern are
independent. As we have already seen, the pair-type process of Poisson EM is a continuous-time
Markov process whose rates depend on the parameters of the model through πij = pij (αi +βj ).
Hence, one can play with the parameters without changing the model as long as the πij stay
the same. Using this and our analysis of the case with definite mating upon encounter, we
concluded that the model exhibits panmixia if there are nonnegative numbers ᾱi and β̄j such
that πij = pij (αi + βj ) = 1(ᾱi + β̄j ) for every i, j ∈ [k]. We record this condition for future
reference.

Definition 1.3. We say that Poisson EM satisfies the fine balance condition if there exist
nonnegative numbers ᾱ1, . . . , ᾱk and β̄1, . . . , β̄k such that

πij = ᾱi + β̄j for all i, j ∈ [k]. (1.3)

Equivalently,

πij + πi′j ′ = πij ′ + πi′j for all i, i′, j, j ′ ∈ [k].
The fine balance condition is precisely what Gimelfarb had conjectured in [9] to be sufficient

for panmixia in the context of individual encounter mating. In [10], we not only settled
this conjecture, but also used a recursive argument to prove that the fine balance condition
is necessary for the species to be panmictic. Moreover, under the fine balance condition we
stated the distributions of the pair-type process Q(n)(t) and the mating pattern Q(n)(Tn). Finally,
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we answered the assortative mating question when k = 2: for any x
(n)
1 x

(n)
2 y

(n)
1 y

(n)
2 �= 0,

(homogamy for fin. pop.) E[Q(n)
12 (Tn)] < n−1x

(n)
1 y

(n)
2 if π11 + π22 > π12 + π21,

(panmixia for fin. pop.) E[Q(n)
12 (Tn)] = n−1x

(n)
1 y

(n)
2 if π11 + π22 = π12 + π21,

(heterogamy for fin. pop.) E[Q(n)
12 (Tn)] > n−1x

(n)
1 y

(n)
2 if π11 + π22 < π12 + π21,

(1.4)

where we use the abbreviation ‘fin. pop.’ to mean finite population. Here, E denotes expectation
with respect to P.

1.4. Overview of results

In this paper we analyze the dynamics of the Poisson EM model as the population size n

diverges. In Section 2 we start our investigation by observing that the pair-type process Q(n) is
approximately a density-dependent population process. Then we show that Q(n) rescaled by n

converges P-a.s. in the sup norm up to any finite time, where the limiting (deterministic) process
Q(t) solves a system of coupled ordinary differential equations (ODEs). More precisely, in
Theorem 2.1 we prove that, P-a.s.

lim
n→∞ sup

0≤t≤T

|n−1Q(n)(t) − Q(t)| = 0 for every T ∈ [0, ∞),

where Q(t) = (Qij (t))i,j∈[k] satisfies

d

dt
Qij (t) = πij (xi − Qi,·(t))(yj − Q·,j (t))

1 − Qtot(t)
, (1.5)

with Qij (0) = 0. This type of generalization of the law of large numbers (LLN), regarding the
convergence of the rescaled paths of a pure jump Markov process to a solution of a system of
ODEs, is known as the fluid limit and is due to [13]. Here, Q represents the infinite population
pair-type process and we use the terms pairs, singles, and so on for Q as well. As a consequence
of the fluid limit, we prove in Theorem 2.2 that P-a.s. the mating pattern of the infinite population
satisfies

lim
n→∞ n−1Q(n)(Tn) = Q(∞) := lim

t→∞ Q(t).

After establishing these limit theorems, we focus on the evolution of Q. In Section 3 we
relate the system of ODEs that describe Q to the well-known Lotka–Volterra and replicator
equations from population dynamics. Let Xi(t), Yj (t), and Z(t) denote the density of type-i
single females, type-j single males, and all single females (or males):

Xi(t) := xi − Qi,·(t), Yj (t) := yj − Q·,j (t), Z(t) := 1 − Qtot(t). (1.6)

Then, for all i, j ∈ [k],

d

dt
Xi(t) = −Xi(t)

Z(t)

k∑
j=1

πijYj (t),
d

dt
Yj (t) = −Yj (t)

Z(t)

k∑
i=1

πijXi(t), (1.7)

with Xi(0) = xi and Yj (0) = yj . Hence, up to a time change due to the Z(t) term, this is a
system of 2k Lotka–Volterra equations where the intrinsic growth (or decay) rate is 0 for all types
and sexes. See Theorem 3.1 for the precise statement. Another important equation in population
dynamics is the replicator equation, first introduced in [18]. Replicator equations describe the
evolution of different types in a population under density-dependent fitness functions and are
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often used in the context of evolutionary game theory. In general, a Lotka–Volterra equation
with l variables is equivalent to a replicator equation with l + 1 variables; see [11, Theorem
7.5.1]. However, when intrinsic growth rates are constant, one does not need to increase the
dimension to obtain a replicator equation. Indeed, the relative frequencies of types in the Lotka–
Volterra system, up to a time change, solve the replicator equation with the same interactions.
In particular, setting Ai(t) := Xi(t)/Z(t) and Bj (t) := Yj (t)/Z(t) for all i, j ∈ [k], we also
prove in Theorem 3.1 that

d

dt
Ai(t) = −Ai(t)

[ k∑
j=1

πijBj (t) − C̄(t)

]
,

d

dt
Bj (t) = −Bj (t)

[ k∑
i=1

πijAi(t) − C̄(t)

]
,

(1.8)

where

C̄(t) :=
k∑

i=1

k∑
j=1

πijAi(t)Bj (t).

We use (1.6)–(1.8) to deduce that

d

dt
Z(t) = −Z(t)

k∑
i=1

k∑
j=1

Ai(t)Bj (t). (1.9)

By (1.5), we observe that

d

dt
Qij (t) = πijZ(t)Ai(t)Bj (t), (1.10)

and, thus, find a three-step procedure for obtaining a formula for Q(t):

• solve the replicator equations (1.8) for the Ai and Bj ;

• solve (1.9) to find the total mass Z(t) of the corresponding (time-changed) Lotka–Volterra
equations;

• solve (1.10).

In Section 3.2 we focus on the fine balance case. We carry out the three-step procedure and
obtain a formula for Q(t) for all t ∈ [0, ∞], and, in particular, for the mating pattern Q(∞).
Namely, in Theorem 3.2 we show that

Ai(t) = xie−ᾱi t∑
i′ xi′e−ᾱi′ t

, Bj (t) = yj e−β̄j t∑
j ′ yj ′e−β̄j ′ t

,

Qij (t) = xiyj (1 − e−πij t ), Qij (∞) = xiyj .

Here, recall that ᾱi and β̄j are from the fine balance condition given in Definition 1.3. These
formulae are fully consistent with those obtained in [10, Theorem 3.6] for the expectations of
the pair-type process and the mating pattern in the finite population setting, but here we employ
a totally different approach via the replicator equations.

Finally, in Section 4 we study the k = 2 case with π12 = π21 and x1 = y1. Due to these
symmetries, the evolution of the system can be reduced to that of only, say, females. As a result,

https://doi.org/10.1017/apr.2017.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.39


Fluid limit for the Poisson encounter-mating model 1207

the corresponding replicator dynamics is one-dimensional. More precisely, Ai(t) = Bi(t) for
all t ≥ 0 and i = 1, 2, and setting A2(t) = 1 − A1(t), we obtain

d

dt
A1(t) = −(π11 + π22 − 2π12)A1(t)(1 − A1(t))(A1(t) − γ ), (1.11)

where
γ = π22 − π12

π11 + π22 − 2π12
. (1.12)

Note that in Section 3.2 we explicitly solve the fine balance case which corresponds to π11 +
π22 − 2π12 = 0, so we can exclude it, and (1.12) is then well defined. We derive a formula for
Q12(t) in terms of A1(t) which depends on the value of γ :

• for γ = 1,

Q12(t) = θ1

1 − x1

∫ A1(t)

x1

(
1 − x

1 − x1

)θ1−1(
x

x1

)−θ1−1

exp

{
−θ1

(
1

1 − x
− 1

1 − x1

)}
dx;

• for γ = 0,

Q12(t) = θ2

x1

∫ 1−A1(t)

1−x1

(
1 − x

x1

)θ2−1(
x

1 − x1

)−θ2−1

exp

{
−θ2

(
1

1 − x
− 1

x1

)}
dx;

• for γ /∈ {0, 1},

Q12(t) = − π12(x1 − γ )−1

π11 + π22 − 2π12

∫ A1(t)

x1

(
x

x1

)−θ1−1( 1 − x

1 − x1

)−θ2−1(
x − γ

x1 − γ

)θ1+θ2

dx.

