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Beam instabilities in a magnetized pair plasma
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Abstract. Beam instabilities in the strongly magnetized electron–positron plasma
of a pulsar magnetosphere are considered. We analyse the resonance conditions and
estimate the growth rates of the Cherenkov and cyclotron instabilities of the ordi-
nary (O), extraordinary (X) and Alfvén modes in two limiting regimes: kinetic and
hydrodynamic. The importance of the different instabilities as a source of coher-
ent pulsar radiation generation is then estimated, taking into account the angular
dependence of the growth rates and the limitations on the length of the coherent
wave–particle interaction imposed by the curvature of the magnetic field lines. We
conclude that in the pulsar magnetosphere, Cherenkov-type instabilities occur in
the hydrodynamic regime, while cyclotron-type instabilities occur in the kinetic
regime. We argue that electromagnetic cyclotron-type instabilities on the X, O and
probably Alfvén waves are more likely to develop in the pulsar magnetosphere.

1. Introduction
At present, the most promising theories of pulsar radio emission generation are
based on the plasma emission model, in which the high-brightness radio emission
is generated by plasma instabilities developing in an outflowing one-dimensional
electron–positron plasma penetrated by a highly relativistic electron or positron
beam (Sturrock 1960; Goldreich and Julian 1969; Melrose 1995). To find the insta-
bility responsible for the generation of pulsar radio emission, it is essential to know
the dispersion relations of the normal modes of the medium and take into account
the evolution of the modes as they propagate outwards in the pulsar magnetosphere.

In this paper, we resort to similar distributions of the pair plasma with equal
densities, and neglect the curvature of the magnetic field lines. These approxima-
tions are justified if the radius of curvature of field lines in the particle’s rest frame,
RB/γ

2
p, is much less than the Larmor radius rL = c/ωB: RB/γ2

p � rL (here γp is
the average streaming energy of plasma particles in the pulsar frame).

We consider wave excitation in a strongly magnetized pair plasma in the approx-
imation of straight magnetic field lines, thus omitting an important Cherenkov-drift
resonance (Lyutikov et al. 1999a,b) and other effects of inhomogeneity (Goldreich
and Keeley 1971; Beskin et al. 1983; Asseo et al. 1983; Asseo 1995). The electro-
magnetic Cherenkov-drift instability, which may be responsible for the generation
of cone-type emission in pulsars, occurs in the kinetic regime on the high-frequency
vacuum-like O and X waves. It has the same advantages as the electromagnetic
cyclotron instabilities considered in this paper.
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Owing to the limitations of space, we have had to omit numerous details of the
work, which can be found in Lyutikov (1998).

The main conclusions of our work are the following. For the chosen parame-
ters of the magnetospheric plasma, the Cherenkov-type electrostatic beam insta-
bilities develop in the hydrodynamic regime, while cyclotron-type electromagnetic
instabilities develop in the kinetic regime. Electrostatic beam instabilities in the
pulsar plasma are generally weaker than electromagnetic instabilities. In addition,
Cherenkov instabilities have the largest growth rate near the stellar surface, where
the Cherenkov resonance can occur only on the Alfvén mode. However, this mode
cannot escape to infinity, even though it has an electromagnetic component. An-
other factor that limits the development of Cherenkov-type instabilities is that
they grow within a much narrower angle than cyclotron instabilities. In a curved
magnetic, field this results in a shorter length of coherent wave–particle interaction.

The relative weakness of electrostatic instabilities as compared with electromag-
netic instabilities is an unusual characteristics of strongly relativistic beams. The
reason for this is that, for the particles in the primary beam, which contribute to
the development of the instability, the effective parallel massmeff‖ = γ3

bm ≈ 1021 m.
This suppresses the development of the electrostatic instabilities. In contrast, the
effective transverse mass meff⊥ = γbm is less affected by the large parallel momen-
tum. The electromagnetic instabilities are less suppressed by the large streaming
momenta. Thus the relativistic velocities and one-dimensionality of the distribu-
tion function result in strong suppression of electrostatic instabilities as compared
with electromagnetic instabilities.

The calculations described here provided a basis for the model of pulsar radio
emission presented in Lyutikov et al. (1999a).

2. Plasma parameters
To a large extent, possible mechanisms for the generation of pulsar radio emission
are predicated on the choice of parameters of the plasma flow generated by a rotat-
ing neutron star. At present, we know only the general features of the distribution
function of the particles in a pulsar magnetosphere (Tademaru 1973; Arons 1981;
Daugherty and Harding 1983). It is believed to comprise (see Fig. 1)

(i) a highly relativistic primary beam with Lorentz factor γb ≈ 107 and density
equal to the Goldreich–Julian density nGJ ;

(ii) a secondary electron–positron plasma with a bulk streaming Lorentz factor
γp ≈ 10–1000, a similar scatter in energy Tp ≈ γp and a density np much
larger than the beam density: np ≈ λnGJ = 103–106nGJ ;

(iii) a tail with energy up to γt = 104–105.

We shall normalize the density of the pair plasma to the Goldreich–Julian density.

nα = λnGJ = 103–106nGJ , ω2
p = λω2

b = 2λωBΩ (2.1)

(the subscript α in (2.1) refers to the electrons and positrons of the bulk plasma).
Another relation between the parameters of the plasma and those of the beam

comes from the energy argument that the primary particles stop producing pairs
when the energy in the pair plasma becomes equal to the energy in the primary
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Figure 1. Distribution function for a one-dimensional electron–positron in a plasma of
pulsar magnetosphere.

beam:

2〈γ〉± n± = γ′b nGJ , at the pair formation front, (2.2)

where 〈γ〉± and n± are the initial average energies and densities of pair plasma, γ′b
is the energy of the beam in the pulsar frame (quantities measured in the pulsar
frame will be indicated with a prime ′) and nGJ is the density of the beam. Initial
densities, temperatures and velocities of the plasma components are equal.

