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Abstract

Adverse childhood experiences (ACEs) are associated with a high risk of developing chronic
diseases and decreased life expectancy, but no ACE epigenetic biomarkers have been identified
until now. The latter may result from the interaction of multiple factors such as age, sex, degree
of adversity, and lack of transcriptional effects of DNA methylation changes. We hypothesize
that DNA methylation changes are related to childhood adversity levels and current age, and
these markers evolve as aging proceeds. Two Gene Expression Omnibus datasets, regarding
ACE, were selected (GSE72680 and GSE70603), considering raw- and meta-data availability,
including validated ACE index (Childhood Trauma Questionnaire (CTQ) score). For DNA
methylation, analyzed probes were restricted to those laying within promoters and first exons,
and samples were grouped by CTQ scores terciles, to compare highly (ACE) with non-abused
(control) cases. Comparison of control and ACE methylome profile did not retrieve differen-
tially methylated CpG sites (DMCs) after correcting by false discovery rate < 0.05, and this
was also observed when samples were separated by sex. In contrast, grouping by decade age
ranges (i.e., the 20s, 30s, 40s, and 50s) showed a progressive increase in the number of
DMCs and the intensity of changes, mainly related with hypomethylation. Comparison
with transcriptome data for ACE subjects in the 40s, and 50s showed a similar age-dependent
effect. This study provides evidence that epigenetic markers of ACE are age-dependent, but
not defined in the long term. These differences among early, middle, and late adulthood
epigenomic profiles suggest a window for interventions aimed to prevent the detrimental
effects of ACE.

Introduction

Compelling evidence shows that early life adversity, including prenatal conditions, can neg-
atively impact cognitive development and social functioning and increase the risk for acute
and chronic health problems, mental illness, and deviant behavior1,2. In particular, adverse
childhood experiences (ACEs) resulting from childhood abuse (physical, sexual, or emo-
tional) and neglect (physical or emotional), household dysfunction (e.g., intrafamilial vio-
lence) and hostile social environment have detrimental consequences on the well-being at
long term, decreasing life expectancy and increasing the risk of noncommunicable chronic
diseases3,4.

Based on the strong relationship with adult health and the long-term consequences of
ACE, many studies have aimed to identify molecular mediators that may register early-life
experiences5,6. In this regard, epigenetic mechanisms, such as DNA methylation, histone
modifications, and ncRNAs, may result in a distinctive epigenetic signature of genes whose
potential expression has been previously primed during early stages of life, and these epi-
genetic signatures may differ from that impinged by pregnancy or neonatal stress7,8.
Pioneer studies from Weaver and colleagues showed that maternal neglect in rats affects
stress responses in the adult offspring, an effect mediated by the altered expression of
the glucocorticoid receptor, resulting from changes in the DNA methylation pattern of
the Nr3c1 gene promoter9. Since that report, several studies have reported epigenetic
changes in peripheral tissues (i.e., circulating blood cells and saliva) from subjects with
a history of ACE10.

Moreover, it appears that different forms of childhood maltreatment, not surprisingly,
produce distinct effects on particular brain regions and circuits and the heterogeneity of
the patient’s past and more recent experience represents another important variable11,12.
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Evidence from combined imaging genetics and genetic studies has
revealed the importance of selective polymorphisms of candidate
genes as particularly impactful on provocative funtional magnetic
resonance imaging (fMRI) studies of, for example, amygdala
responsiveness to fearful stimuli13. Nonetheless, there is no con-
sensus regarding an epigenetic biomarker or profile for ACE10,14.
The latter may result from the interaction of multiple factors such
as age, sex, degree of adversity, and lack of transcriptional effects of
DNA methylation changes studied10,14. For instance, scoring ACE
is difficult considering the retrospective and subjective evaluation
of each subject that can be influenced by additional positive child-
hood experiences and current life stress at the moment in which a
subject participates in a study15. Similarly, several reports show a
sex-dependent effect of ACE, as well as accelerated aging that is
more evident in older subjects8. In this regard, many of the
reported DNA methylation changes occur in intergenic regions
whose biological significance remains unsolved and therefore
may bias the identification of epigenetic markers playing a role
in gene expression.

To tackle these issues, a meta-analysis of genome-wide DNA
methylation based on Gene Expression Omnibus (GEO) datasets

focused on gene regions that show a DNA methylation–gene
expression relationship was performed, in subjects with very high
and very low exposure to ACE, according to their Childhood
Trauma Questionnaire (CTQ) score (Fig. 1). Furthermore, com-
parison between control and ACE subjects considered sex, age
ranges, and were complemented with transcriptomic reports in
a comparable group.

