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Let H be a set of connected graphs. A graph G is said to be H-free if G does not contain

any element of H as an induced subgraph. Let Fk(H) be the set of k-connected H-free

graphs. When we study the relationship between forbidden subgraphs and a certain graph

property, we often allow a finite exceptional set of graphs. But if the symmetric difference

of Fk(H1) and Fk(H2) is finite and we allow a finite number of exceptions, no graph

property can distinguish them. Motivated by this observation, we study when we obtain a

finite symmetric difference. In this paper, our main aim is the following. If |H| � 3 and the

symmetric difference of F1({H}) and F1(H) is finite, then either H ∈ H or |H| = 3 and

H = C3. Furthermore, we prove that if the symmetric difference of Fk({H1}) and Fk({H2})
is finite, then H1 = H2.

2010 Mathematics subject classification: 05C75

1. Introduction

In this paper, all graphs are finite, simple, and undirected. For a set H of connected

graphs, a graph G is said to be H-free if G does not contain any element of H as an

induced subgraph. We also say that the elements of H are forbidden subgraphs. If G is

{H}-free, G is simply said to be H-free.

† This work was supported by JSPS KAKENHI grant 23740095.
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Figure 1. Net, W and Zk .

If we appropriately choose a set H, H-free graphs may satisfy a certain graph property.

For example, Cockayne, Ko and Shepherd [6] proved that every connected {K1,3,Net}-
free graph G has domination number at most � 1

3
|V (G)|�, where Net is the unique graph

having degree sequence (3, 3, 3, 1, 1, 1) (Figure 1). Duffus, Gould and Jacobson [7] proved

that every connected {K1,3,Net}-free graph has a Hamiltonian path, and that if it is

2-connected, it has a Hamiltonian cycle. Forbidden subgraphs have appeared in many

other topics of graph theory (see, for example, [2, 4, 11, 14]).

Since the result of Duffus, Gould and Jacobson [7], several other pairs of forbidden

subgraphs implying the existence of a Hamiltonian cycle have been found. Finally,

Bedrossian [3] characterized all such pairs. The graph W in the following theorem is the

one depicted in Figure 1, and we denote the path of order k by Pk . For two sets H1 and

H2 of forbidden subgraphs, we write H1 � H2 if, for every H2 ∈ H2, there exists H1 ∈ H1

such that H1 is an induced subgraph of H2. It is not difficult to see that if H1 � H2, then

every H1-free graph is H2-free (see [13]).

Theorem A ([3]). Let H1 and H2 be connected graphs of order at least three. Then every 2-

connected {H1, H2}-free graph has a Hamiltonian cycle if and only if {H1, H2} � {K1,3,Net},
{H1, H2} � {K1,3,W } or {H1, H2} � {K1,3, P6}.

Let Zk be the graph obtained from K3 and Pk by joining one vertex in K3 with one

endvertex of Pk by an edge (see Figure 1). Faudree, Gould, Ryjáček and Schiermeyer [9]

proved that every 2-connected {K1,3, Z3}-free graph of order at least ten has a Hamiltonian

cycle. Since there exists a 2-connected {K1,3, Z3}-free non-Hamiltonian graph of order

nine, the assumption on the order cannot be removed. Because of this exception, the pair

{K1,3, Z3} does not appear in Theorem A.

The above observation suggests that if we allow a finite number of exceptions, or

equivalently, if we confine ourselves to graphs of sufficiently large order, we may be able

to enhance the set of pairs in Theorem A. Faudree and Gould [8] actually conducted this

line of research, and found that even if we allow a finite number of exceptions, essentially

{K1,3, Z3} is the only pair that can be added to Bedrossian’s pairs.

Theorem B ([8]). Let H1 and H2 be connected graphs of order at least three. Then every

2-connected {H1, H2}-free graph of sufficiently large order has a Hamiltonian cycle if and
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Figure 2. Chair and Crown.

only if {H1, H2} � {K1,3,Net}, {H1, H2} � {K1,3,W }, {H1, H2} � {K1,3, P6} or {H1, H2} �
{K1,3, Z3}.

As the above example suggests, in the study of forbidden subgraphs we often allow a

finite number of exceptions in the hope of obtaining a deeper insight.

However, this approach poses a new problem. Aldred, Fujisawa and Saito [1] studied

sets of forbidden subgraphs which imply the existence of a 2-factor. Let H be a set

of connected graphs having at least two vertices, and suppose every connected H-free

graph of minimum degree at least two and sufficiently large order has a 2-factor. They

proved that if |H| � 3, then H contains a star. They also proved that every connected

{Chair,Crown, K2,3, Z1}-free graph of order at least nine and minimum degree at least

two has a 2-factor, where Chair and Crown are the graphs depicted in Figure 2. By this

result, they claimed that they could forbid four graphs, without using a star, to guarantee

the existence of a 2-factor in a connected graph of minimum degree at least two and

sufficiently large order. However, in the proof, they actually proved that every connected

{Chair,Crown, K2,3, Z1}-free graph of order at least nine and minimum degree at least two

is K1,3-free. In [10], Fujisawa and Saito proved that every connected {K1,3, Z2}-free graph

of minimum degree at least two and sufficiently large order has a 2-factor. This yields

the result of [1] for graphs of sufficiently large order as a corollary. This phenomenon

suggests that if we forbid graphs of a set H, we may implicitly (and essentially) forbid

graphs which do not belong to H.

Now we formalize the problem. For a set of connected graphs H, let F(H) denote the

set of connected H-free graphs. If H consists of one graph H , we write F(H) instead

of F({H}). Let H1 and H2 be sets of connected graphs. Recall that if H1 � H2, then

F(H1) ⊆ F(H2) holds. However, even if H1 and H2 are not comparable with respect to

the relation ‘�’, F(H1) − F(H2) can be a finite set (see Section 2). And if F(H1) − F(H2)

is a finite set and every connected H2-free graph of sufficiently large order satisfies a

certain graph property P , then every connected H1-free graph of sufficiently large order

also satisfies P . If this occurs, the study of the property P of connected H1-free graphs

only involves a finite number of graphs in F(H1) − F(H2).

We face a more serious problem if the symmetric difference is finite. Again let H1 and

H2 be two sets of connected graphs, and suppose their symmetric difference, denoted by

H1 � H2 in this paper, is finite. Then for every graph property P , every connected H1-free

graph of sufficiently large order satisfies P if and only if every connected H2-free graph of
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sufficiently large order satisfies P . In other words, as long as we allow a finite number of

exceptions, we cannot distinguish F(H1) and F(H2), whatever graph property we choose.