The uncertainty in the physics of the pair-formation front forces us to allow for a
broad range of plasma parameters. Accordingly, the growth rates of the particular
instabilities can vary considerably, depending on the assumed parameters. Numer-
ical estimates will be given for a typical pulsar with period P = 0.5 s (light-cylinder
radius Rll = 2.4 × 109 cm), surface magnetic field B = 1012 G and primary-beam
Lorentz factor γb = 2×107 (see e.g. Arons 1983). These assumptions and (2.2) reduce
the number of free parameters to two: plasma temperature and bulk streaming en-
ergy γp (or temperature and multiplicity factor λ). Consequently, we shall consider
two separate cases of a cold and a relativistically hot plasma. For numerical esti-
mates, we shall use the following fiducial numbers: γp = 100, λ = 105, Tp� 1 for the
cold plasma, and γp = 100, λ = 104, Tp ≈ 10 for the relativistically hot plasma (Tp
is the invariant temperature of the plasma in units of mc2). The radial dependence
of the parameters is assumed to follow the dipole geometry of the magnetic field.

3. Response tensor for a one-dimensional plasma in straight magnetic
field

In the limits of applicability of our simplifying assumptions, the components of the
dielectric tensor are (Lyutikov et al. 1999a)

εxx = 1− 1
2

∑
α

ω2
pα

ω2

∫
dpz
γ

(ω − kzvz)A+
αfα = εyy, (3.1a)

εzz = 1−
∑
α

ω2
pα

∫
dpz
γ3

fα
(Ω0
α)2 −

∑
α

ω2
pα

ω2

∫
dpz
γ
fα

(k2
x + k2

y) v
2
z

Ω+
αΩ−α

, (3.1b)

εxy = − i
2

∑
α

ω2
pα

ω2

∫
dpz
γ

(ω − kzvz)A−α fα = −εyx, (3.1c)

εxz =
1
2

∑
α

ω2
pα

ω2

∫
dpz
γ
vz(kxA+

α + ikyA
−
α )fα = ε∗zx, (3.1d)
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εyz = −1
2

∑
α

ω2
pα

ω2

∫
dpz
γ

vz
c

(kyA+
α − ikxcA−α )fα = ε∗zy. (3.1e)

Here

A+
α =

1
Ω+
α

+
1

Ω−α
, A−α =

1
Ω−α
− 1

Ω+
α

, (3.2a,b)

Ω±α = ω − kzvz ± ωBγ−1, Ω0
α = ω − kzvz, (3.2c,d)

fα is the one-dimensional distribution function of component α, vz is the velocity
along the local magnetic field, γ is the Lorentz factor of a particle, kx, kz and ky
are the corresponding components of the wave vector, and the magnetic field is
directed along the z axis; the asterisk * denotes the complex conjugate.

The normal modes satisfy the dispersion relation

Det |Λαβ | = 0, where Λαβ = kαkβ − k2c2δαβ + ω2εαβ(ω,k) (3.3)

and εαβ(ω,k) is the dielectric tensor of the medium.

4. Waves in a pair plasma
In the pulsar magnetosphere, the waves that may be important for the generation
of the observed radio emission have frequencies much less than the gyrofrequency.
In what follows, we shall use the low-frequency approximation, in which all the
relevant frequencies are much less than the gyrofrequency. In the cold plasma in
its rest frame, this implies that ω� ωB.

Here we give explicitly only a few dispersion relations (see also Arons and Barnard
1986). A detailed analysis of the properties of the normal modes is given elsewhere
(Lyutikov 1998).

4.1. Waves in a cold plasma in its rest frame

In a one-dimensional plasma, the dispersion equation (3.3) factorizes, giving three
wave branches: a transverse X mode with electric vector perpendicular to the (k,B)
plane, and two coupled longitudinal–transverse O and Alfvén branches with the
electric vector in the (k,B) plane (see Fig. 2). The X wave is a subluminal transverse
electromagnetic wave with a dispersion relation

ω2
X = k2c2

(
1− 2ω2

p

ω2
B

)
= k2v2

A, ω� ωB , (4.1)

where vA is the Alfvén velocity in a strongly magnetized plasma. The Alfvén branch
is always subluminal, while the O mode is superluminal at small wave vectors and
subluminal at large wave vectors. The crossover point, where the O mode becomes
luminal, is

ω2
0 = k2

0 c
2 = 2ω2

p + ω2
B sin2 θ. (4.2)

The large- and small-wave-vector asymptotic solutions for the O and Alfvén
branches are

ω2 =


k2c2

(
1− 2ω2

p cos2 θ

ω2
B

)
+ 2ω2

p sin2 θ (O wave),

2ω2
p cos2 θ

(
1− 2ω2

p sin2 θ

k2c2 − 2ω2
p sin2 θ

ω2
B

)
(Alfvén wave)

(4.3)
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Figure 2. Dispersion curves for the waves in a cold electron–positron plasma in the plasma
frame in the limit ωp� ωB . There are three modes represented by dashed (O mode), solid (X
mode) and long-dashed (Alfvén mode) lines. The dotted line represents the vacuum dispersion
relation. For exactly parallel propagation, the dispersion curves for the O mode and the
Alfvén mode intersect. The insert in the upper left corner shows the region near the crossover
point ω0.