Methods

Methylome arrays datasets selection and databases
construction

Data search was conducted according to PRISMA guidelines
(https://www.equator-network.org/reporting-guidelines/prisma/).
This meta-analysis concerning Childhood Adverse Events (ACE)
was based on the selection of 26 GEO databases, under the key-
words ACE and epigenetics. Even though the output of the men-
tioned approach included ACE, post-traumatic stress disorders,
panic disorders, and others, this study focused on reports based
on ACE and methylome/transcriptomic platforms, specifically

Fig. 1. Methylome and transcriptome
datasets selection diagram. The current
Childhood Adverse Events (ACE) meta-analy-
sis begins with the selection of 26 Gene
Expression Omnibus (GEO) datasets identi-
fied with the keywords “ACE” and
“Epigenetics.” The attention was focused
on those ACE reports having methylome
and transcriptome available arrays, specifi-
cally on those including raw and meta-data,
as well as the Childhood Trauma
Questionnaire (CTQ) score for each patient.
Finally, two studies were selected:
GSE72680 Cohort 1, used as the Discovery
Library (methylome arrays), and GSE70603
45-min pre-stress group, used as the
Comparison Library (transcriptomic arrays).
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those having available raw andmeta-data, including the CTQ score
for each patient. Based on all the above, two studies with epige-
nomic data from the same array (Illumina 450K) were selected;
however, preliminary analysis showed a considerable batch effect,
and the dataset with the large number of cases was used for the
study (Fig. 1, Supplementary Figure 1). From GSE7268016 used
samples belonging to Cohort 1 group of the “DNA Methylation
of African Americans from the Grady Trauma Project” (referred
as Discovery Library) and GSE7060317 in the case (German sub-
jects from the study “Investigation of gene expression responses
to acute stress exposure in adults with early childhood adversity
experience”), 45-min pre-stress group was included in the current
analysis, being used as the Comparison Library.

After downloading the available meta-data, as well as the meth-
ylome and transcriptomic arrays raw data, methylome databases
were constructed. To identify the effect that themethylation within
the promoter and the first gene segment has on its expression,
probes were filtering, keeping only those probes that localize within
one of the following gene segments: first exon, 5’UTR, TSS200,
or TSS1500 based on previous observation related with DNA
methylation levels and gene expression in human cells18. The
CTQ scores range and the number of total samples corresponding
to each one of the CTQ terciles, as well as the number of selected
probes, are shown in Table 1.

Exploratory analysis

Discovery Library samples were divided into terciles (i.e., T1, T2,
and T3), according to CTQ score distribution, where T1 represents
patients with the lowest CTQ scores, while T3 the highest (Table 1).
Considering the difficulties to establish clear cutoff for substantial
and non-substantial exposure to ACE, only T3 (high CTQ score,
ACE) and T1 (low CTQ score, controls) were used for analysis.
Exploratory steps carried out, in both for Discovery and
Comparison libraries, were based on principal component analysis
(PCA), to visualize the distribution and grouping of the samples, and
based on their clinical ACE versus control condition. Since this algo-
rithm reduces the dimensionality of the data keeping the directions
with the highest variability, the distribution of the sample is plotted
in the base of these directions or principal components and the
samples are expected to group according to the main differences
or similarities between them19. Samples grouping according to other
variables, such as sex, age, and BMI, were explored in the base of
their PCAs was also performed. For differentially methylated
CpG sites (DMCs) analysis, data were fitted using linear models
for microarrays data, using the R limma package20, and data were
normalized by quantiles21. All the analyses were performed using
the R Software, 3.6.3 version (https://cran.rproject.org/).

Differentially expressed genes analysis

Differentially expressed genes (DEGs) analysis was performed in
parallel in groups over 40 years old (40<age<49 and 50<age)

belonging to the Comparison Library, following the same pro-
cedure used for DMCs obtention. After DMCs and DEGs were
determined in parallel, common genes between the resultant
hypo-/hypermethylated CpG sites and the up-/downregulated
genes were obtained, respectively. The integration of these results
with DMC was performed in both 40<age<49 and 50<age groups,
independently.

Functional analysis

Overlapping genes between DNA methylome and transcriptome
data were detected visually through Venn diagrams analysis using
Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/). Concordance
in DMC among different age ranges studied were analyzed by
chord plots using the web tool Circos (http://mkweb.bcgsc.ca/
tableviewer/visualize/)22. Gene subsets were created including
these overlapping genes, and these gene subsets were labeled
according to the direction of the changes (downregulated/
hypomethylated; upregulated/hypomethylated; downregulated/
hypermethylated; upregulated/hypermethylated). Each subset
was submitted to Gene Ontology (GO) biological process enrich-
ment analysis using the web tool InnateDB (https://www.innatedb.
com/).