Here, θ1 = π12/(π22 − π12) and θ2 = π12/(π11 − π12). The stability analysis of A1 is then
carried out simply using (1.11), and we obtain an explicit formula for the mating pattern. As an
application of this formula, we show in Theorem 4.1 that an infinite population x1, x2, y1, y2
with x1 = y1 ∈ (0, 1) is homogamous (respectively, heterogamous) if π11 + π22 > 2π12
(respectively, π11 + π22 < 2π12), which is consistent with (1.4), but this time in the infinite
population setting and under the symmetry conditions.

1.5. Some remarks and open problems

Several authors have previously studied mating models that are similar to the ones in [9].
See [10] for general references regarding pair formation models. One work of particular interest
is [17], where the ODE describing Q(t) was given for two types and studied numerically.

Panmixia is an important concept in population genetics. It is one of the main assumptions of
the Hardy–Weinberg law which states that genotype frequencies remain constant in a population
on which no evolutionary force acts; see, for example, [6, Chapter 1]. In the literature, panmixia
is also referred to as ‘random mating’. However, this term is obviously misleading since
mating can be random yet assortative. Moreover, this confusion is even greater for a bottom-
up approach such as in SEM, where ‘random mating’ suggests that there are no preferences.
Indeed, we show in Theorem 3.2 that there are instances where the mating pattern exhibits zero
correlations between female and male types, even though there are nontrivial preferences.

In the case of assortative mating, the genotype frequencies might differ greatly from the ones
predicted by the Hardy–Weinberg law; see [7, Chapter 4] and the references therein. Moreover,
assortative mating is one of the key concepts of sexual selection, that is, the evolutionary force
driven by mating. In the literature on sexual selection, most models of pair formation assume
that females unilaterally accept or reject males. Various consequences of female choice have
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been studied in, for example, [12] and [15]. Observe that in the SEM model there is no
specification of which sex makes the choice. Actually, this is an advantage of the model:
unilateral decisions and choosiness can be incorporated into SEM by appropriately tuning the
parameters, while retaining certain degrees of freedom that can be exploited for the purpose of
finding exact formulae. However, to enable a self-contained study of sexual selection through
SEM we need to extend the model in various directions which we discuss next.

SEM is about permanent pair formation and can be seen as a model of monogamous mating
of animals in one mating season. Then, one natural direction in which to extend this model is to
change the permanent pair structure. A simple way to do this would be to let the pairs separate
with a certain rate and send the individuals that form it back to the singles pool. The lifetime
of a pair corresponds to ‘latency’ in the biological context. These kinds of model are important
in the study of the evolution of female choice and the mutual evolution of female and male
choices (via certain payoff functions for staying together depending on types; see [5] and [2],
respectively) and also suitable for studying sexually transmitted diseases; see [3]. SEM can be
generalized also by introducing polygamy, with each male having a limited number of mates
(see [16] for such a model in a simpler setting). Finally, adding offspring production might
lead to more general Lotka–Volterra systems.

The pair-type process of the Poisson EM model is density dependent, albeit approximately.
Fluid and diffusion limits were first established for such processes by Kurtz [13], [14]. However,
to the best of the authors’ knowledge, none of the general results in the literature directly cover
our model (see Remark 2.1 for details). It is for this reason that we provide a self-contained
proof of the fluid limit (Theorem 2.1). One can similarly try to establish a functional central
limit theorem (CLT) for the pair-type process and then a CLT for the mating pattern which
would complement the LLN (Theorem 2.2). This is one of our ongoing projects.

In Section 4 we follow the three-step procedure outlined in (1.8)–(1.10) and obtain a formula
for Q(t) in the symmetric 2 × 2 case where the replicator equation constituting the first step
is one-dimensional. One can attempt to follow the same procedure in, first, the general 2 × 2
case and, secondly, the symmetric 3 × 3 case. Phase portraits of all Lotka–Volterra equations
on the plane, hence of all two-dimensional replicator equations with constant intrinsic growth
rates, were given in [1], which suggests that it might be possible to obtain an exact formula for
the mating pattern in these two cases, too. However, much less is known about Lotka–Volterra
equations in higher dimensions. In particular, numerical simulations show that the behavior in
higher dimensions is chaotic and the type of chaos they exhibit is not understood at all. See [8]
for an example of chaos in three dimensions.

2. Fluid limit and LLN

2.1. Fluid limit of the pair-type process

The state space of the rescaled pair-type process n−1Q(n)(t) is

En := {M ∈ Mk×k(n−1
N ∪ {0}) : Mi,· ≤ n−1x

(n)
i , M·,j ≤ n−1y

(n)
j for all i, j ∈ [k]}.

Define F (n) = (F
(n)
ij )i,j∈[k] : En → Mk×k([0, ∞)) by

F
(n)
ij (M) :=

⎧⎪⎨
⎪⎩

πij (n
−1x

(n)
i − Mi,·)(n−1y

(n)
j − M·,j )

1 − Mtot
if Mtot < 1,

0 if Mtot = 1.
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We can rewrite the transition rates of Q(n), given in (1.1), as

ρ(n)(M, M + I ij ) = nF
(n)
ij (n−1M).

Consequently, we have the following representation (see [4, Section 6.4]):

Q
(n)
ij (t) = Jij

(
n

∫ t

0
F

(n)
ij (n−1Q(n)(s)) ds

)
.

Here, {Jij : i, j ∈ [k]} is a collection of independent standard Poisson processes defined on a
common probability space (	, F , P). Therefore, n−1Q(n) is defined for all n ∈ N on the same
probability space, too.

In the following theorem we establish the fluid limit of the pair-type process, where the
limiting (deterministic) process takes values in

E := {M ∈ Mk×k([0, ∞)) : Mi,· ≤ xi, M·,j ≤ yj for all i, j ∈ [k]}
and satisfies a system of ODEs involving

F = (Fij )i,j∈[k] : Mk×k([0, ∞)) → Mk×k([0, ∞)),

which is defined by

Fij (M) :=
⎧⎨
⎩

πij (xi − Mi,·)(yj − M·,j )
1 − Mtot

if Mtot �= 1,

0 if Mtot = 1.

(2.1)

Theorem 2.1. There exists a function Q = (Qij )i,j∈[k] : [0, ∞) → E satisfying

Q(t) =
∫ t

0
F(Q(s)) ds, (2.2)

and, for any T ∈ [0, ∞), P-a.s.

lim
n→∞ sup

0≤t≤T

|n−1Q(n)(t) − Q(t)| = 0.

Since F (n) and F are close (in an appropriate sense which is made precise below) when n

is large, Q(n) is approximately a density-dependent population process (see [4, Chapter 11]).
Fluid limits were first obtained for such processes by Kurtz [13] (showing convergence in
probability) and then [14] (showing almost sure convergence). The proof of Theorem 2.1 is
adapted from the latter work, but it involves some modifications (see Remark 2.1). Before
presenting the proof, we give two lemmas.

Lemma 2.1. Let n ∈ N and i, j, i′, j ′ ∈ [k].
(i) For every M ∈ En and M ′ ∈ E ,

0 ≤ F
(n)
ij (M) ≤ n−1πij (x

(n)
i ∧ y

(n)
j ) ≤ πij ,

0 ≤ Fij (M
′) ≤ πij (xi ∧ yj ) ≤ πij .