if kc � ωp, and

ω2 =


2ω2

p + k2c2

(
1− k2c2 cos2 θ

ω2
p

)
sin2 θ (O wave),

k2c2 cos2 θ

(
1− 2ω2

p

ω2
B

− k2c2 sin2 θ

2ω2
p

)
(Alfvén wave)

(4.4)

if kc � ωp.
The polarization vectors for these normal modes are

eX = (0, 1, 0), (4.5)

eO =



(
cos θ

(
1− 2ω2

p sin2 θ

ω2

)
, 0,
(
1+

2ω2
p cos2 θ

ω2

)
sin θ

)
+O

(
ω2
p

k2c2

)
(kc� ωp),(−k2 sin 2 θ

4ω2
p

, 0, 1
)

+O

(
k2c2

ω2
p

)
(kc� ωp),

(4.6)

eO =



(
ω2
B θ

ω2
0
, 0,−1

) (
θ�

2ω2
p

ω2
B

, ω ≈ ω0

)
,

(
1, 0,−ω

2
0 cosec θ sec θ

ω2
B

) (
θ�

2ω2
p

ω2
B

, ω ≈ ω0

)
,

(4.7)
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eA =



((
1 +

2ω2
p cos2 θ

k2

)
sin θ, 0, cos θ

(
1− 2ω2

p sin2 θ

k2

))
+O

(
ω2
p

k2

)
(kc � ωp),(

1, 0,
ω2 tan θ

2ω2
p

)
+O

(
k2c2

ω2
p

)
(kc � ωp).

(4.8)

4.2. Waves in a relativistically hot pair plasma

We have investigated the effects of the thermal motion of plasma particles on the
dispersion relation of normal modes for two generic distribution functions: water-
bag and relativistic Maxwellian (see also Silin 1960; Tsytovich and Kaplan 1972;
Godfrey and Shanahan 1974; Melrose 1982; Suvorov and Chugunov 1975; Volokitin
et al. 1985; Arons and Barnard 1986; Zank and Greaves 1995; Lyutikov 1998). The
thermal motion of plasma particles considerably affects the dispersion of the Alfvén
mode at frequencies ω > ωp and the dispersion of the O mode at frequencies ω ≈ ωp.
Another important quantitative modification is in the dispersion relations of the X
mode and O mode at large frequencies ω > ωp. An important factor in the excitation
of these modes is the difference between the phase speed and the speed of light. This
difference is roughly proportional to 〈1/γ3〉. It is considerably decreased owing to
the bulk streaming of the plasma. In a relativistically hot streaming plasma, there
are more particles with low Lorentz factors, which contribute to 〈1/γ3〉, than in a
cold plasma streaming with the same average velocity. So, for a given streaming
velocity, a relativistically hot plasma has a larger 〈1/γ3〉 and a larger growth rate.

The dispersion relation for the X mode in a hot plasma is

ω2 = k2c2
(

1− ω2
p

ω2
B

Tp (1 + β2
T cos2 θ)

)
, (4.9)

where βT = (1− 1/T 2)1/2.
It is possible to obtain an asymptotic expansion of the dispersion relations of the

Alfvén and O modes in the limits of very small and very large wave vectors. In the
limit kc � T

1/2
p ωp, we have

ω2 =


c2 k2 β2

T cos2 θ

(
1− 2ω2

p

c2 T 3
p k

2 β2
T (−1+β2

T cos2 θ)

)
(Alfvén wave),

c2 k2

(
1− ω2

p

ω2
B

Tp (1+β2
T cos2 θ)

)(
1− 2ω2

p sin2 θ

c2 Tp k2 (−1 + β2
T cos2 θ)

)
(O wave),

(4.10)
while in the opposite limit kc� T

1/2
p ωp

ω2 =


c2 k2 cos2 θ

(
1− ω2

p

ω2
B

Tp (1 + β2
T cos2 θ)

) (
1− c2 k2 sin2 θ

2Tp ω2
p

)
(Alfvén wave),

2ω2
p

Tp
+ c2 k2 (β2

T cos2 θ + sin2 θ) (O wave).

(4.11)
The X mode is always superluminal and the Alfvén mode is always subluminal.

The O mode is superluminal for small small vectors kc� Tp
1/2ωp, and may become

subluminal for very small angles of propagation θ� Tp
1/2ωp/ωB.
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The crossover point (where the phase speed of the O mode become equal to the
speed of light) is now

ω
(h) 2
0 = k2

0c
2 ≈ 2 Tpω2

p + ωB
2 sin2 θ.

The polarization vectors for the O and Alfvén modes are

e(h)
O =



(
cos θ

(
1− 2Tp ω2

p sin2 θ

c2k2

)
, 0,−

(
1 +

2Tp ω2
p cos2 θ

c2k2

)
sin θ

)
(kc � ωp),(

ω2
B θ

ω2
0
, 0,−1

) (
θ�

2Tpω2
p

ω2
B

, ω = ω
(h)
0

)
,(

1, 0,− ω2
0

sin θ cos θω2
B

) (
θ�

2Tpω2
p

ω2
B

, ω = ω
(h)
0

)
,

(4.12)

e(h)
A =

(
1, 0,

ω2 tan θ
2Tp ω2

p

)
(kc � ωp). (4.13)

5. Hydrodynamic and kinetic instabilities
For the beam–plasma system the dielectric tensor εαβ(ω,k) may be represented as
the sum of the contributions from the plasma and the beam:

εαβ(ω,k) = δαβ +
4πc
ω
σ

plasma
αβ +

4πc
ω
σbeam
αβ , (5.1)

where σplasma
αβ and σbeam

αβ are the conductivity tensors of the plasma and the beam.
Two separate cases may be distinguished here, depending on whether the com-

plex part of the beam contribution to the dispersion relations is zero or non-zero.
This corresponds to the two types of instabilities: hydrodynamic and kinetic. In
hydrodynamic instabilities, all the particles of the beam resonate with the normal
mode of the plasma. This requires that the growth rate of the instability be greater
than the intrinsic bandwidth of the growing waves:

|k · δv|� Im[∆(k)], (5.2)

where k is the resonant wave vector and δv is the scatter in the velocity of the beam
particles.