In fact it is not difficult to construct an example with infinitely many graphs. Let H

be a connected graph of order k, and let H be the set of all connected graphs of order

k + 1 that contain H as an induced subgraph. Then H /∈ H and F(H) � F(H) = {H}.
Although these are trivial examples, there is a more complicated pair (with additional

condition); see Section 7 in this paper and [1].

Motivated by the above background, we study the difference and the symmetric

difference of two sets of forbidden subgraphs. Let H1 and H2 be two sets of connected

graphs. We study the relationship between H1 and H2, assuming that F(H1) − F(H2) or

F(H1) � F(H2) is a finite set. We focus on the cases in which both H1 and H2 consist

of a small number of graphs. One extreme case is that both of them are singleton sets,

and even in this simple case, we observe some complications. As mentioned above, we

cannot judge whether {H1} � {H2} holds (i.e., H2 contains H1 as an induced subgraph)

under the assumption that F(H1) − F(H2) is finite. In contrast, if F(H1) � F(H2) is finite,

then we will see H1 = H2. And this is true even if we restrict ourselves to graphs of

higher connectivity. We will also investigate the case in which only one of H1 and H2 is

a singleton set and a special case of |H1| = |H2| = 2.

The structure of the subsequent sections is as follows. In the next section, in order to

demonstrate the complexity of the problem, we present an example in which H1 and H2 are

connected graphs, neither of which is an induced subgraph of the other, but F(H1) − F(H2)

is finite. In Section 3, we prove several necessary conditions for F(H1) − F(H2) to be

finite. These conditions will be used in the arguments of the subsequent sections. In

Sections 4–6, we study the problem of finite F(H1) � F(H2). In Section 4, we consider the

case in which either H1 or H2 is a singleton set. In Section 5, we assume |H1| = |H2| = 2

and H1 ∩ H2 	= ∅, and see what happens. And in Section 6, we consider the problem in

the class of higher connectivity. We provide concluding remarks in Section 7.

For terms and symbols not defined in this paper, we refer the reader to [5]. Let H
be a set of graphs. For k � 1, let Fk(H) = {G | G is a k-connected H-free graph}. Hence

F1(H) = F(H). If H = {H1, . . . , Hm}, we write Fk(H1, . . . , Hm) and F(H1, . . . , Hm) in place

of Fk({H1, . . . , Hm}) and F({H1, . . . , Hm}), respectively. For graphs H1 and H2, we write

H1 ≺ H2 if H2 contains H1 as an induced subgraph. If H is a finite set, we write |H| < ∞.

For graphs H1 and H2 with V (H1) ∩ V (H2) = ∅, let H1 + H2 be the graph obtained from

H1 ∪ H2 by joining every vertex of V (H1) to every vertex of V (H2). Let H be a graph.

Take a set U ⊆ V (H). Let Gn
1(H;U) be the graph obtained from H ∪ Kn by joining every

vertex of U to every vertex of V (Kn). Let Gn
2(H;U) be the graph obtained from H ∪ nK1

by joining every vertex of U to every vertex of V (nK1). Note that Gn
1(H;V (H)) = H + Kn

and Gn
2(H;V (H)) = H + nK1. Take a vertex u ∈ V (H). Let Gn

3(H; u) be the graph obtained

from H ∪ Pn by joining u to one endvertex of Pn.

Let H be a graph. For v ∈ V (H), we let dH (v) the degree of v in H , i.e., dH (v) = |NH (v)|.
For l � 0, let Vl(H) = {v ∈ V (H) | dH (v) = l} and V�l(H) = {v ∈ V (H) | dH (v) � l}.

A graph H is called special if δ(H) = 1, Δ(H) = |V (H)| − 1; there exist two vertices

c1, c2 ∈ V (H) such that NH [c1] = NH [c2] and there exist non-adjacent vertices c′
1, c

′
2 ∈

V (H) such that NH (c′
1) = NH (c′

2). Note that every special graph has order at least five.

https://doi.org/10.1017/S0963548313000254 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000254


Forbidden Subgraphs Generating Almost the Same Sets 737

w6 z6 z1 w1

w5 z5 y z2 w2

w4 z4 z3 w3

H1

H2

Figure 3. The graphs H1 and H2.

2. An example of finite F(H1) − F(H2)

In this section, in order to demonstrate the complexity of the problem, we construct

an example in which neither H1 nor H2 is an induced subgraph of the other, but

F(H1) − F(H2) is finite. We will also use this example in Section 7 to show that some of

the conditions we obtain in the subsequent sections are essential.

Let H1 be the graph obtained from the triangle by attaching two pendant edges to a

vertex. Let H2 be a 6-regular triangulation of the torus. To simplify the argument, we

assume that the length of the shortest non-contractible cycle of H2 with each homotopy

type is the same and large enough. See Figure 3. We show the following.

Proposition 2.1. F(H1) − F(H2) = {H2}.

Proof. It is easy to see that H2 ∈ F(H1) − F(H2). We will show the converse.

Suppose that H ∈ F(H1) − F(H2), and H 	= H2. Note that H2 ≺ H , and we fix H2 as

an induced subgraph of H . Since H 	= H2 and H is connected, we can find a vertex

x ∈ V (H) − V (H2) with NH (x) ∩ V (H2) 	= ∅. Recall that H1 	≺ H .

Claim 2.2. Let a ∈ NH (x) ∩ V (H2), and let b1b2 · · · b6b1 be the cycle of length 6 in NH2
(a).

Then we have the following.

(i) For each 1 � i � 6, at least one of bi, bi+1 and bi+2 is a neighbour of x, where the index

is taken modulo 6.

(ii) For some i with 1 � i � 3, both bi and bi+3 are neighbours of x, unless {bj , bj+2, bj+4} =

NH (x) ∩ {b1, . . . , b6} for some j = 1, 2.

Proof. (i) Suppose not, that is, there exists an integer i such that none of bi, bi+1 and bi+2

are neighbours of x. By symmetry, we may assume that i = 1. If b5 is not a neighbour

of x, then {a, b1, b2, x, b5} induces an H1, a contradiction. Hence b5 is a neighbour of x.

However, {a, b5, x, b1, b3} induces an H1, a contradiction again.

(ii) Suppose that for each i with 1 � i � 3, at least one of bi and bi+3 is not a neighbour of

x. By (i), there exists a neighbour of x in {b1, . . . , b6}, say b1. By the assumption, b4 	∈ NH (x).
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Applying (i) to b3, b4, b5, at least one of them is a neighbour of x. Since b4 	∈ NH (x), we

may assume that b3 ∈ NH (x) by symmetry. Again by the assumption, b6 	∈ NH (x). Then,

applying (i) to b4, b5, b6, we have that b5 ∈ NH (x). Again by the assumption, b2 	∈ NH (x).