(2.3)
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(ii) For every M ∈ Mk×k([0, ∞)) with Mtot < 1,

∂Fij (M)

∂Mi′j ′
= πij

[(
xi − Mi,·
1 − Mtot

)(
yj − M·,j
1 − Mtot

)
−

(
xi − Mi,·
1 − Mtot

)
δjj ′ −

(
yj − M·,j
1 − Mtot

)
δii′

]
,

where δij denotes the Kronecker delta function. In particular,

∣∣∣∣∂Fij (M)

∂Mi′j ′

∣∣∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πij if Mtot < 1 and M ∈ E ,

πij

(
1

(1 − Mtot)2 + δii′ + δjj ′

1 − Mtot

)

≤ 3πij

(1 − Mtot)2 if Mtot < 1 and M /∈ E .

(2.4)

(iii) For every M ∈ En with Mtot < 1,

F
(n)
ij (M) − Fij (M)

= πij

1 − Mtot
[(n−1x

(n)
i − xi)(n

−1y
(n)
j − M·,j ) + (n−1y

(n)
j − yj )(xi − Mi,·)].

In particular,

|F (n)
ij (M) − Fij (M)|

≤

⎧⎪⎨
⎪⎩

πij [|n−1x
(n)
i − xi | + |n−1y

(n)
j − yj |] if M ∈ En ∩ E ,

πij

[
|n−1x

(n)
i − xi | + 1

1 − Mtot
|n−1y

(n)
j − yj |

]
if M ∈ En \ E .

(2.5)

Proof. Verification of the equalities in parts (ii) and (iii) is left to the reader. For every
i, j ∈ [k], if M ∈ E then

0 ≤ xi − Mi,· ≤ 1 − Mtot and 0 ≤ yj − M·,j ≤ 1 − Mtot. (2.6)

Similarly, ifM ∈ En then (2.6) holds withxi (respectively, yj ) replaced byn−1x
(n)
i (respectively,

n−1y
(n)
j ). On the other hand, if Mtot < 1 and M /∈ E then (2.6) does not necessarily hold.

Instead,
|xi − Mi,·| ≤ xi ∨ Mi,· ≤ 1 and |yj − M·,j | ≤ yj ∨ M·,j ≤ 1.

Using these bounds, the inequalities in (2.3)–(2.5) are easily deduced. �

Lemma 2.2. For every T ∈ [0, ∞) and c > π := maxi,j∈[k] πij ,

P(1 − n−1Q
(n)
tot (T ) ≥ e−cT for sufficiently large n) = 1.

Proof. Assume without loss of generality that pij = πij /π̄ , αi ≡ 0, and βj ≡ π̄ .
In particular, only the clocks of males ring. Fix T ∈ [0, ∞) and let R(n)(T ) be the number of
males whose clock has not rung by time T . Since n − Q

(n)
tot (T ) is the number of males who are

single by time T ,

n − Q
(n)
tot (T ) ≥ R(n)(T ). (2.7)
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Enumerate the males and let

ξm(T ) =
{

1 if the mth male’s clock has not rung by time T ,

0 otherwise.

Then, (ξm(T ))m∈[n] are independent Bernoulli trials with P(ξm(T ) = 1) = e−π̄T . Fix c > π̄ .
Since R(n)(T ) = ∑n

m=1 ξm(T ), a standard application of the exponential Chebyshev inequality
shows that P(n−1R(n)(T ) < e−cT ) → 0 exponentially as n → ∞. By the Borel–Cantelli
lemma,

P(n−1R(n)(T ) ≥ e−cT for sufficiently large n) = 1.

In combination with (2.7), this implies the desired result. �

Proof of Theorem 2.1. Since F is bounded and Lipschitz continuous on E by Lemma 2.1(i)
and 2.1(ii), the system of ODEs in (2.2) has a unique solution Q. Let us show that this solution
exists for all times. By our assumptions in the introduction, πij = pij (αi + βj ) > 0 for all
i, j ∈ [k]. Thus, π := mini,j∈[k] πij > 0. Recalling that π := maxi,j∈[k] πij and (2.1), we
obtain

π(1 − Qtot(t)) ≤ d

dt
Qtot(t) ≤ π̄(1 − Qtot(t)).

Since Qtot(0) = 0, this implies

1 − e−πt ≤ Qtot(t) ≤ 1 − e−π̄ t . (2.8)

Thus, Qtot(t) < 1 for any t ∈ [0, ∞), and, in particular, Q exists for all times.
The difference between the rescaled pair-type process and its prospective limit Q can be

controlled as follows. For every i, j ∈ [k] and t ∈ [0, T ],

|n−1Q
(n)
ij (t) − Qij (t)|

=
∣∣∣∣n−1Jij

(
n

∫ t

0
F

(n)
ij (n−1Q(n)(s)) ds

)
−

∫ t

0
Fij (Q(s)) ds

∣∣∣∣
≤

∣∣∣∣n−1Jij

(
n

∫ t

0
F

(n)
ij (n−1Q(n)(s)) ds

)
−

∫ t

0
F

(n)
ij (n−1Q(n)(s)) ds

∣∣∣∣ (2.9)

+
∣∣∣∣
∫ t

0
F

(n)
ij (n−1Q(n)(s)) ds −

∫ t

0
Fij (n

−1Q(n)(s)) ds

∣∣∣∣ (2.10)

+
∣∣∣∣
∫ t

0
Fij (n

−1Q(n)(s)) ds −
∫ t

0
Fij (Q(s)) ds

∣∣∣∣. (2.11)

It follows from Lemma 2.1(i) that the term in (2.9) is bounded from above by

a
(n)
ij (t) := sup

0≤u≤πij t

|n−1Jij (nu) − u| ≤ a
(n)
ij (T ).

Fix c > π̄ . Lemma 2.1(iii) and Lemma 2.2 imply that, on some 	T ∈ F with P(	T ) = 1, the
term in (2.10) is bounded from above by

b
(n)
ij (t) := πij t[|n−1x

(n)
i − xi | + ecT |n−1y

(n)
j − yj |] ≤ b

(n)
ij (T )
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for sufficiently large n. Similarly, using Lemma 2.1(ii), Lemma 2.2, and (2.8) on the set 	T ,
the term in (2.11) is bounded from above by

3k2πij e2cT

∫ t

0
|n−1Q(n)(s) − Q(s)| ds

for sufficiently large n. (Recall from the introduction that |M| = maxi,j∈[k] |Mij |.) Therefore,

|n−1Q(n)(t) − Q(t)| ≤ max
i,j∈[k](a

(n)
ij (T ) + b

(n)
ij (T )) + 3k2πe2cT

∫ t

0
|n−1Q(n)(s) − Q(s)| ds.

Since Q(n)(0) = Q(0) = 0,

|n−1Q(n)(t) − Q(t)| ≤ max
i,j∈[k](a

(n)
ij (T ) + b

(n)
ij (T )) exp{3k2πte2cT }

on 	T by Gronwall’s inequality. For every i, j ∈ [k], a standard application of Doob’s
martingale inequality (followed by the Borel–Cantelli lemma) yields

P

(
lim

n→∞ a
(n)
ij (T ) = 0

)
= 1.

Since limn→∞ b
(n)
ij (T ) = 0 by our assumption in (1.2), the proof is complete. �

Remark 2.1. The existence of the fluid limit was stated and proved in [14, Theorem 2.2] for a
wide class of density-dependent population processes. In order for this class to contain Q(n),
two conditions would have to be satisfied:

(i) F is Lipschitz continuous on En ∪ E ; and

(ii) |F (n)(M) − F(M)| = O(n−1) uniformly for M ∈ En.