For a one-dimensional plasma, the condition of hydrodynamic approximation is

k‖c
∆γ
γ3 +

sωB∆γ
γ2 �Γ, (5.3)

where ∆γ is the spread in Lorentz factors, and s = 0,±1, . . . . In the kinetic regime,
this inequality is reversed.

For an instability to be important as a possible source of coherent emission gen-
eration, its growth rate, evaluated in the pulsar frame, should be much larger than
the pulsar rotation frequency Ω:

Γ
γpΩ

� 1. (5.4)

Another, more stringent, requirement on the growth rate comes from its angular
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Figure 3. Resonances on the O mode in a cold plasma for µ > 1.

dependence. The emitting plasma propagates in a curved magnetic field. If an in-
stability has a considerable growth inside a characteristic angle δθ′ then the growth
length should be larger than δθRc, where Rc is the curvature of the magnetic field.
In the plasma frame, this requirement is

Γ�
cγ2
p

Rc δθ
, (5.5)

6. Cold pair plasma: resonances
In a cold plasma, the resonant interaction between the fast particles and the plasma
may be considered as the interaction of waves in the plasma with waves in the beam.
The interaction is strongest when the dispersion relations of the waves intersect.
Consequently, we are looking for the possible resonances between the waves in the
plasma and the waves in the beam (Fig. 3):

ω = vb kz, (6.1)

ω = vb k cos θ ± ωB
γb
. (6.2)

As we shall see in Section 8, the resonant interaction of the plasma waves with
the Cherenkov waves in the beam (6.1) is described by a cubic equation for the
frequency shift, which always has complex-conjugate solutions. This implies that
the Cherenkov resonant interaction of the waves in the beam and those in the
plasma is always unstable.

In contrast, the frequency shift due to the cyclotron interaction of the waves
in the beam and in the plasma (6.2) is described by a quadratic equation, which
has two real solutions for the plus sign in (6.2) and two complex solutions for the
minus sign. Thus only the minus sign in (6.2) will contribute to the instability
growth rate. The resonance (6.2) with the minus sign is called anomalous Doppler
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resonance. This corresponding instability may be considered as the interaction of
a negative-energy wave in the beam with a positive-energy wave in plasma. Owing
to the resonant coupling, the amplitudes of both waves grow exponentially.

Now let us consider the condition for the resonances (6.1) and (6.2) to occur.
From the low-frequency asymptotics of the Alfvén waves (4.4), we infer that the
possibility of Cherenkov excitation of the Alfvén waves depends on the parameter

µ =
2 γb ωp
ωB

= 5× 10−3
(

r

RNS

)3/2

=


< 1

(
r

RNS
< 43

)
,

> 1
(

r

RNS
> 43

)
.

(6.3)

If µ < 1 then Alfvén waves can be excited by Cherenkov resonance.† However,
if µ > 1 then Alfvén waves cannot be excited by Cherenkov resonance; instead,
resonance can occur for an O mode subject to the requirement of sufficiently small
angles of propagation (Fig. 3).

At small radii (µ � 1), it is the Alfvén wave that is excited by the Cherenkov
resonance, while for larger radii (µ > 1) it is the O mode that can be excited by the
Cherenkov resonance.

For parallel propagation (and only in this case), the parts of the O and Alfvén
modes that have longitudinal polarization may be considered as forming a single
plasma wave with a dispersion ω = 21/2ωp. In this particular case, the excitation
of either the O or the Alfvén part of the longitudinal plasma mode is very similar.
But as the waves propagate in curved magnetic field lines, the parts of the plasma
mode corresponding to the O or the Alfvén wave will evolve differently, resulting
in different observational characteristics of the emerging radiation.

We also note that the X wave cannot be excited by Cherenkov resonance. Al-
though, formally intersection of the Cherenkov wave in the beam (6.1) with the dis-
persion relation of the X mode is possible for all frequencies if µ = 1, the transverse
polarization of the X mode excludes resonant interaction with particles streaming
along the magnetic field.

Cyclotron resonance on the X modes occurs at ωres� ωB, provided that

ω2
pγb

ω2
B

� 1. (6.4)

Using the fiducial plasma parameters of the cold plasma, we find

ω2
pγb

ω2
B

= λ γb
2Ω
γpωB

= 1.3× 10−10
(

r

RNS

)3

, (6.5)

which implies that the X mode can be excited by cyclotron resonance only in the
outer parts of the magnetosphere for radii satisfying

rres

RNS
>

(
ω∗Bγ

2
p

λγ′bΩ

)1/3

≈ 2× 103. (6.6)

The location of the cyclotron resonance on the X mode is quite sensitive to the

† In the case of a cold plasma, this may be considered as a sufficient condition for the
Cherenkov excitation of Alfvén waves. In the case of a hot plasma, it is only a necessary
condition (see below).
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choice of the bulk streaming energy. Comparing the resonant frequency (see Table 9
below) with the plasma frequency, we find

ωres,X,cycl

ωp
=

ω3
B

γb ω3
p

� 1, (6.7)

which implies that the X mode is always excited with frequencies much larger than
the plasma frequency.