This implies that {b1, b3, b5} = NH (x) ∩ {b1, . . . , b6}.

Now we are ready to prove Proposition 2.1. Let y ∈ NH (x) ∩ V (H2). Let z1z2 . . . z6 be

the cycle in NH (y) ∩ V (H2). By Claim 2.2(ii) and symmetry, we have that (I) {z2, z4, z6} =

NH (x) ∩ {z1, . . . , z6}, or (II) both z2 and z5 are neighbours of x. Let w1, w2, w3 be the

vertices in (NH (z2) ∩ V (H2)) − {z1, y, z3} with w1z1, w3z3 ∈ E(H). By Claim 2.2(i), at least

one of w1, w2, w3 is a neighbour of x, say wi.

Case I: {z2, z4, z6} = NH (x) ∩ {z1, . . . , z6}. In this case, {x, z2, wi, z4, z6} induces an H1, a

contradiction.

Case II: Both z2 and z5 are neighbours of x. Let w4, w5, w6 be the vertices in (NH (z5) ∩
V (H2)) − {z4, y, z6} with w4z4, w6z6 ∈ E(H). By Claim 2.2(i), at least one of w4, w5, w6 is a

neighbour of x, say wj .

Suppose first that w2 	∈ NH (x). Then by symmetry, we may assume that i = 1, that is,

w1 ∈ NH (x). By Claim 2.2(i), at least one of w2, w3, z3 is a neighbour of x, say u. Note

that u 	= w2. However, {x, z5, wj , w1, u} induces an H1, a contradiction. Thus, we have

that w2 ∈ NH (x). By symmetry, we also have that w5 ∈ NH (x). If none of z1, z3, z4 are

neighbours of x, then {y, z3, z4, x, z1} induces an H1, a contradiction. Thus, zk is a neighbour

of x for some k = 1, 3, 4. However, {x, y, zk, w2, w5} induces an H1, a contradiction again.

This completes the proof of Proposition 2.1.

3. |F(H1) − F(H2)| < ∞

In this section, we investigate the case in which the difference of two sets defined by

forbidden subgraphs is finite. As we mentioned in Section 1, the results in this section will

be used as main tools in the subsequent sections.

Lemma 3.1. For each 1 � i � 2, let Hi be a connected graph with |V (Hi)| � 3. Let H be

a set of connected graphs such that Δ(H∗) � |V (H∗)| − 2 and δ(H∗) � 2 for every H∗ ∈ H.

If |F(H ∪ {H1}) − F(H2)| < ∞ and H∗ 	≺ H2 for every H∗ ∈ H ∪ {H1}, then

(i) |V (H1)| � 4, Δ(H1) = |V (H1)| − 1 and δ(H1) = 1, and

(ii) |V (H2)| � 2|V (H1)| − 3 and δ(H2) � |V (H1)| − 2.

Proof. Suppose that H1 � K1,2. Since H contains no complete graph by the assumption,

H1 ≺ H∗ for every H∗ ∈ H, and so F(H ∪ {H1}) = F(H1). Hence F(H ∪ {H1}) = {Kl | l �
1}. Since H1 	≺ H2, H2 is complete. Write H2 = Kα. Then {Kβ | β � α} ⊆ F(H ∪ {H1}) −
F(H2), which contradicts the assumption that |F(H ∪ {H1}) − F(H2)| < ∞. Thus

H1 	� K1,2. (3.1)

Since |F(H ∪ {H1}) − F(H2)| < ∞ and Gn
1(H2;V (H2)) 	∈ F(H2) for n � 1, we have

A1 ≺ Gn1

1 (H2;V (H2)) for some A1 ∈ H ∪ {H1} and some n1 � 1. Since A1 	≺ H2, V (A1) ∩
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V (Kn1
) 	= ∅. Hence A1 = H ′

2 + Km1
for a graph H ′

2 ≺ H2 and m1 � 1. In particular, A1 has

a vertex of degree |V (A1)| − 1 (and so Δ(A1) = |V (A1)| − 1). By the assumption of the

lemma, A1 = H1.

Take a vertex x ∈ V (H2). Since |F(H ∪ {H1}) − F(H2)| < ∞ and Gn
3(H2; x) 	∈ F(H2) for

n � 1, we find that A2 ≺ Gn2

3 (H2; x) for some A2 ∈ H ∪ {H1} and some n2 � 1. Since A2 	≺
H2, V (A2) ∩ V (Pn2

) 	= ∅. In particular, A2 has a vertex of degree 1 (and so δ(A2) = 1). By

the assumption of the lemma, A2 = H1. This together with (3.1) implies that |V (H1)| � 4.

If H1 contains two vertices of Pn2
, then H1 = K1,2 by the fact that Δ(H1) = |V (H1)| − 1,

which contradicts (3.1). Thus H1 contains exactly one vertex of Pn2
. This implies that

dH1
(x) = |V (H1)| − 1 and so dH2

(x) � |V (H1)| − 2. Hence δ(H2) � |V (H1)| − 2.

Let y ∈ V (H ′
2) be a vertex with dH ′

2+Km1
(y) = 1. Then dH ′

2
(y) = 0. Hence there exist

|V (H1)| − 2 vertices of H2 which are not adjacent to y in H2. Since dH2
(y) � δ(H2) �

|V (H1)| − 2, we see that |V (H2)| � 2|V (H1)| − 3.

Lemma 3.2. For each 1 � i � 2, let Hi be a connected graph with |V (Hi)| � 3. If |F(H1) −
F(H2)| < ∞ and H1 	≺ H2, then

(i) H1 is special and

(ii) |V (H2)| � 2|V (H1)| − 3 and δ(H2) � |V (H1)| − 2.

Proof. Let x ∈ V (H2). Since |F(H1) − F(H2)| < ∞ and Gn
1(H2;NH2

[x]) 	∈ F(H2) for n �
1, we have H1 ≺ Gn1

1 (H2;NH2
[x]) for some n1 � 1. Since H1 	≺ H2, |V (H1) ∩ ({x} ∪

V (Kn1
))| � 2. Then two vertices c1, c2 ∈ V (H1) ∩ ({x} ∪ V (Kn1

)) satisfy NH1
[c1] = NH1

[c2].

Since |F(H1) − F(H2)| < ∞ and Gn
2(H2;NH2

(x)) 	∈ F(H2) for n � 1, we have H1 ≺
Gn2

2 (H2;NH2
(x)) for some n2 � 1. Since H1 	≺ H2, |V (H1) ∩ ({x} ∪ V (n2K1))| � 2. Then

two vertices c′
1, c

′
2 ∈ V (H1) ∩ ({x} ∪ V (n2K1)) satisfy NH1

(c′
1) = NH1

(c′
2).