However, as we have seen in (2.4) and (2.5), these conditions fail to hold in general since En

need not be a subset of E . In the proof of Theorem 2.1, we resolved these issues with the help
of Lemma 2.2 (which allowed us to restrict the analysis to the region where Mtot is bounded
away from 1) and the observation that the error in the second condition can be relaxed to o(1).

2.2. LLN for the mating pattern

We first describe the state space of the rescaled mating patternn−1Q(n)(Tn) and its asymptotic
counterpart. Define

E ′
n := {M ∈ Mk×k(n−1

N ∪ {0}) : Mi,· = n−1x
(n)
i , M·,j = n−1y

(n)
j for all i, j ∈ [k]},

E ′ := {M ∈ Mk×k([0, ∞)) : Mi,· = xi, M·,j = yj for all i, j ∈ [k]}.
By definition, at time Tn there are no singles left and, thus, n−1Q(n)(Tn) ∈ E ′

n ⊂ En. Also note
that, for M ∈ E , F(M) = 0 if and only if M ∈ E ′. As a result, using (2.8), we can conclude
that limt→∞ Q(t) =: Q(∞) exists and Q(∞) ∈ E ′ ⊂ E .

The following result extends the fluid limit of the pair-type process (Theorem 2.1) to an LLN
for the mating pattern.

Theorem 2.2. We have P-a.s.

lim
n→∞ n−1Q(n)(Tn) = Q(∞).
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Proof. We define

T δ := inf{t ≥ 0 : Qtot(t) ≥ 1 − δ}, δ > 0.

By (2.8), we have T δ < ∞ and T δ → ∞ as δ → 0. Also, it is clear that

|Q(T δ) − Q(∞)| ≤ δ.

Now we define the corresponding stopping time for the Markov process Q(n) by

T δ
n := inf{t ≥ 0 : n−1Q

(n)
tot (t) ≥ 1 − δ}, δ > 0.

Then, since obviously Tn ≥ T δ
n for any δ > 0 and n ≥ 1, we have

|n−1Q(n)(Tn) − n−1Q(n)(T δ
n )| ≤ δ.

The triangle inequality yields

|n−1Q(n)(Tn) − Q(∞)|
≤ |n−1Q(n)(Tn) − n−1Q(n)(T δ

n )| + |n−1Q(n)(T δ
n ) − Q(T δ)| + |Q(T δ) − Q(∞)|

≤ |n−1Q(n)(T δ
n ) − Q(T δ)| + 2δ.

Therefore, the desired result will follow once we prove that P-a.s.

lim
n→∞ n−1Q(n)(T δ

n ) = Q(T δ). (2.12)

Fix δ > 0. For any ε < δ we have again T δ−ε < ∞. Thus, via Theorem 2.1, P-a.s. for all
sufficiently large n,

n−1Q
(n)
tot (T

δ−ε) ≥ Qtot(T
δ−ε) − ε

2
= 1 − δ + ε

2
> 1 − δ.

Hence, P-a.s. lim supn→∞ T δ
n ≤ T δ−ε. Now we use Theorem 2.1 on the time interval [0, T δ].

Then, P-a.s. for all sufficiently large n and for t ≤ T δ with n−1Q
(n)
tot (t) ≥ 1 − δ,

Qtot(t) ≥ n−1Q
(n)
tot (t) − ε

2
≥ 1 − δ − ε

2
> 1 − δ − ε.

Thus, t ≥ T δ+ε for any such t . Also, for any t > T δ , since T δ ≥ T δ+ε, we have t > T δ+ε.
Hence, P-a.s. for all sufficiently large n and t ≥ 0 with n−1Q

(n)
tot (t) ≥ 1 − δ, we have t ≥ T δ+ε,

that is, lim infn→∞ T δ
n ≥ T δ+ε. Since Qtot is continuous and increasing, as ε → 0, both

T δ+ε → T δ and T δ−ε → T δ . Therefore, P-a.s.

lim
n→∞ T δ

n → T δ.

Hence, for any ε′ > 0 given, P-a.s. for all sufficiently large n, we have T δ − ε′ ≤ T δ
n ≤ T δ + ε′.

Since Q
(n)
ij (t) is nondecreasing in t for any i, j ∈ [k],

n−1Q
(n)
ij (T δ − ε′) − Qij (T

δ) ≤ n−1Q
(n)
ij (T δ

n ) − Qij (T
δ) ≤ n−1Q

(n)
ij (T δ + ε′) − Qij (T

δ).

Via the inequalities

|n−1Q
(n)
ij (T δ−ε′)−Qij (T

δ)| ≤ |n−1Q
(n)
ij (T δ−ε′)−Qij (T

δ−ε′)|+|Qij (T
δ − ε′)−Qij (T

δ)|
and

|n−1Q
(n)
ij (T δ+ε′)−Qij (T

δ)| ≤ |n−1Q
(n)
ij (T δ+ε′)−Qij (T

δ+ε′)|+|Qij (T
δ + ε′)−Qij (T

δ)|,
using once again Theorem 2.1 and the continuity of Q, we see that (2.12) follows and the proof
is complete. �
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3. Analysis of the fluid limit

3.1. Lotka–Volterra and replicator equations

Recall from Section 1.4 that

Xi(t) = xi − Qi,·(t), Yj (t) = yj − Q·,j (t), Z(t) = 1 − Qtot(t)

denote the density of type-i single females, type-j single males, and all single females (or
males), respectively. We have also introduced

Ai(t) = Xi(t)

Z(t)
and Bj (t) = Yj (t)

Z(t)
.

In words, Ai is the fraction of type-i females among all single females, and Bj is the fraction
of type-j males among all single males. Then, for any t ≥ 0,

A1(t) + · · · + Ak(t) = B1(t) + · · · + Bk(t) = 1.

To state our next result, we define a 2k × 2k matrix

�̂ :=
(

0 �

�� 0

)

as well as vector-valued functions

U(t) := (X1(t), . . . , Xk(t), Y1(t), . . . , Yk(t)),

C(t) := 1
2 (A1(t), . . . , Ak(t), B1(t), . . . , Bk(t)).

Theorem 3.1. (i) It holds that U satisfies

d

dt
Ui(t) = − 1

Z(t)
Ui(t)(�̂U(t))i , i ∈ [2k], t ∈ (0, ∞), (3.1)

that is, up to a time change, U is the solution of a system of Lotka–Volterra equations.

(ii) It holds that C satisfies the following system of replicator equations:

d

dt
Ci(t) = −2Ci(t)[(�̂C(t))i − C�(t)�̂C(t)], i ∈ [2k], t ∈ (0, ∞). (3.2)

Remark 3.1. When the matrix � is symmetric, which means that its entries do not depend on
the sexes, but only on the types, and if xi = yi for all i ∈ [k], it is clear that Xi(t) = Yi(t)

and Ai(t) = Bi(t) for all i ∈ [k] and t ≥ 0. Consequently, the 2k replicator equations in (3.2)
simplify to the following replicator system with k variables:

d

dt
Ai(t) = −Ai(t)[(�A(t))i − A�(t)�A(t)], i ∈ [k], t ∈ (0, ∞). (3.3)

We use this observation in Section 4 while studying the symmetric 2 × 2 case. A similar
simplification also applies to the Lotka–Volterra equations in (3.1).
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Proof of Theorem 3.1. Let us write X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk). Using (2.1),
(2.2), and the definitions of Xi, Yj , and Z, we obtain

d

dt
Qij (t) = πijXi(t)Yj (t)

Z(t)
. (3.4)

Thus, for i ∈ [k],
d

dt
Ui(t) = d

dt
Xi(t)

= −
k∑

j=1

d

dt
Qij (t)

= − 1

Z(t)
Xi(t)

k∑
j=1

πijYj (t)

= − 1

Z(t)
Ui(t)(�Y(t))i . (3.5)

Similarly, for j ∈ [k],
d

dt
Uk+j (t) = d

dt
Yj (t) = − 1

Z(t)
Uk+j (t)(�

�X(t))j . (3.6)