7. Hydrodynamic instabilities in a cold plasma
7.1. Dielectric tensor for a cold beam–plasma system

The dielectric tensor for a beam of density nb propagating with velocity vb along
a magnetic field B through a plasma of density n can be found from the general
expression (3.1) with zero drift velocity uα = 0 and distribution function fα(pz) =
np δ(pz) + nbδ(pz − pb) (nb is the density of the beam and pz is the momentum of
the beam particles):

εxx = 1 +
2ω2

p

−ω2 + ω2
B

− ω2
b ω̂

2

γb ω2 ω̃2 = εyy, (7.1a)

εxy =
−i ω2

b ωB ω̂

γ2
bω

2 ω̃2
= −εyx, (7.1b)

εxz = −k ω
2
b ω̂ vb sin θ
γb ω2 ω̃2 = εzx, (7.1c)

εyz =
i k ω2

b ωB vb sin θ
γ2
b ω

2 ω̃2
= −εzy, (7.1d)

εzz = 1− 2ω2
p

ω2 −
ω2
b

γ3
b ω̂

2
− k2 ω2

b v
2
b sin2 θ

γb ω2 ω̃2 , (7.1e)

where

ω̂ = ω − k vb cos θ,

ω̃2 = (ω − k vb cos θ)2 − ω2
B

γ2
b

,

γb = 1−
(
v2
b

c2

)−1/2

We shall always assume that the beam can be considered as a weak perturbation,
so that we can employ the expansion procedure described in Sec. 5.

7.2. Parallel and perpedicular propagation

In this subsection, we calculate the growth rates for the beam instabilities for the
two particular cases of waves propagating along and perpendicular to the magnetic
field. These will later serve as guidelines and estimates for the general case of oblique
propagation.

For propagation along the magnetic field, the dispersion relation (3.3) with di-
electric tensor (7.1) factorizes as

−1 +
2ω2

p

ω2 +
ω2
b

γ3
b ω̂

2
= 0, (7.2)
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−1 + n2 +
2ω2

p

ω2 − ω2
B

+
ω2
b ω̂

γb ω2 (±ωB/γb + ω̂)
= 0. (7.3)

Equation (7.2) describes hydrodynamic excitation of longitudinal plasma waves.
As discussed above, this may be a longitudinal part of the Alfvén or the O mode,
depending on the parameters of the plasma. Equation (7.3) describes cyclotron
excitation of the O and X modes. For parallel propagation, cyclotron excitation of
the Alfvén wave does not occur.

To find the growth rate of Cherenkov excitation of plasma waves, we expand (7.2)
in small frequency shifts ωl = 21/2 ωp+ ∆ = vbk cos θ+ ∆, and we find the imaginary
part of the frequency shift:

Im(∆) =
31/2 ω

1/3
p ω

2/3
b

27/6 γb
=

31/2λ1/6 (ΩωB)1/2

22/3γbγ
1/2
p

(7.4)

This is the growth rate for Cherenkov excitation of plasma waves (cf. Godfrey and
Shanahan 1975; Egorenkov et al. 1983). We can estimate the importance of the
Cherenkov excitation of plasma waves by evaluating the growth rate (7.4) for the
set of fiducial parameters of a cold plasma and comparing it with the inverse of the
dynamical time:

Im(∆)
γpΩ

≈ λ1/6

γbγ
3/2
p

(
ωB
Ω

)1/2

= 86
(

r

RNS

)−3/2

. (7.5)

From this, it follows that this instability may be important for r 6 20. We shall see
in Sec. 8 that the second criterion (5.5) is not satisfied for the Cherenkov excitation
of Alfvén or O waves, so that the Cherenkov instability does not develop.

Similarly, we find the growth rate of the cyclotron excitation of transverse waves.
Expanding in small ∆, we find that the frequency shift near anomalous Doppler
resonance is purely imaginary:

Im(∆) = ± i ω
1/2 ω

1/2
B ωb

2γb kc
=
iλ1/2Ω

γp γ
1/2
b

. (7.6)

For the parameters of a cold plasma, the time scale implied by the growth rate
(7.6) is much longer than the dynamical time everywhere inside the light cylinder:

Im(∆)
γpΩ

≈ λ1/2

γ2
p γ

1/2
b

= 10−4� 1, (7.7)

which implies that hydrodynamic regime of the cyclotron instability is unimpor-
tant.

For propagation perpendicular to the magnetic field, the system exhibits magne-
tized Weibel instability (Weibel 1959). Expanding the determinant (7.1) for θ = 1

2π

near the upper-hybrid frequency ω = (ωB2+2ω2
p)

1/2+∆, keeping terms up to second
order in ∆, we find the frequency shift

∆ =
k ω2

p [γ1/2
b k − (γ1/2

b k2 − 4ω2
b)

1/2]

2 γ1/2
b ω3

B

, (7.8)
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which shows an instability for kc < 2ωb/γb, with a maximum growth rate

Im(∆)max ≈
ω2
p ω

2
b

γ
3/2
b ω3

B

, (7.9)

which is negligible for all reasonable pulsar plasma parameters.

8. Oblique wave excitation in a cold plasma in the hydrodynamic
regime

In this section, we develop a general theory of hydrodynamic weak beam instabil-
ities in a cold magnetized electron–positron plasma. We expand (7.1) in small ωb,
keeping only the first terms. After some algebra, we obtain (Lyutikov 1998)

Kp +
A

ω̂2 +
B

ω̃2 = 0, (8.1)

where Kp is the plasma part of the determinant (7.1) and the coefficients A and B
may be found in Lyutikov (1998).