Applying Lemma 3.1 with H = ∅, this completes the proof of Lemma 3.2.

Note that every special graph contains K3 as an induced subgraph. Thus we have the

following corollary from Lemma 3.2.

Corollary 3.3. For each 1 � i � 2, let Hi be a connected graph with |V (Hi)| � 3. If |F(H1)

− F(H2)| < ∞ and H1 is K3-free, then H1 ≺ H2.

4. |F(H) � F(H)| < ∞

We now investigate the pairs of forbidden subgraphs (H1,H2) such that F(H1) � F(H2)

is a finite set. In this section, we discuss the case in which H1 is a singleton set and H2

contains at most three elements.

Let H be a graph. For each vertex v ∈ V (H), let X(H, v) = {u ∈ V (H) | there exists

an automorphism ϕ of H such that ϕ(u) = v}. Let X (H) = {X(H, v) | v ∈ V (H)} and

t(H) = |X (H)|.
First, we consider what the condition |F(H) � F(H)| < ∞ means.
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Theorem 4.1. Let H be a connected graph with |V (H)| � 3, and let H be a set of connected

graphs such that |V (H∗)| � 3 for every H∗ ∈ H. If |F(H) � F(H)| < ∞, then

(i) H ∈ H or

(ii) H ≺ H∗ for every H∗ ∈ H or

(iii) H is special and

|{H∗ ∈ H | H ≺ H∗}|

�
{
t(H) (V|V (H)|−2(H) = ∅),

t(H) + min{|V|V (H)|−2(H)|, |V (H)| − 3} − 2 (V|V (H)|−2(H) 	= ∅).

Proof. Let H1 = {H∗ ∈ H | H ≺ H∗}. If H ∈ H or H1 = H, then we have the desired

result. Thus we may assume that H 	∈ H and H − H1 	= ∅.

Claim 4.2. For every H∗ ∈ H,

(i) |F(H) − F(H∗)| < ∞ and

(ii) H∗ 	≺ H .

Proof. (i) Since F(H) − F(H∗) ⊆ F(H) − F(H) ⊆ F(H) � F(H) and |F(H) � F(H)| <
∞, we have |F(H) − F(H∗)| < ∞.

(ii) Suppose that H∗ ≺ H . Since H 	= H∗, H 	≺ H∗. Hence |V (H∗)| > |V (H)| by (i) and

Lemma 3.2, which contradicts the assumption that H∗ ≺ H .

Claim 4.3. The following statements hold:

(i) H is special,

(ii) |V (H∗)| � 2|V (H)| − 3 and δ(H∗) � |V (H)| − 2(> 1) for each H∗ ∈ H − H1.

Proof. Take H∗ ∈ H − H1. By Claim 4.2, |F(H) − F(H∗)| < ∞. Since H 	≺ H∗, we get

the desired results by Lemma 3.2.

Let a ∈ V (H) be the unique vertex of degree |V (H)| − 1. For each X ∈ X (H), fix a

vertex wX ∈ X. Let W = {wX | X ∈ X (H), dH (wX) � |V (H)| − 3}.
Take a vertex w ∈ W . Since |F(H) − F(H)| < ∞ and Gn

3(H;w) 	∈ F(H) for n � 1, we find

that Hw ≺ Gn1

3 (H;w) for some Hw ∈ H and some n1 � 1. Since Hw 	≺ H by Claim 4.2(ii),

V (Hw) ∩ V (Pn1
) 	= ∅. In particular, δ(Hw) = 1. By Claim 4.3(ii), this leads to Hw ∈ H1. By

the definition of W , dH (w) � |V (H)| − 3, and hence Δ(Hw) � Δ(H) = |V (H)| − 1. Since

H ≺ Hw , Hw has a vertex of degree at least |V (H)| − 1. Since w ∈ W , this implies that a

is the unique vertex of degree |V (H)| − 1 in Hw and so V (H) = NH [a] ⊆ V (Hw). Hence

Hw � Gnw
3 (H;w) for some nw � 1. Note that w is the unique vertex of NHw

(a) which is

adjacent to a vertex in V (Hw) − NHw
[a]. This together with the definition of W implies

that if w 	= w′, then Hw 	� Hw′ .

Let p = min{max{0, |V|V (H)|−2(H)| − 1}, |V (H)| − 4}. For each 0 � i � p, let Ui ⊆
V|V (H)|−2(H) be a set with |Ui| = i. Since |F(H) − F(H)| < ∞ and Gn

2(H; {a} ∪ Ui) 	∈ F(H)
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for n � 1, we have H ′
Ui

≺ Gn2

2 (H; {a} ∪ Ui) for some H ′
Ui

∈ H and some n2 � 1. Since H ′
Ui

	≺
H by Claim 4.2(ii), V (H ′

Ui
) ∩ V (n2K1) 	= ∅. Note that dH ′

Ui
(x) � |Ui| + 1 � |V (H)| − 3 for

x ∈ V (H ′
Ui

) ∩ V (n2K1). By Claim 4.3(ii), this leads to H ′
Ui

∈ H1.

Claim 4.4. The following statements hold:

(i) V�|V (H)|−2(H) ⊆ V (H ′
Ui

) and dH ′
Ui

(x) � |V (H)| − 2 for every x ∈ V�|V (H)|−2(H),

(ii) dH ′
Ui

(x) = i + 1 for every x ∈ V (H ′
Uj

) − V (H),

(iii) dH ′
Ui

(x) � |V�|V (H)|−2(H)| or dH ′
Ui

(x) = 1 for every x ∈ V (H ′
Ui

) ∩ V (H),

(iv) for each l 	= l′, H ′
Ul

	� H ′
Ul′

.

Proof. (i) Since |V�|V (H)|−2(H
′
Ui

)| � |V�|V (H)|−2(H)| and H ≺ H ′
Ui

, we see that

V�|V (H)|−2(H) ⊆ V (H ′
Ui

)

and dH ′
Ui

(x) � |V (H)| − 2 for each x ∈ V�|V (H)|−2(H).

(ii) By (i), we get the desired result.

(iii) Take a vertex y ∈ V (H ′
Ui

) ∩ (V (H) − (V�|V (H)|−2(H) ∪ V1(H))). Then y is adjacent to

every vertex of V�|V (H)|−2(H) in H ′
Ui

. By (i), this implies that dH ′
Ui

(y) � |V�|V (H)|−2(H)|.
Take a vertex y′ ∈ V�|V (H)|−2(H). By (i), dH ′

Ui
(y′) � |V (H)| − 2. Since H is special, we see

that |V (H)| − 2 � |V�|V (H)|−2(H)|. Hence dH ′
Ui

(y′) � |V�|V (H)|−2(H)|. Consequently, we get

the desired result.