Hence, noting that (�̂U)i = (�Y)i and (�̂U)k+j = (��X)j for i, j ∈ [k] yields (3.1).
Summing (3.5) over i (or equivalently (3.6) over j ) and using the definitions of Ai and Bj ,

we obtain
d

dt
Z(t) = −Z(t)(A�(t)�B(t)) = −Z(t)(B�(t)��A(t)). (3.7)

As a result, using (3.5), for i ∈ [k],

2
d

dt
Ci(t) = d

dt
Ai(t)

= d

dt
Xi(t)

1

Z(t)
− Xi(t)

Z2(t)

d

dt
Z(t)

= −Ai(t)[(�B(t))i − A�(t)�B(t)]. (3.8)

Similarly, using (3.6), for j ∈ [k],

2
d

dt
Ck+j (t) = d

dt
Bj (t) = −Bj (t)[(��A(t))j − B�(t)��A(t)]. (3.9)

By the definition of �̂, we have

(�̂C(t))i = 1
2 (�B(t))i , (�̂C(t))k+j = 1

2 (��A(t))j , i, j ∈ [k],
and

C�(t)�̂C(t) = 1
4A�(t)�B(t) + 1

4B�(t)��A(t) = 1
2A�(t)�B(t) = 1

2B�(t)��A(t).

Thus, using (3.8), for i ∈ [k],
d

dt
Ci(t) = 1

2

d

dt
Ai(t) = −2Ci(t)[(�̂C(t))i − C�(t)�̂C(t)],
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and, using (3.9), for j ∈ [k],
d

dt
Ck+j (t) = 1

2

d

dt
Bj (t) = −2Ck+j (t)[(�̂C(t))k+j − C�(t)�̂C(t)].

This concludes the proof of (3.2). �

3.2. Exact solution under fine balance

As we have mentioned in Section 1.3, in [10] we proved that the fine balance condition (given
in Definition 1.3) characterizes panmixia for the species (in the context of finite populations).
In the next theorem we consider infinite populations and state explicit formulae for the solution
of the system of replicator equations and for the pair-type process under the fine balance
condition.

Theorem 3.2. Assume that the fine balance condition (1.3) is satisfied. Then

Ai(t) = xie−ᾱi t∑
i′ xi′e−ᾱi′ t

, Bj (t) = yj e−β̄j t∑
j ′ yj ′e−β̄j ′ t

, Qij (t) = xiyj (1 − e−πij t ).

In particular, Qij (∞) = xiyj .

Remark 3.2. The formulae in Theorem 3.2 can also be obtained from [10, Theorem 3.6] via
the fluid limit (Theorem 2.1) and the dominated convergence theorem. However, our method
here is completely different and self-contained.

Proof of Theorem 3.2. Using (3.8), for i ∈ [k], we obtain

d

dt
log

(
Ai(t)

A1(t)

)
= d

dt
log Ai(t) − d

dt
log A1(t)

= −[(�B(t))i − A�(t)�B(t)] + [(�B(t))1 − A�(t)�B(t)]
= −[(�B(t))i − (�B(t))1]. (3.10)

Similarly, by (3.9), for j ∈ [k], we have

d

dt
log

(
Bj (t)

B1(t)

)
= −[(��A(t))j − (��A(t))1]. (3.11)

Using (1.3), for i ∈ [k], we obtain

(�B(t))i =
k∑

j=1

πijBj (t) =
k∑

j=1

(ᾱi + β̄j )Bj (t) = ᾱi +
k∑

j=1

β̄jBj (t).

Then (3.10) yields
d

dt
log

(
Ai(t)

A1(t)

)
= −(ᾱi − ᾱ1).

Hence,
Ai(t)

A1(t)
= Ai(0)

A1(0)
e−(ᾱi−ᾱ1)t = xie−ᾱi t

x1e−ᾱ1t
.
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Finally, since A1(t) + · · · + Ak(t) = 1, we have

Ai(t) = xie−ᾱi t

Ā(t)
,

where Ā(t) = ∑k
i′=1 xi′e−ᾱi′ t is the normalization term. Similarly, using (1.3) and (3.11), we

obtain

Bj (t) = yj e−β̄j t

B̄(t)
,

where B̄(t) = ∑k
j ′=1 yj ′e−β̄j ′ t .

Next, we compute Z(t). Note that we can use (3.7) to write

d

dt
log Z(t) = −A�(t)�B(t)

= −
k∑

i=1

k∑
j=1

(ᾱi + β̄j )Ai(t)Bj (t)

= −
k∑

i=1

k∑
j=1

ᾱiAi(t)Bj (t) −
k∑

i=1

k∑
j=1

β̄jAi(t)Bj (t)

= −
k∑

i=1

ᾱiAi(t) −
k∑

j=1

β̄jBj (t)

= −
k∑

i=1

xiᾱie−ᾱi t

Ā(t)
−

k∑
j=1

yj β̄j e−β̄j t

B̄(t)

= 1

Ā(t)

d

dt
Ā(t) + 1

B̄(t)

d

dt
B̄(t)

= d

dt
log Ā(t) + d

dt
log B̄(t)

= d

dt
log[Ā(t)B̄(t)].

Since Ā(0) = B̄(0) = Z(0) = 1, we deduce that

Z(t) = Ā(t)B̄(t) =
k∑

i=1

xie
−ᾱi t

k∑
j=1

yj e−β̄j t =
k∑

i=1

k∑
j=1

xiyj e−πij t .

Finally, we compute Qij (t). We can use (3.4) to write

d

dt
Qij (t) = πijZ(t)Ai(t)Bj (t) = πij Ā(t)B̄(t)

xie−ᾱi t

Ā(t)

yj e−β̄j t

B̄(t)
= πij xiyj e−πij t .

Since Qij (0) = 0, we conclude that

Qij (t) = xiyj (1 − e−πij t ). �
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4. The symmetric 2 × 2 case

In this section we use the shorthand notation ḟ to denote the time derivative df (t)/dt of
any function f . We assume that k = 2, π12 = π21, and x1 = y1. Setting A2 = 1 − A1, the
replicator equation in (3.3) becomes a one-dimensional ODE given by

Ȧ1 = −A1(1 − A1)[(π11 + π22 − 2π12)A1 − (π22 − π12)] (4.1)

with A1(0) = x1, and (3.7) is equivalent to

Ż

Z
= −(π11 + π22 − 2π12)A

2
1 + 2(π22 − π12)A1 − π22 (4.2)

with Z(0) = 1. We already solved for Q in the previous section under the fine balance condition,
so we exclude that case here, that is, we assume that π11 + π22 �= 2π12. Hence, setting

γ = π22 − π12

π11 + π22 − 2π12
,

(4.1) becomes
Ȧ1 = −(π11 + π22 − 2π12)A1(1 − A1)(A1 − γ ). (4.3)

Recall that our goal is to find a formula for the mating pattern. Since k = 2, it suffices to find
a formula for Q12(∞) because

Q11(∞) = x1 − Q12(∞), Q21(∞) = y1 − Q11(∞), Q22(∞) = x2 − Q21(∞).

For this we use (3.4), which can be written in the form

Q̇12 = π12ZA1(1 − A1).

We first study the γ ∈ {0, 1} case, that is, π11 = π12 or π22 = π12.

4.1. The γ ∈ {0, 1} case

We first investigate the γ = 1 case, that is, π11 = π12.
Note that (4.3) and (4.2) become, respectively,

Ȧ1 = (π22 − π12)A1(1 − A1)
2 (4.4)

and
Ż

Z
= −(π22 − π12)(1 − A1)

2 − π12. (4.5)

We can use partial fractions to write (4.4) as(
1

A1
+ 1

1 − A1
+ 1

(1 − A1)2

)
Ȧ1 = π22 − π12.