The term containing 1/ω̂2 contributes to Cherenkov excitation, and the term
containing 1/ω̃2 contributes to cyclotron excitation.

To find the growth rates, we expand the plasma part of (8.1) near the plasma
modes ((4.1) and (4.4)) and the beam part near the resonances ω̂ = 0 (for Cherenkov
excitation) or ω̃ = 0 (for cyclotron instability). The expansion of the plasma part
of (8.1) near the plasma modes is performed according to the relation

ω = ω(0) + ∆
(
∂Kp

∂ω

)∣∣∣∣
ω(0)

, (8.2)

where ω(0) are the solutions of Kp = 0. The growth rates in a cold plasma are
summarized in Table 9. For details of calculations, we refer the reader to Lyutikov
(1998).

9. Relativistic pair plasma: resonances
From the low-frequency approximation to Alfvén-wave dispersion, we find that the
possibility of Cherenkov excitation of Alfvén waves in a relativistically hot plasma
depends on the parameter

µh =
2γb T

1/2
p ωp
ωB

(9.1)

(cf. (6.3)). Numerically, µh and µ are equal for the chosen set of the fiducial numbers
for the cold and hot cases.

Another limitation on possible resonance comes from the requirement that the
waves in the plasma are not strongly damped at the location of the resonance. This
is an important constraint on the resonance of the Alfvén wave, which is strongly
damped at large wave vectors.

Using the dispersion relation for the Alfvén waves in the limit kc� ωp, we find
that the cyclotron resonance on the Alfvén wave occurs at kc� ωp for angles of
propagation larger than

θ2 =
ωBT

1/2
p

γbωp
. (9.2)
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For smaller angles, the location of the cyclotron resonance on the Alfvén wave
depends on the parameter

η =
γb ωp

T
3/2
p ωB

. (9.3)

If η� 1 (very hot plasma) then the cyclotron resonance on the Alfvén wave occurs
in the region ω� ω(0), where Alfvén waves are strongly damped. If, on the other
hand, η� 1 (warm plasma), the cyclotron resonance on the Alfvén wave occurs at
approximately ω(h)

0 , where Alfvén waves are not damped.
Since Alfvén waves cannot escape to infinity, they should be converted to elec-

tromagnetic modes before they are damped on the thermal particles. The Alfvén
waves with large angles, which are generated with the frequency ω� ω

(h)
0 , would

have more time for the nonlinear processes to convert them into escaping modes
than the Alfvén waves generated in a warm plasma with ω ≈ ω

(h)
0 and small an-

gles of propagation. Thus the cyclotron resonance on the Alfvén waves is likely to
produce waves propagating in a cone around the magnetic field.

10. Hydrodynamic wave excitation in relativistic pair plasma
10.1. Dielectric tensor for the beam-hot plasma system

To simplify the analysis, we shall use the low-frequency approximation ω � ωB
and the assumption of a very strong magnetic field Tpω

2
p/ω

2
B � 1 from the very

beginning. The components of the dielectric tensor are then given by

εxx = 1 +
ω2
p

ω2
B

Tp (1 + n2 β2
T cos2 θ)− ω2

b ω̂
2

γb ω2 ω̃2 = εyy, (10.1a)

εxy =
−i ω2

b ωB ω̂

γ2
b ω

2 ω̃2
= −εyx, (10.1b)

εxz =
ω2
p

ω2
B

Tp n
2 β2

T cos θ sin θ − k ω2
b ω̂ βb sin θ
γb ω2 ω̃2 = εzx, (10.1c)

εyz =
i k ω2

b ωB βb sin θ
γ2
b ω

2 ω̃2
= −εzy, (10.1d)

εzz = 1− 2n2 ω2
p

Tp (1− n2 β2
T cos2 θ)

+ d Tp n
2 sin2 θ − ω2

b

γ3
b ω̂

2
− k2 ω2

b β
2
b sin2 θ

γb ω2 ω̃2 . (10.1e)

10.2. Parallel propagation

For parallel propagation, the growth rate for the Cherenkov excitation of plasma
waves is

Im(∆) =
31/2 ω

1/3
p ω

2/3
b

27/6 γb T
1/2
p

=
31/2(ΩωB)1/2λ1/6

22/3γb(γp Tp)1/2
(10.2)

(cf. Egorenkov et al. 1983).
Using the relations between the parameters of the hot plasma ((2.2) with 〈γ〉 =
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2Tpγp), the condition of fast growth (5.4) for the growth rate (10.2) takes the form

Im(∆)
γpΩ

≈ λ1/6

γbγ
3/2
p T

1/2
p

(
ωB
Ω

)1/2

= 20
(

r

RNS

)−3/2

(10.3)

For fixed values of γb and γp, the growth rate for the Cherenkov excitation of
plasma waves in a hot plasma is smaller by a factor T 2/3

p compared with that for a
cold plasma.

The growth rate for the cyclotron excitation of transverse waves is

∆ = i
T

1/2
p ωp ωb

2 γ1/2
b ωB

=
(
λTp
γb

)
Ω
γp
. (10.4)

Comparison of this growth rate with the inverse of the dynamical time gives

Im(∆)
Ωγp

=
1
γ2
p

(
λTp
γb

)1/2

≈ 1
γ2
p

(
r

RNS

)3/2

= 10−4
(

r

RNS

)3/2

< 1 (10.5)

It follows from (10.5) and (7.7) if follows that cyclotron excitation of the trans-
verse waves in the hydrodynamic regime is not affected by the relativistic temper-
ature of the plasma particles, and is not important in the pulsar magnetosphere.