(iv) By the definition of p, 2 � i + 1 � |V|V (H)|−2(H)| = |V�|V (H)|−2(H)| − 1 for each 1 �
i � p. Hence, for each 1 � j � p, H ′

Uj
has a vertex of degree i + 1 if and only if j = i by

(ii) and (iii). This implies H ′
Ul

	� H ′
Ul′

for each l 	= l′.

For w ∈ W and 0 � i � p, the radius of Hw is 2 and the radius of H ′
Ui

is 1, and hence

Hw 	� H ′
Ui

. Let H′ = {Hw | w ∈ W } and H′′ = {H ′
Ui

| 0 � i � p}. Then |H1| � |H′| + |H′′|.
If V|V (H)|−2(H) = ∅, then |H′| = t(H) − 1 and |H′′| = 1, as desired. If V|V (H)|−2(H) 	= ∅, then

|H′| = t(H) − 2 and |H′′| = min{|V|V (H)|−2(H)| − 1, |V (H)| − 4} + 1, as desired.

This completes the proof of Theorem 4.1.

Let H be a special graph with |V|V (H)|−2(H)| = 1. Then |V1(H)| = |V|V (H)|−2(H)| =

|V|V (H)|−1(H)| = 1. Since |V (H)| � 5, this implies that t(H) � 4. Therefore Theorem 4.1

leads to the following corollary.

Corollary 4.5. Let H be a connected graph with |V (H)| � 3, and let H be a set of connected

graphs such that |V (H∗)| � 3 for every H∗ ∈ H. If |F(H) � F(H)| < ∞, then H ∈ H or

|{H∗ ∈ H | H ≺ H∗}| � min{|H|, 3}.

For v ∈ V (H), we define ecc(v) = max{d(v, u) | u ∈ V (H)}. Let s(H) = max{ecc(v) | v ∈
V1(H)}; if V1(H) = ∅, we set s(H) = 0. Then the following lemma clearly holds.
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Lemma 4.6. Let H be a connected graph with V1(H) 	= ∅. Let x ∈ V1(H) be a vertex of H

with ecc(x) = s(H), and let y ∈ V (H) − {x} be a vertex such that H − y is connected. Then

s(H − y) � s(H) − 1.

Next, we restrict Corollary 4.5 to the case |H| � 3.

Theorem 4.7. Let H be a connected graph with |V (H)| � 3, and let H be a set of connected

graphs with |H| � 3 such that |V (H∗)| � 3 for every H∗ ∈ H. If |F(H) � F(H)| < ∞ and

H 	∈ H, then |H| = 3 and H � C3.

Proof. Set k = |H| � 3, and write H = {H1, . . . , Hk}. Suppose that H 	∈ H. It suffices to

show that k = 3 and H � C3. By Corollary 4.5, H ≺ Hi for every i. In particular, |V (H)| <
|V (Hi)| for every i. For each i, let H ′

i be a connected graph with |V (H ′
i )| = |V (H)| + 1 and

H ≺ H ′
i ≺ Hi (so H ′

i may be Hi). Let H′ = {H ′
1, . . . , H

′
k}. For each i, since H ≺ H ′

i and

|V (H ′
i )| = |V (H)| + 1, there exists a vertex ui ∈ V (H ′

i ) such that H ′
i − ui � H .

Claim 4.8. |F(H′) − F(H)| < ∞.

Proof. Since F(H′) − F(H) ⊆ F(H) − F(H) and |F(H) − F(H)| < ∞, we have |F(H′) −
F(H)| < ∞.

Take a set U ⊆ V (H). Since |F(H′) − F(H)| < ∞ and Gn
1(H;U) 	∈ F(H) for n � 1, we

find that H ′
iU

≺ GnU
1 (H;U) for some 1 � iU � 3 and some nU � 1. Choose (H ′

iU
, nU) so that

nU is as small as possible. Since |V (H)| < |V (H ′
iU

)|, V (H ′
iU

) ∩ V (KnU ) 	= ∅. By the choice

of (H ′
iU
, nU), we have V (KnU ) ⊆ V (H ′

iU
). Since |V (H)| < |V (H ′

iU
)| again, we have nU �

|U − V (H ′
iU

)| + 1. Hence every vertex of V (KnU ) has degree |U ∩ V (H ′
iU

)| + nU − 1 � |U|
in H ′

iU
.

We may assume that iV (H) = 1. Since |V (H ′
1)| = |V (H)| + 1, we see that Δ(H ′

1) =

|V (H)|(= |V (H ′
1)| − 1) (and so V|V (H)|(H

′
1) 	= ∅).

Claim 4.9. H ′
1 has no cutvertex. In particular, δ(H ′

1) � 2.

Proof. Since Δ(H ′
1) = |V (H)| = |V (H ′

1)| − 1, no vertex of V (H ′
1) − V|V (H)|(H

′
1) is a cutver-

tex. Let u ∈ V|V (H)|(H
′
1). It suffices to show that H ′

1 − u is connected. If |V|V (H)|(H
′
1)| � 2,

then H ′
1 − u has a vertex of degree |V (H ′

1)| − 2, and so H ′
1 − u is connected, as desired.

Thus we may assume that |V|V (H)|(H
′
1)| = 1. By the definition of nV (H), this implies that

nV (H) = 1, and hence H ′
1 = G1

1(H;V (H)). Then we have H ′
1 − u = H . Since H is connected,

H ′
1 − u is connected.

Claim 4.10. If H ′
1 − v � H , then v ∈ V|V (H)|(H

′
1).

Proof. By the construction of G
nV (H)

1 (H;V (H)), nV (H) � |V|V (H)|−1(H) − V (H ′
1)| + 1. Hence

|V|V (H)|(H
′
1)| � nV (H) + |V|V (H)|−1(H) ∩ V (H ′

1)| � |V|V (H)|−1(H)| + 1. If v 	∈ V|V (H)|(H
′
1),
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then

|V|V (H)|−1(H)| = |V|V (H)|−1(H
′
1 − v)| � |V|V (H)|(H

′
1)| � |V|V (H)|−1(H)| + 1,

a contradiction. Thus v ∈ V|V (H)|(H
′
1).