Integrating both sides and using the initial condition A1(0) = x1, we obtain

(1 − x1)A1(t)

x1(1 − A1(t))
exp

{
1

1 − A1(t)
− 1

1 − x1

}
= e(π22−π12)t . (4.6)

This is an implicit formula for A1(t).
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Next, we find a formula for Z(t). We know from (4.4) that

(π22 − π12)(1 − A1)
2 = Ȧ1

A1
.

Substituting this into (4.5), we see that

Ż

Z
= − Ȧ1

A1
− π12.

Integrating both sides and using the initial condition Z(0) = 1, we obtain

Z(t) =
(

x1

A1(t)

)
e−π12t . (4.7)

We can express Z(t) in terms of A1(t) only (that is, without any explicit t dependence). Indeed,
raising both sides of (4.6) to the power −θ1, where

θ1 := π12

π22 − π12

yields (
(1 − x1)A1(t)

x1(1 − A1(t))

)−θ1

exp

{
−θ1

(
1

1 − A1(t)
− 1

1 − x1

)}
= e−π12t .

Substituting this into the right-hand side of (4.7), we have

Z(t) =
(

1 − A1(t)

1 − x1

)θ1
(

A1(t)

x1

)−θ1−1

exp

{
−θ1

(
1

1 − A1(t)
− 1

1 − x1

)}
. (4.8)

Finally, we express Q12(t) in terms of A1(t). We write (4.4) in the form

A1(1 − A1) = Ȧ1

(π22 − π12)(1 − A1)
.

We can use this and (4.8) to write

Q̇12 = π12ZA1(1 − A1)

= θ1ZȦ1

1 − A1

= θ1

1 − x1

(
1 − A1

1 − x1

)θ1−1(
A1

x1

)−θ1−1

exp

{
−θ1

(
1

1 − A1
− 1

1 − x1

)}
Ȧ1.

Integrating both sides, using the initial conditions A1(0) = x1 and Q12(0) = 0, and making a
change of variables, we obtain

Q12(t) = θ1

1 − x1

∫ A1(t)

x1

(
1 − x

1 − x1

)θ1−1(
x

x1

)−θ1−1

exp

{
−θ1

(
1

1 − x
− 1

1 − x1

)}
dx

= x1θ1

∫ ζ(t)

1
x−(θ1+1) exp

{
−

(
x1

1 − x1

)
θ1(x − 1)

}
dx,
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where

ζ(t) = (1 − x1)A1(t)

x1(1 − A1(t))
.

If π11 = π12 < π22 then it is easy to see from the stability analysis of (4.4) that

lim
t→∞ A1(t) = 1

and, hence, limt→∞ ζ(t) = ∞. Therefore, the mating pattern has the following formula:

Q12(∞) = x1θ1

∫ ∞

1
x−(θ1+1) exp

{
−

(
x1

1 − x1

)
θ1(x − 1)

}
dx

=
∫ ∞

0

(
1 + y

x1θ1

)−θ1−1

exp

{
− y

1 − x1

}
dy. (4.9)

Here, observe that θ1 > 0. Similarly, if π11 = π12 > π22 then

lim
t→∞ A1(t) = 0

and, hence, limt→∞ ζ(t) = 0. Therefore, the mating pattern has the following formula:

Q12(∞) = −x1θ1

∫ 1

0
x−(θ1+1) exp

{
−

(
x1

1 − x1

)
θ1(x − 1)

}
dx

=
∫ −x1θ1

0

(
1 + y

x1θ1

)−θ1−1

exp

{
− y

1 − x1

}
dy. (4.10)

Here, observe that θ1 < 0.
For γ = 0, that is, π22 = π12, we relabel type-1 individuals as type-2 and type-2 individuals

as type-1 (for each sex). Hence, we have once again the situation where γ = 1. Also, observe
that Q12(t) = Q21(t) since Xi(t) = Yi(t) for all t ≥ 0. Hence, we have formulae for Q12(∞)

analogous to the ones in (4.9) and (4.10) by simply swapping π11 with π22 and x1 with 1 − x1
(recall that x2 = 1 − x1). More precisely, setting

θ2 := π12

π11 − π12
,

we have

Q12(t) = θ2

x1

∫ 1−A1(t)

1−x1

(
1 − x

x1

)θ2−1(
x

1 − x1

)−θ2−1

exp

{
−θ2

(
1

1 − x
− 1

x1

)}
dx.

As before, by the stability analysis of A1(t), we have the following formulae for the mating
pattern. If π22 = π12 < π11 then

Q12(∞) = (1 − x1)θ2

∫ ∞

1
x−(θ2+1) exp

{
−

(
1 − x1

x1

)
θ2(x − 1)

}
dx

=
∫ ∞

0

(
1 + y

(1 − x1)θ2

)−θ2−1

exp

{
− y

x1

}
dy,
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where θ2 > 0. If π22 = π12 > π11 then

Q12(∞) = −(1 − x1)θ2

∫ 1

0
x−(θ2+1) exp

{
−

(
1 − x1

x1

)
θ2(x − 1)

}
dx

=
∫ −(1−x1)θ2

0

(
1 + y

(1 − x1)θ2

)−θ2−1

exp

{
− y

x1

}
dy,

where θ2 < 0.

4.2. The γ �∈ {0, 1} case

When x1 = γ this constitutes a special case and we study it first.

4.2.1. The x1 = γ ∈ (0, 1) case. By (4.3) we have Ȧ1 = 0 and, therefore, A1(t) = x1.
Substituting this into (4.2) yields

Ż

Z
= −π12x1 − π22(1 − x1).

Using the initial condition Z(0) = 1, we have

Z(t) = exp{−(π12x1 + π22(1 − x1))t}.
Finally,

Q̇12 = π12ZA1(1 − A1) = π12x1(1 − x1) exp{−(π12x1 + π22(1 − x1))t}
is easily solved with initial condition Q12(0) = 0 to yield

Q12(t) = π12x1(1 − x1)

π12x1 + π22(1 − x1)
(1 − exp{−(π12x1 + π22(1 − x1))t}).

In particular, the mating pattern is given by

Q12(∞) = π12x1(1 − x1)

π12x1 + π22(1 − x1)
= x1(1 − x1)

[
π12(π11 + π22 − 2π12)

π12(π22 − π12) + π22(π11 − π12)

]
.

Note that, by the definitions of θ1 and θ2, we have

1 + 1

θ1 + θ2
= π12(π22 − π12) + π22(π11 − π12)

π12(π11 + π22 − 2π12)
.

Hence, we can write

Q12(∞) = x1(1 − x1)

1 + (1/(θ1 + θ2))
. (4.11)

4.2.2. The x1 �= γ case. Using partial fractions, (4.3) can be written as(
− 1

γA1
+ 1

γ (1 − γ )(A1 − γ )
+ 1

(1 − γ )(1 − A1)

)
Ȧ1 = −(π11 + π22 − 2π12). (4.12)

It is clear from (4.3) that A1(t) never crosses γ . Integrating both sides of (4.12) and using the
initial condition A1(0) = x1, we obtain(

x1(A1(t) − γ )

(x1 − γ )A1(t)

)1/γ (
(1 − x1)(A1(t) − γ )

(x1 − γ )(1 − A1(t))

)1/(1−γ )

= exp{−(π11 + π22 − 2π12)t}.
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Raising both sides to the power π12/(π11 + π22 − 2π12) yields(
x1(A1(t) − γ )

(x1 − γ )A1(t)

)θ1
(

(1 − x1)(A1(t) − γ )

(x1 − γ )(1 − A1(t))

)θ2

= e−π12t . (4.13)

This is an implicit formula for A1(t).
Next, we find a formula for Z(t). We can rewrite (4.2) as

Ż

Z
= −(π11 + π22 − 2π12)A1(A1 − γ ) − π12A1 − π22(1 − A1). (4.14)

Note that (4.3) yields

−(π11 + π22 − 2π12)A1(A1 − γ ) = Ȧ1

1 − A1
,

−A1 = Ȧ1

(π11 + π22 − 2π12)(A1 − γ )(1 − A1)
,

−(1 − A1) = Ȧ1

(π11 + π22 − 2π12)A1(A1 − γ )
.