Similarly to the cold case, we omit the details of the calculations of the growth
rates (see Lyutikov 1998), and conclude this section with a table of hydrodynamic
growth rates in a relativistically hot pair plasma (Table 11).

11. Kinetic instabilities
As we have discussed in Sec. 5, a general beam instability may be treated analyt-
ically in the hydrodynamic and kinetic limiting cases. We have considered hydro-
dynamic beam instabilities in a pair plasma in Secs 8 and 10. Now we turn to the
kinetic regime of instabilities. The condition for the kinetic consideration to apply
is the opposite of the condition (5.2). It requires a substantial scatter in the ve-
locities of the resonant particles. In what follows, we assume that the distribution
of the beam particles is described by the relativistic, one-dimensional Maxwellian
distribution:

f (pz) = nb
1

2K1(1/Tb)γb
exp
(
− pµU

µ

Tb

)
, (11.1)

where nb is the density of the beam measured in the laboratory frame (the Lorentz-
invariant proper density is nbγb), Uµ = (γb,βbγb) is the four-velocity of the rest
frame of the beam, Tb is the beam temperature in units ofmc2, andK1 is a modified
Bessel function.

This distribution function may be simplified in the limit of a cold beam (in its
frame), Tb� 1, and large streaming velocity γb� 1. We then find

f (pz) =
nb

(2π)1/2
exp
(
− (pz − pb)2

2p2
t

)
, (11.2)

where p2
t = γ2

bTbmc is the scatter in parallel moments.
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In the case of kinetic instability the growth rate is given by (see e.g. Melrose 1980)

Γ = − (e∗αε
′′
αβeβ)

1
ω2

∂

∂ω
ω2(e∗αε′αβeβ)

∣∣∣∣∣∣∣
ω=ω(k)

(11.3)

where ε′αβ and ε′′αβ are the Hermitian and anti-Hermitian parts of the dielectric
tensor, ω(k) is the frequency of the excited normal modes of the medium, and eα
is its polarization vector. The anti-Hermitian parts of the dielectric tensor are due
to the resonant interaction of the particles from the beam at Cherenkov (6.1) and
cyclotron (6.2) resonances. Using the polarization vectors (4.12) and (4.13), we find
that for the quasitransverse waves (O mode ω � ω

(h)
0 , Alfvén mode ω � ω

(h)
0 and

O mode ω ≈ ω
(h)
0 ), θ� ω2

B/Tpω
2
p, while for the O mode at the crossover point and

θ� ω2
B/Tpω

2
p,

1
ω2

∂

∂ω
ω2(e · ε′· e) =


2
ω

(cold plasma),

Tpω

ω2
p

(hot plasma).
(11.4)

With polarization vectors (4.6) and (4.8) we find from, that for the quasitrans-
verse parts of the waves,

eX · ε′′· eX = −i2π
2e2

ω2m

∫
dpz
γ
ω̂f (pz)δ

(
ω̂ − ωB

γ

)
, (11.5)

eO · ε′′· eO =
4π2e2

mω

∫
dpzvz

∂f (pz)
∂pz

δ (ω̂) sin2 θ

+
2π2e2

ω2ωBm

∫
dpz (kvz − ω cos θ)2 f (pz)δ

(
ω̂ − ωB

γ

)
= ε′′ChO + ε′′CO , (11.6)

eA · ε′′· eA =
π2e2

mω

ω4

ω4
p

∫
dpz vz

∂f (pz)
∂pz

δ (ω̂) tan2 θ

+
2π2e2

ω2ωBm

∫
dpz (ω − kvz cos θ)2 f (pz)δ

(
ω̂ − ωB

γ

)
= ε′′ChA + ε′′CA , (11.7)

where we have split the anti-Hermitian part for the O and Alfvén modes into two
parts: ε′′Ch is due to Cherenkov resonance and ε′′C is due to cyclotron resonance.

The relation (11.7) is valid are valid for both cold and hot plasmas, except that
in the latter, the Cherenkov-resonance term is replaced by

ε
′′Ch (h)
A ≡ (eA ·ε′′·eA)(h) =

π2e2

mω

ω4

T 2
pω

4
p

∫
dpz vz

∂f (pz)
∂pz

δ (ω̂) tan2 θ. (11.8)

For Cherenkov excitation of the O mode in the limit µh� 1 (when the resonance

https://doi.org/10.1017/S0022377899007837 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377899007837


82 M. Lyutikov

occurs at the crossover point), we find

(eO · ε′′ · eO)Ch =


4π2e2

mω

∫
dpz vz

∂f (pz)
∂pz

δ(ω̂)
(
θ�

2ω2
p

ω2
B

)
,

4π2e2

mω

ω4
0

ω4
B cos2 θ sin2 θ

∫
dpz vz

∂f (pz)
∂pz

δ (ω̂)
(
θ�

2ω2
p

ω2
B

)
.