Take a set U ⊆ V (H). Since |F(H′) − F(H)| < ∞ and Gn
2(H;U) 	∈ F(H) for n � 1, we

have H ′
jU

≺ GmU

2 (H;U) for some 1 � jU � 3 and some mU � 1. Choose (H ′
jU
, mU) so that

mU is as small as possible. Since |V (H)| < |V (H ′
jU

)|, V (H ′
jU

) ∩ V (mUK1) 	= ∅. By the choice

of (H ′
jU
, mU), we have V (mUK1) ⊆ V (H ′

jU
). If U = {u}, we write Gn

2(H; u), ju and mu instead

of Gn
2(H;U), jU and mU , respectively. For each u ∈ V (H), since V (H ′

ju
) ∩ V (muK1) 	= ∅,

δ(H ′
ju
) = 1 and so ju 	= 1 by Claim 4.9.

Claim 4.11. For each u ∈ V�2(H),

(i) if H ′
ju

− v � H then v ∈ V1(H
′
ju
), and

(ii) H ′
ju

is isomorphic to a graph obtained from Gmu

2 (H; u) by deleting mu − 1 vertices of

V1(G
mu

2 (H; u)).

Proof. Since dH (u) � 2, note that |V1(G
mu

2 (H; u))| = |V1(H)| + mu. Since H ≺ H ′
ju

≺ Gmu

2 (H; u), |V (H ′
ju
)| = |V (H)| + 1 and |V (Gmu

2 (H; u))| = |V (H ′
ju
)| + (mu − 1), we see that

|V1(H
′
ju
)| � |V1(H)| + 1 and |V1(G

mu

2 (H; u))| � |V1(H
′
ju
)| + (mu − 1). This together with

|V1(G
mu

2 (H; u))| = |V1(H)| + mu forces |V1(H
′
ju
)| = |V1(H)| + 1 and |V1(G

mu

2 (H; u))| =

|V1(H
′
ju
)| + (mu − 1). Since |V (H ′

ju
)| = |V (H)| + 1 and |V1(H

′
ju
)| = |V1(H)| + 1, if H ′

ju
− v �

H , then v ∈ V1(H
′
ju
) and so (i) holds. Since |V (H ′

ju
)| = |V (Gmu

2 (H; u))| − (mu − 1) and

|V1(H
′
ju
)| = |V1(G

mu

2 (H; u))| − (mu − 1), there exists a set L ⊆ V1(G
mu

2 (H; u)) with |L| =

mu − 1 such that Gmu

2 (H; u) − L � H ′
ju
.

Take a vertex u ∈ V (H). Since |F(H′) − F(H)| < ∞ and Gn
3(H; u) 	∈ F(H) for n � 1, we

find that H ′
hu

≺ Glu
3 (H; u) for some 1 � hu � 3 and some lu � 1. Choose (H ′

hU
, lU) so that

lU is as small as possible. Since |V (H)| < |V (H ′
hu

)|, V (H ′
hu

) ∩ V (Plu ) 	= ∅. By the choice of

(H ′
hU
, lU), we have V (Plu ) ⊆ V (H ′

hu
). Since V (H ′

hu
) ∩ V (Plu ) 	= ∅, δ(H ′

hu
) = 1, and so hu 	= 1

by Claim 4.9.

Claim 4.12. For each u ∈ V (H), if H ′
hu

− v � H , then v ∈ V1(H
′
hu

).

Proof. Note that |E(Glu
3 (H; u))| = |E(H)| + lu. Since H ≺ H ′

hu
≺ Glu

3 (H; u), |V (H ′
hu

)| =

|V (H)| + 1 and |V (Glu
3 (H; u))| = |V (H ′

hu
)| + (lu − 1), we see that |E(H ′

hu
)| � |E(H)| + 1 and

|E(Glu
3 (H; u))| � |E(H ′

hu
)| + (lu − 1). This together with |E(Glu

3 (H; u))| = |E(H)| + lu forces

|E(H ′
hu

)| = |E(H)| + 1. Since H ≺ H ′
hu

and |V (H ′
hu

)| = |V (H)| + 1, we have v ∈ V1(H
′
hu

).

Claim 4.13. δ(H) � 2.

Proof. Suppose that δ(H) = 1. Let a ∈ V1(H) be a vertex with ecc(a) = s(H). We consider

Gla
3 (H; a) and H ′

ha
. Recall that ha 	= 1. Without loss of generality, we may assume that
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ha = 2. Note that s(Gla
3 (H; a)) = s(H) + la. Since |V (H ′

2)| = |V (Gla
3 (H; a))| − (la − 1) and

H ′
2 ≺ Gla

3 (H; a), there exists a set L1 ⊆ V (Gla
3 (H; a)) with |L1| = la − 1 such that H ′

2 =

Gla
3 (H; a) − L1. Then, by Lemma 4.6, we can check that s(H ′

2) = s(Gla
3 (H; a) − L1) �

s(Gla
3 (H; a)) − (la − 1). Hence s(H ′

2) � s(H) + 1.

Write NH (a) = {b}. We consider Gmb

2 (H; b) and H ′
jb
. Note that s(Gmb

2 (H; b)) = s(H).

By Claim 4.11(ii), H ′
jb

is isomorphic to a graph obtained from Gmb

2 (H; b) by deleting

mb − 1 vertices of V1(G
mb

2 (H; b)). Recall that V1(H
′
jb
) 	= ∅. Hence we can check that

s(H ′
jb
) � s(Gmb

2 (H; b)). Thus s(H ′
jb
) � s(H), and so jb 	= 2. Recall that jb 	= 1. Therefore

jb = 3. In particular, δ(H ′
2) = δ(H ′

3) = 1.

Let A = NH [a](= {a, b}). We consider GnA
1 (H;A) and H ′

iA
. Note that b is a cutvertex of

GnA
1 (H;A). Recall that

V (GnA
1 (H;A)) − V (H) ⊆ V (H ′

iA
)

and every vertex of V (GnA
1 (H;A)) − V (H) has degree at least |A|(= 2) in H ′

iA
. Since

δ(H) = 1 and H ≺ H ′
iA
, H ′

iA
is not complete. Since GnA

1 (H;A) − (V (H) − A) is complete,

b ∈ V (H ′
iA
) and V (H ′

iA
) ∩ (V (H) − A) 	= ∅. Hence b is a cutvertex of HiA , and HiA has an

endblock which is complete and has order at least three. Then, by Claim 4.9, iA 	= 1,

and so iA ∈ {2, 3}. Recall that ha = 2 and jb = 3. By Claims 4.11(i) and 4.12, there exists

a vertex v ∈ V1(H
′
iA
) such that H ′

iA
− v � H . In particular, H has an endblock which is

complete and has order at least three.

Let C ′ be a maximum complete endblock of H , and let b′ be the unique cutvertex of H in

C ′. Let D = V (C ′). We consider GnD
1 (H;D) and H ′

iD
. Note that b′ is a cutvertex of GnD

1 (H;D).