Substituting these into the right-hand side of (4.14) and using partial fractions, we obtain

Ż

Z
=

(
1

1 − A1
+ π12

(π11 + π22 − 2π12)(A1 − γ )(1 − A1)

+ π22

(π11 + π22 − 2π12)A1(A1 − γ )

)
Ȧ1

=
(

−θ1 + 1

A1
+ θ2 + 1

1 − A1
+ θ1 + θ2 + 1

A1 − γ

)
Ȧ1.

We integrate both sides, use the initial conditions A1(0) = x1 and Z(0) = 1, and (4.13) to
deduce that

Z(t) =
(

A1(t)

x1

)−θ1−1(1 − A1(t)

1 − x1

)−θ2−1(
A1(t) − γ

x1 − γ

)θ1+θ2+1

(4.15)

=
(

x1(1 − x1)(A1(t) − γ )

(x1 − γ )A1(t)(1 − A1(t))

)(
x1(A1(t) − γ )

(x1 − γ )A1(t)

)θ1
(

(1 − x1)(A1(t) − γ )

(x1 − γ )(1 − A1(t))

)θ2

=
(

x1(1 − x1)(A1(t) − γ )

(x1 − γ )A1(t)(1 − A1(t))

)
e−π12t . (4.16)

Here, the right-hand side of (4.15) is in terms of A1(t) only. On the other hand, (4.16) is
somewhat simpler.

Finally, we provide a formula for the limiting pair-type process. Note that (4.3) yields

A1(1 − A1) = − Ȧ1

(π11 + π22 − 2π12)(A1 − γ )
.

Using this and (4.15), we have

Q̇12 = π12ZA1(1 − A1)

= − π12(x1 − γ )−1

π11 + π22 − 2π12

(
A1

x1

)−θ1−1(1 − A1

1 − x1

)−θ2−1(
A1 − γ

x1 − γ

)θ1+θ2

Ȧ1.
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Integrating both sides, using the initial conditions A1(0) = x1 and Q12(0) = 0, and making a
change of variables, we obtain

Q12(t) = − π12(x1 − γ )−1

π11 + π22 − 2π12

∫ A1(t)

x1

(
x

x1

)−θ1−1( 1 − x

1 − x1

)−θ2−1(
x − γ

x1 − γ

)θ1+θ2

dx

= π12

π11 + π22 − 2π12

∫ ξ(t)

0

(
1 + γy

x1

)−θ1−1(
1 + (1 − γ )y

1 − x1

)−θ2−1

dy,

where

ξ(t) = x1 − A1(t)

A1(t) − γ
.

In particular, the mating pattern is given by

Q12(∞) = π12

π11 + π22 − 2π12

∫ ξ(∞)

0

(
1 + γy

x1

)−θ1−1(
1 + (1 − γ )y

1 − x1

)−θ2−1

dy. (4.17)

The value of ξ(∞) can be deduced from (4.3) using stability analysis:

(i) If π11 > π12 and π22 > π12, then 0 < γ < 1, A1(∞) = γ , and ξ(∞) = ∞.

(ii) If π11 < π12 and π22 < π12, then 0 < γ < 1 and there are two subcases.

• If x1 < γ then A1(∞) = 0 and ξ(∞) = −x1/γ .

• If x1 > γ then A1(∞) = 1 and ξ(∞) = −(1 − x1)/(1 − γ ).

(iii) If π11 > π12 and π22 < π12, then there are two subcases.

• If π11 + π22 < 2π12 then γ > 1, A1(∞) = 0, and ξ(∞) = −x1/γ .

• If π11 + π22 > 2π12 then γ < 0, A1(∞) = 0, and ξ(∞) = −x1/γ .

(iv) If π11 < π12 and π22 > π12, then there are two subcases.

• If π11 + π22 < 2π12 then γ < 0, A1(∞) = 1, and ξ(∞) = −(1 − x1)/(1 − γ ).

• If π11 + π22 > 2π12 then γ > 1, A1(∞) = 1, and ξ(∞) = −(1 − x1)/(1 − γ ).

Hence, we have an explicit formula for the mating pattern in each case.See Figure 1.

4.3. Characterization of homogamy/panmixia/heterogamy

Having derived an explicit formula for the mating pattern in the symmetric 2 × 2 case, we
use this formula to provide a trichotomy regarding the mating preferences versus the mating
pattern.

Theorem 4.1. Assume that k = 2, π12 = π21, and x1 = y1 ∈ (0, 1). Then, the following
hold:

(i) (homogamy for symmetric population) Q12(∞) < x1(1 − x1) if π11 + π22 > 2π12;

(ii) (panmixia for symmetric population) Q12(∞) = x1(1 − x1) if π11 + π22 = 2π12;

(iii) (heterogamy for symmetric population) Q12(∞) > x1(1 − x1) if π11 + π22 < 2π12.
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Figure 1: Level curves of Q12(∞) as a function of π11 (x-axis) and π22 (y-axis) for fixed π12 = π21 = 1
2

and x1 = x2 = y1 = y2 = 1
2 . The value of Q12(∞) on each level curve is separated by 1

64 . The diagonal
line π11 + π22 = 1 corresponds to panmixia on which Q12(∞) = x1y2 = 1

4 .

Remark 4.1. The analog of the trichotomy in Theorem 4.1 for finite populations (without
imposing any symmetry conditions) was established in [10, Theorem 3.9] and recorded in
(1.4). In fact, Theorem 4.1 can be almost obtained from (1.4) by applying Theorem 2.2 and
the dominated convergence theorem, except that the strict inequalities would not necessarily
be preserved. Our main motivation for including Theorem 4.1 here is to provide an application
of our formula for the mating pattern.

Proof of Theorem 4.1. (i) We analyze the formula we derived for Q12(∞) which depends
on γ .

The γ ∈ {0, 1} case. Consider the γ = 1 case , that is, π11 = π12. Since we assume that
π11 + π22 > 2π12, we have π11 = π12 < π22. Then (4.9) holds for the mating pattern:

Q12(∞) =
∫ ∞

0

(
1 + y

x1θ1

)−θ1−1

exp

{
− y

1 − x1

}
dy,

with θ1 > 0. Note that, since ey > (1 + y/c)c > 0 for every y > 0 and c > 0, we have

exp

{
− y

1 − x1

}
<

(
1 + y

x1θ1

)−(x1/(1−x1))θ1

.

Therefore,

Q12(∞) <

∫ ∞

0

(
1 + y

x1θ1

)−θ1−1−(x1/(1−x1))θ1

dy = x1(1 − x1).

The proof for γ = 0, that is, π22 = π12, is exactly the same.
The γ /∈ {0, 1} case. In the case where x1 = γ ∈ (0, 1), recall from (4.11) that

Q12(∞) = x1(1 − x1)

1 + 1/(θ1 + θ2)
.
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Since γ ∈ (0, 1) and π11+π22 > 2π12, we have π11 > π12 and π22 > π12. Hence, θ1+θ2 > 0,
which implies that Q12(∞) < x1(1 − x1).

Now assume that x1 �= γ . We consider first the case π11 > π12 and π22 > π12. Then,
γ ∈ (0, 1), A1(∞) = γ , ξ(∞) = ∞, and θ1, θ2 > 0. By (4.17), we have

Q12(∞) = θ1γ

∫ ∞

0

(
1 + γy

x1

)−(θ1+1)(
1 + (1 − γ )y

1 − x1

)−(θ2+1)

dy.

If x1 > γ then

0 <
1 − x1

1 − γ
< 1 <

x1

γ
.

Thus, since (1 + y/c1)
c1 < (1 + y/c2)

c2 for every y > 0 and 0 < c1 < c2, we obtain

0 <

(
1 + (1 − γ )y

1 − x1

)(1−x1)/(1−γ )

<

(
1 + γy

x1

)x1/γ

.