(11.9)

11.1. Parallel propagation

We first consider the important, separate case of parallel propagation.
Using the polarization vectors el = (0, 0, 1) for longitudinal waves and et = (1, 0, 0)

for transverse waves, we find growth rates

Γt =
πω2

p,res

4ω
(f )res ≈

πω2
p,res

ω∆γ
, (11.10a)

ω =
ω3
B

γb Tpω2
p

(11.10b)

Γl =
πω2

pω
2
p,res

Tpkcω2

(
γ3 ∂f

∂γ

)
res
≈ nb
np

πωpγ
3
b

T
5/2
p ∆γ2

, (11.11a)

ω = ω0 = (2Tp)1/2ωp (11.11b)

(Kazbegi et al. 1991).
The kinetic growth rates (11.10a) and (11.11a) can be compared with the growth

rates in the hydrodynamic regime, (7.4) and (7.6). In the hydrodynamic regime,
both cyclotron and Cherenkov growth rates are proportional to negative powers of
the particle’s Lorentz factor. This is a significant factor for the primary beam and
for the particles from the tail of the plasma distribution. In contrast, the kinetic
growth rates (11.10a) and (11.11a) are not suppressed by relativistic streaming of
resonant particles. On the other hand, they scale linearly with a small ratio of the
beam density to plasma density, while the hydrodynamic growth rates (7.4) and
(7.6) are proportional to the 1

3 and 1
2 powers of this ratio.

The kinetic growth rates for oblique propagation are summarized in Table 12.1.

12. Hydrodynamic versus kinetic instabilities
Having calculated the growth rates for the hydrodynamic and kinetic regimes of
the Cherenkov and cyclotron instabilities, we can check whether the conditions for
the corresponding regimes are satisfied.

12.1. Cherenkov resonance

The condition for the hydrodynamic regime for Cherenkov excitation is given by
(5.3) (the condition for the kinetic regime is reversed). When the scatter in the veloc-
ity of the resonant particles is due to scatter in the parallel velocity (and not to the
scatter in the pitch angles) the condition (5.3) with the parallel growth rate (10.2)
gives the following requirement for hydrodynamic-type Cherenkov instability:

γ2
b

T
1/2
p ∆γλ1/3

� 1, (12.1)
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which is well satisfied for the chosen plasma parameters. This implies that if the
primary beam does not acquire any significant transverse gyrational energy as it
propagates outwards in the pulsar magnetosphere then Cherenkov-type instabilities
occur in the hydrodynamic regime.

12.2. Cyclotron resonance

For cyclotron resonance, the left-hand side of (5.3) is dominated by the last term.
For cyclotron excitation of the X-mode, the condition (5.3) with the growth rate
(7.6), for the hydrodynamic-type instability to apply,

∆γ� (Tpλ)1/2 γ
3/2
b Ω
γpωB

= 10−7
(

r

RNS

)3

, (12.2)

which is most probably not satisfied even in the outer regions of the pulsar magne-
tosphere.

The condition for the kinetic approximation to hold for the cyclotron excitation
of the X mode follows from the reverse of (5.3) and Table 12.1:

∆γ�
(
γ3

resλλres Tp
γp

)1/2
Ω
ωB

, (12.3)

which is well satisfied inside the pulsar magnetosphere.
We conclude from these estimates that the cyclotron instability in the pulsar

magnetosphere occurs in the kinetic regime. This is different from the electrostatic
Cherenkov instabilities on the primary beam, which occur in the hydrodynamic
regime.

This difference is very important for theories of pulsar radio emission. Kinetic
instabilities, in contrast to hydrodynamic ones, are not suppressed by the large
relativistic factor of the resonant particles. Thus the kinetic instabilities are more
favourable as a possible source of the pulsar radio emission.

It is possible to illustrate graphically the difference between the hydrodynamic
regime of the Cherenkov instability and the kinetic regime of the cyclotron instabil-
ity. On the frequency–wave-vector diagram for the O mode (Fig. 3), the dispersion
curves of the cyclotron wave in the beam ω = kvb cos θ− ωB/γb are almost parallel
to the dispersion curves of the excited waves in the plasma at the location of the
resonance. Thus a small change in the velocity of the resonant particles results in a
considerable change in the resonant frequency. This vindicates the kinetic approx-
imation, which requires a large bandwidth of the growing waves. In contrast, for
the very large streaming γ factor of the primary beam (so that µ, µh � 1), the
Cherenkov resonances on the O and X modes occur approximately at the crossover
frequency in a narrow frequency band.

13. Conclusions
In this paper, we have considered normal modes and wave excitation in the strongly
magnetized electron–positron plasma of a pulsar magnetosphere. We have found the
locations of resonances, and have calculated the growth rates for Cherenkov and
cyclotron excitation of O, X and Alfvén waves in two limiting regimes of hydrody-
namic and kinetic instabilities, taking into account the angular dependence of the
growth rates. The main results of this paper are as follows:
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(i) Cherenkov instabilities develop in the hydrodynamic regime while cyclotron
instabilities develop in the kinetic regime.

(ii) Cherenkov instability on the primary beam may develop on Alfvén waves in
the regions close to the stellar surface and on the O mode in the outer regions
of the pulsar magnetosphere.

(iii) Cyclotron instability can develop on all three wave branches. On the Alfvén
branch, it does not develop in a very hot plasma.

(iv) The typical ranges of angles (in the plasma frame) with the highest growth
rates are

δθ ≈ ω2
p/ω

2
B for Cherenkov excitation of the O mode;

δθ ≈ 1/γb for Cherenkov excitation of the Alfvén mode;

δθ ≈ ωp/ωB for cyclotron excitation of the O and X modes;

δθ ≈ 1 for cyclotron excitation of the Alfvén mode;

(v) We also note that Cherenkov instability due to the relative drift of the plasma
particles can develop only on the Alfvén mode. This due to the fact that in
the inner magnetosphere, where the instability due to the relative drift of the
plasma particles can develop, the approximation ωB = ∞ is possible. In this
approximation, the O mode is always superluminal, and cannot be excited by
Cherenkov resonance.

These arguments suggest that electromagnetic cyclotron instabilities are more
likely to develop in the pulsar magnetosphere than electrostatic ones.
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