Recall that V (GnD
1 (H;D)) − V (H) ⊆ V (H ′

iD
) and every vertex of V (GnD

1 (H;D)) − V (H) has

degree at least |D| in H ′
iD

. Since δ(H) = 1 and H ≺ H ′
iD

, H ′
iD

is not complete. Since

GnD
1 (H;D) − (V (H) − D) is complete, b′ ∈ V (H ′

iD
) and V (H ′

iD
) ∩ (V (H) − D) 	= ∅. Hence

b′ is a cutvertex of H ′
iD

and H ′
iD

has an endblock which is complete and has order

at least |D| + 1. Then by Claim 4.9, iD 	= 1, and so iD ∈ {2, 3}. Recall that ha = 2 and

jb = 3. By Claims 4.11(i) and 4.12, there exists a vertex v ∈ V1(H
′
iD

) such that H ′
iD

− v � H .

In particular, H has an endblock which is complete and has order at least |D| + 1(=

|V (C ′)| + 1), which contradicts the maximality of C ′.

Take an integer i′ with V1(H
′
i′) 	= ∅. Since H ≺ H ′

i′ and |V (H ′
i′ )| = |V (H)| + 1, we see

that H ′
i′ − u � H if and only if u ∈ V1(H

′
i′ ) by Claim 4.13. This forces |V1(H

′
i′)| = 1. Thus

we see that |V1(H
′
i )| � 1 for every 1 � i � 3. Fix a vertex x ∈ V (H). We may assume that

jx = 2. By the construction of Gmx

2 (H; x) and H ′
2, we can check that H ′

2 = G1
2(H; x).

Let Y be a maximum subset of V (H) so that NH (u) = NH (v) for every u, v ∈ Y , and let

Y ′ = NH (Y ). We consider G
mY ′
2 (H;Y ′) and H ′

jY ′ . Let

Y ∗ = (Y ∩ V (H ′
jY ′ )) ∪ (V (G

mY ′
2 (H;Y ′)) − V (H)).

Note that NH ′
j
Y ′

(u) = NH ′
j
Y ′

(v) for every u, v ∈ Y ∗. By the construction of G
mY ′
2 (H;Y ′),

mY ′ � |Y − V (H ′
jY ′ )| + 1. Hence |Y ∗| = |Y ∩ V (H ′

jY ′ )| + mY ′ � |Y | + 1. Therefore, H ′
jY ′ −

u � H implies that u ∈ Y ∗ by the maximality of Y . Since |Y ∗| � 2, every vertex of

Y ∗ has degree at most |V (H)| − 1 in H ′
jY ′ . By Claim 4.10, this implies that jY ′ 	= 1.
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Since |V1(H
′
jY ′ )| � 1, every vertex of Y ∗ has degree at least two. Recall that jx = 2. By

Claim 4.11(i), this implies that jY ′ 	= 2. Hence jY ′ = 3. Also we see that δ(H ′
3) � 2.

Take a vertex y ∈ V (H). Since δ(H ′
jy
) = 1, jy = 2. By the construction of G

my

2 (H; y) and

H ′
2, we can check that H ′

2 � G1
2(H; y). This implies that t(H) = 1, and hence H is regular.

Set m = δ(H). By Claim 4.10, δ(H ′
1) = m + 1. Recall that |Y ∗| � 2. Since, for every u ∈ Y ∗,

H ′
3 − u � H and dH ′

3−u(v) = dH ′
3
(v) for every v ∈ Y ∗ − {u}, δ(H ′

3) = m.

Suppose that m � 3. Take a vertex z ∈ V (H). Let Z be a subset of NH (z) with |Z | = m −
1. We consider GmZ

2 (H;Z) and H ′
jZ

. Note that every vertex of V (GmZ

2 (H;Z)) − V (H) has

degree m − 1. Since V (GmZ

2 (H;Z)) − V (H) ⊆ V (H ′
jZ

), δ(H ′
jZ

) � m − 1, and hence jZ = 2.

Since every vertex of H ′
2 of degree at most m − 1 belongs to V1(H

′
2), Z − V (H ′

2) 	= ∅. By

the definition of GmZ

2 (H;Z), mZ � |Z − V (H ′
2)| + 1 � 2. Hence there exist two vertices of

degree one in H ′
2, a contradiction. Thus m � 2. This implies that H is a cycle.

Suppose that |V (H)| � 4. Let e = w1w2 be an edge of H , and let W = {w1, w2}. We

consider GnW
1 (H;W ) and H ′

iW
. Since H ≺ H ′

iW
, H ′

iW
has an induced cycle of order |V (H)|.

This together with |V (H ′
iW

)| = |V (H)| + 1 implies H ′
iW

� G1
1(H;W ). Since V1(H

′
iW

) =

V|V (H)|(H
′
iW

) = ∅, iW 	= 1, 2. Hence iW = 3. However, there exist no vertices u, v ∈ V (H ′
3)

with u 	= v such that NH ′
3
(u) = NH ′

3
(v), a contradiction. Thus |V (H)| = 3, and so H � C3.

This completes the proof of Theorem 4.7.

Theorem 4.7 leads to the following results.

Corollary 4.14. For each 1 � i � 3, let Hi be a connected graph with |V (Hi)| � 3. If |F(H1)

� F(H2, H3)| < ∞, then H1 ∈ {H2, H3}.

Corollary 4.15. For each 1 � i � 3, let Hi be a connected graph with |V (Hi)| � 3. If |F(H1)

� F(H2, H3)| < ∞ and H1 is not special, then there exists an integer 2 � i � 3 such that

H1 = Hi ≺ H3−i.

Proof. By Corollary 4.14, H1 ∈ {H2, H3}. We may assume that H1 = H2. Then F(H1) �
F(H2, H3) = F(H1) � F(H1, H3) = F(H1) − F(H3). Hence |F(H1) − F(H3)| < ∞. Since

H1 is not special, H1 ≺ H3 by Lemma 3.2, as desired.

Corollary 4.16. For each 1 � i � 2, let Hi be a connected graph with |V (Hi)| � 3. If |F(H1)

� F(H2)| < ∞, then H1 = H2.

5. |H1| = |H2| = 2 and H1 ∩ H2 �= ∅

In this section, we focus on the case in which F({H1, H2}) � F({H1, H3}) is finite.

Theorem 5.1. For each 1 � i � 3, let Hi be a connected graph with |V (Hi)| � 3. If

|F(H1, H2) � F(H1, H3)| < ∞, Δ(H1) � |V (H1)| − 2 and δ(H1) � 2, then either H1 ≺ H2

and H1 ≺ H3, or H2 = H3.
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Proof. Suppose that H1 ≺ H2 or H1 ≺ H3. We may assume that H1 ≺ H2. Then

F(H1, H2) � F(H1, H3) = F(H1) � F(H1, H3) = F(H1) − F(H3).