The above inequality yields

(
1 + γy

x1

)−(θ1+1)

<

(
1 + (1 − γ )y

1 − x1

)−(θ1+1)(γ (1−x1)/(1−γ )x1)

.

Therefore,

Q12(∞) < θ1γ

∫ ∞

0

(
1 + (1 − γ )y

1 − x1

)−(θ1+1)(γ (1−x1)/(1−γ )x1)−(θ2+1)

dy

= x1(1 − x1)

1 + (1 − x1)/θ1

< x1(1 − x1).

Similarly, if x1 < γ then we have

Q12(∞) <
x1(1 − x1)

1 + x1/θ2
< x1(1 − x1).

Next, consider the π11 > π12 > π22 case. Then γ < 0, A1(∞) = 0, ξ(∞) = −x1/γ ,
θ1 < −1, θ2 > 0, and θ1 + θ2 < 0. By (4.17), we have

Q12(∞) = θ1γ

∫ −x1/γ

0

(
1 + γy

x1

)−(θ1+1)(
1 + (1 − γ )y

1 − x1

)−(θ2+1)

dy.

Since γ < 0,
1 − x1

1 − γ
> 0 >

x1

γ
,

which implies that

(
1 + γy

x1

)x1/γ

>

(
1 + (1 − γ )y

1 − x1

)(1−x1)/(1−γ )

> 0 for every y ∈ (0, −x1/γ ).
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Note that (1 − γ )θ2 = γ θ1. Hence, raising both sides of the above inequality to the power
−γ θ1/(γ − x1) = −(1 − γ )θ2/(γ − x1) > 0, we obtain

(
1 + γy

x1

)−x1θ1/(γ−x1)

>

(
1 + (1 − γ )y

1 − x1

)−(1−x1)θ2/(γ−x1)

.

Therefore,

Q12(∞) < θ1γ

∫ −x1/γ

0

(
1 + γy

x1

)−(θ1+1)−x1θ1/(γ−x1)

×
(

1 + (1 − γ )y

1 − x1

)−(θ2+1)+(1−x1)θ2/(γ−x1)

dy

= θ1γ

∫ −x1/γ

0

(
1 + γy/x1

1 + (1 − γ )y/(1 − x1)

)−θ1γ /(γ−x1)−1(
1 + (1 − γ )y

1 − x1

)−2

dy

= x1(1 − x1)

(
θ1γ

x1 − γ

) ∫ 1

0
uθ1γ /(x1−γ )−1 du

= x1(1 − x1).

Finally, the π22 > π12 > π11 case is reduced to the previous case simply by switching the
roles of π11 and π22 (and of x1 and 1 − x1).

(ii) If π11 + π22 = 2π12 then the fine balance condition is satisfied, and Q12(∞) = x1y2 =
x1(1 − x1) by Theorem 3.2 and the assumption that x1 = y1.

(iii) We proceed exactly as in the proof of Theorem 4.1(i).
The γ ∈ {0, 1} case. Consider the γ = 1 case, that is, π11 = π12. Since we assume that

π11 + π22 < 2π12, we have π11 = π12 > π22. Then (4.10) holds for the mating pattern:

Q12(∞) =
∫ −x1θ1

0

(
1 + y

x1θ1

)−θ1−1

exp

{
− y

1 − x1

}
dy

with θ1 < 0. Note that, since ey < (1 + y/c)c for every y ∈ (0, −c) and c < 0, we have

exp

{
− y

1 − x1

}
>

(
1 + y

x1θ1

)(x1/(1−x1))θ1

> 0 for every y ∈ (0, −x1θ1).

Therefore,

Q12(∞) >

∫ −x1θ1

0

(
1 + y

x1θ1

)−θ1−1−(x1/(1−x1))θ1

dy = x1(1 − x1).

The proof for γ = 0, that is, π22 = π12, is exactly the same.
The γ /∈ {0, 1} case. In the case where x1 = γ ∈ (0, 1), recall from (4.11) that

Q12(∞) = x1(1 − x1)

1 + 1/(θ1 + θ2)
.

Since γ ∈ (0, 1) and π11 + π22 < 2π12, we have π11 < π12 and π22 < π12. Hence,
θ1 + θ2 < −2, which implies that Q12(∞) > x1(1 − x1).
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Now assume that x1 �= γ . We consider first the π11 < π12 and π22 < π12 case. Then,
γ ∈ (0, 1) and θ1, θ2 < −1. By (4.17), we have

Q12(∞) = θ1γ

∫ ξ(∞)

0

(
1 + γy

x1

)−(θ1+1)(
1 + (1 − γ )y

1 − x1

)−(θ2+1)

dy.

If x1 > γ then A1(∞) = 1, ξ(∞) = −(1 − x1)/(1 − γ ), and

0 <
1 − x1

1 − γ
< 1 <

x1

γ
.

Thus, since (1 + y/c1)
c1 < (1 + y/c2)

c2 for every y ∈ (−c1, 0) and 0 < c1 < c2, we obtain

0 <

(
1 + (1 − γ )y

1 − x1

)(1−x1)/(1−γ )

<

(
1 + γy

x1

)x1/γ

for every y ∈ (−(1 − x1)/(1 − γ ), 0).

The above inequality yields(
1 + γy

x1

)−(θ1+1)

>

(
1 + (1 − γ )y

1 − x1

)−(θ1+1)(γ (1−x1)/(1−γ )x1)

.

Therefore,

Q12(∞) > −θ1γ

∫ 0

−(1−x1)/(1−γ )

(
1 + (1 − γ )y

1 − x1

)−(θ1+1)(γ (1−x1)/(1−γ )x1)−(θ2+1)

dy

= x1(1 − x1)

1 + (1 − x1)/θ1

> x1(1 − x1).

Similarly, if x1 < γ then we have

Q12(∞) >
x1(1 − x1)

1 + x1/θ2
> x1(1 − x1).

Next, consider the π11 > π12 > π22 case. Then γ > 1, A1(∞) = 0, ξ(∞) = −x1/γ ,
θ1 < −1, θ2 > 0, and θ1 + θ2 > 0. By (4.17), we have

Q12(∞) = −θ1γ

∫ 0

−x1/γ

(
1 + γy

x1

)−(θ1+1)(
1 + (1 − γ )y

1 − x1

)−(θ2+1)

dy.

Since γ > 1,
1 − x1

1 − γ
< 0 <

x1

γ
,

which implies that

0 <

(
1 + γy

x1

)x1/γ

<

(
1 + (1 − γ )y

1 − x1

)(1−x1)/(1−γ )

for every y ∈ (−x1/γ, 0).

Note that (1 − γ )θ2 = γ θ1. Hence, raising both sides of the above inequality to the power
−γ θ1/(γ − x1) = −(1 − γ )θ2)/(γ − x1) > 0, we obtain(

1 + γy

x1

)−x1θ1/(γ−x1)

<

(
1 + (1 − γ )y

1 − x1

)−(1−x1)θ2/(γ−x1)

.
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Therefore,

Q12(∞) > −θ1γ

∫ 0

−x1/γ

(
1 + γy

x1

)−(θ1+1)−x1θ1/(γ−x1)

×
(

1 + (1 − γ )y

1 − x1

)−(θ2+1)+(1−x1)θ2/(γ−x1)

dy

= −θ1γ

∫ 0

−x1/γ

(
1 + γy/x1

1 + (1 − γ )y/(1 − x1)

)−θ1γ /(γ−x1)−1(
1 + (1 − γ )y

1 − x1

)−2

dy

= x1(1 − x1)

(
θ1γ

x1 − γ

) ∫ 1

0
uθ1γ /(x1−γ )−1 du

= x1(1 − x1).

Finally, the π22 > π12 > π11 case is reduced to the previous case simply by switching the
roles of π11 and π22 (and of x1 and 1 − x1). �
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