Hence |F(H1) − F(H3)| < ∞. Since H1 is not special, H1 ≺ H3 by Lemma 3.2, as desired.

Thus we may assume that H1 	≺ H2 and H1 	≺ H3.

Suppose that H2 	= H3. We may assume that H2 	≺ H3. Then by Lemma 3.1, |V (H3)| �
2|V (H2)| − 3 and |V (H2)| � 4. If |V (H2)| � |V (H3)|, then we see that |V (H2)| � 3, a

contradiction. Thus |V (H2)| < |V (H3)|. In particular, H3 	≺ H2. Then by Lemma 3.1,

|V (H2)| � 2|V (H3)| − 3. This together with |V (H2)| < |V (H3)| implies that |V (H3)| � 2, a

contradiction. Therefore H2 = H3.

6. k-connected graphs

In this section, we extend Corollary 4.16 to k-connected graphs.

In our proof, we use the Cartesian product of two graphs. The Cartesian product G1�G2

of two graphs G1 and G2 has vertex set V (G1) × V (G2), and two vertices (u1, u2) and (v1, v2)

are joined by an edge if and only if uivi ∈ E(Gi) and u3−i = v3−i for some 1 � i � 2. Xu

and Yang [15] proved the following results concerning the connectivity of the Cartesian

product of two graphs.

Lemma 6.1 (Xu and Yang [15]). For each i = 1, 2, let Gi be a connected graph. Then

κ(G1�G2) � min{κ(G1) + δ(G2), κ(G2) + δ(G1)}.

Lemma 6.2. Let k be a positive integer. For each 1 � i � 2, let Hi be a connected graph

with |V (Hi)| � 3. If |Fk(H1) − Fk(H2)| < ∞ and H1 	≺ H2, then either |V (H1)| < |V (H2)|,
or |V (H1)| = |V (H2)| and |E(H1)| > |E(H2)|.

Proof. Assume that |V (H1)| � |V (H2)|. It suffices to show that |V (H1)| = |V (H2)| and

|E(H1)| > |E(H2)|.
Note that Gn

1(H2;V (H2)) is k-connected for n � k − 1. Since |Fk(H1) − Fk(H2)| < ∞
and Gn

1(H2;V (H2)) 	∈ F2(H2), H1 ≺ Gn1

1 (H2;V (H2)) for some n1 � k − 1. Since H1 	≺ H2,

V (H1) ∩ V (Kn1
) 	= ∅. Hence H1 = H ′

2 + Km1
for a graph H ′

2 ≺ H2 and m1 � 1. In particular,

H1 has a vertex of degree |V (H1)| − 1 (and so Δ(H1) = |V (H1)| − 1).

For n � k, let Gn
4 = H2�Kn,n. Since κ(Kn,n) = δ(Kn,n) = n � k, Gn

4 is k-connected by

Lemma 6.1. Since |Fk(H1) − Fk(H2)| < ∞ and Gn
4 	∈ F2(H2), H1 ≺ Gn2

4 for some n2 � k.

Recall that Δ(H1) = |V (H1)| − 1. We may assume that (u1, u2) has degree |V (H1)| − 1

in H1(≺ Gn2

4 ). Since H1 	≺ H2, (u1, v2) ∈ V (H1)(≺ Gn2

4 ) for some v2 ∈ V (Kn,n) − {u2}. Since

(u1, v2) is adjacent to (u1, u2), (u1, v2) has degree 1 in H1(≺ Gn2

4 ) by the definition of Gn2

4 . In

particular, H1 has a vertex of degree 1.

Recall that H1 = H ′
2 + Km1

. If m1 � 2 or H ′
2 = H2, then H1 has no vertex of degree

1, a contradiction. Thus m1 = 1 and H ′
2 	= H2. This together with |V (H1)| � |V (H2)|

implies that |V (H1)| = |V (H2)| = |V (H ′
2)| + 1. Write V (H2) − V (H ′

2) = {x}. If dH2
(x) =

|V (H2)| − 1, then we have H2 � H ′
2 + K1, which contradicts the fact that H1 	� H2. Thus
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dH2
(x) � |V (H2)| − 2. Then |E(H1)| = |E(H ′

2 + K1)| = |E(H ′
2)| + (|V (H2)| − 1) > |E(H ′

2)| +

dH2
(x) = |E(H2)|. Therefore we have the desired result.

Theorem 6.3. Let k be a positive integer. For each 1 � i � 2, let Hi be a connected graph

with |V (Hi)| � 3. If |Fk(H1) � Fk(H2)| < ∞, then H1 = H2.

Proof. Suppose that H1 	= H2. We may assume that H1 	≺ H2. Since |Fk(H1) − Fk(H2)| <
∞, either |V (H1)| < |V (H2)|, or |V (H1)| = |V (H2)| and |E(H1)| > |E(H2)| by Lemma 6.2.

Suppose that |V (H1)| < |V (H2)|. Then H2 	≺ H1. Since |Fk(H2) − Fk(H1)| < ∞, |V (H2)| �
|V (H1)| by Lemma 6.2, a contradiction. Thus |V (H1)| = |V (H2)| and |E(H1)| > |E(H2)|.
Then H2 	≺ H1. Since |Fk(H2) − Fk(H1)| < ∞ and |V (H1)| = |V (H2)|, |E(H2)| > |E(H1)| by

Lemma 6.2, a contradiction.

Therefore H1 = H2.

7. Concluding remarks

In this paper, we have studied when the difference and the symmetric difference of sets

of graphs defined by forbidden subgraphs become finite.

As in Section 2, let H1 be the graph obtained from the triangle by attaching two

pendant edges to a vertex and let H2 be a 6-regular triangulation of the torus. Then we

have seen that H1 is not an induced subgraph of H2, but F(H1) − F(H2) is finite.

Let H = {G1
1(H1;U) | U ⊆ V (H1), U 	= ∅} ∪ {H2}. Then (H1,H) is a pair that satisfies

the assumption of Theorem 4.1 with F(H1) � F(H) = {H1, H2}, but it does not satisfy

conclusions (i) and (ii) of Theorem 4.1. Therefore condition (iii) of Theorem 4.1 is

necessary. Let H3 be a 6-regular triangulation of the torus which is different from

H2. Then the pair ({H1, H2}, {H1, H3}) satisfies the assumption of Theorem 5.1 with

F(H1, H2) � F(H1, H3) = {H2, H3}, except for the degree condition, but it does not satisfy

the conclusion of Theorem 5.1. Therefore the degree condition on H1 of Theorem 5.1 is

necessary.
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