Statistical analysis

Comparison of DNA methylation profiling was based on Limma
statistical analysis, by comparing the mean methylation level of
each probe (beta value). Differences considered the following cut-
off, a P-value< 0.05 with and adjustment formultiple comparisons
using a false discovery rate (FDR, Benjamini–Hochberg) < 0.05.
Fold changes were expressed as mean methylation level of a probe
relative to contrast condition (i.e., non-ace, age, sex), and trans-
formed to log(2) for graph ploting. Analysis of global changes in
DNA methylation was compared by one-way ANOVA using the
software GraphPad Prism 8.

Results

Methylome array exploratory analysis and DMCs

Comparison of genome-wide DNA methylation changes between
control and ACE subjects, as well as comparison by sex in the
Discovery Library, showed no clear separation by PCA (Fig. 2a
and 2b), with very few DMCs, after correction with an
FDR< 0.05 (data not shown). Nevertheless, when subjects within
each group were separated by age ranges (i.e., 20–29; 30–39; 40–49;
50–77), no clear PCA grouping was observed (Fig. 2c–2f), but
epigenetic differences between ACE and control conditions
were higher and with several DMCs over the cutoff values
applied, especially in subjects above 40 years. After DMCs
analysis for each one of the age ranges, samples partially clus-
tered according to their ACE history (Fig. 3), and this effect
resulted more evident in 20<age<29 and in 30<age<39 groups
(Fig. 3a and 3b). The number of the epigenetic differences asso-
ciated with ACE was higher in older subjects (Fig. 3 volcano
plots), and most of them were hypomethylation marks. The
number of DMCs and genes with changes in methylation within
each age range is detailed in Table 2. In young adults (20–39
years old) most of the DMCs occurred as single-gene changes,
while older subjects showed a higher proportion of DMC within
each gene (Supplementary Table 1).

Table 1. Discovery Library tertiles description

CTQ tertile CTQ score Samples Tissue Selected probes

1st 25–30 125 Whole Blood 40561

2nd 31–44 130 Whole Blood 40561

3rd 45–119 129 Whole Blood 40561

CTQ, childhood trauma questionnaire.
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Fig. 2. Visualization of Discovery Library samples distribution. Principal component analysis (PCA) was performed on the samples from the Discovery Library (n= 189) for visual
analysis. An initial assessment was performed with the whole library based on (a) CTQ score terciles and (b) sex. To evaluate the impact of age, PCA was performed based on CTQ
score terciles at different age ranges: (c) 20–29 years; (d) 30–39 years; (e) 40–49 years; and (f) 50 years old and older. Red: ACE (n= 95); blue: control (n= 94); purple: female
(n= 137); yellow: male (n= 52).

Fig. 3. Age-dependent fluctuations on DNAmethylation associated with ACE. Heatmaps for the DMCs and their respective gene and CpGs dendrograms obtained in the different
age groups based on CTQ score and sex (a–d). Volcano plots are also included showing significant differences in CpGmethylation. Green: hypomethylated; red: hypermethylated.
Values expressed as log(2) of fold change and log of P-value.
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Comparison of DMC profiles by decades in adults with
ACE history

Considering that the number of DMCs in young adults with ACE
history were less than 10% of those observed in subjects over
40 years, DMC occurring in the first two decades were searched
in older groups showing a partial and non-preserved representation
of hypomethylations across different ages (Fig. 4a). Furthermore,
none of the hypermethylation changes observed in young adults
were found in subjects over 50 years old (Fig. 4b). Additionally,
global changes in DNA methylation across decades were different
for hypomethylation (values as mean of fold change with [inter-
quartile range]; 20s, 0.93 [0.88–0.95]; 30s, 0.96 [0.95–0.97]; 40s,
0.96 [0.93–0.97]; 50s, 0.84 [0.81–0.86]) (Fig. 4c) and hyper-
methylation (20s, 1.14 [1.08–1.20]; 30s, 1.08 [1.06–1.37]; 40s,
1.05 [1.04–1.08]; 50s 1.18 [1.17–1.23]) (Fig. 4d). The lack of con-
cordance in genes with DMC among age ranges, either consid-
ering general changes or hyper- and hypomethylation, was also
observed between the 40s and 50s (Supplementary Figure 2).
Independently of probes or genes with DMC, comparison of
top 10 hypo- and hypermethylated probes within each decade
showed that fold changes were comparable among highly vari-
able probes (Table 3).

Comparison of epigenomic and transcriptomic effects of ACE

To compare the epigenetic and transcriptomic changes related to
ACE as molecular markers of childhood adversity, DEG analysis
was performed using a dataset of peripheral blood mononuclear
cells (PBMCs) in adult subjects reporting CTQ score. A unique
dataset (GSE70603) with transcriptomic results in a comparable
sample type (i.e., PBMC) was found according to the search term
used, representing data from a cohort comprised of adults over
40 years old from Germany. As occurred with DNA methylation
analysis, transcriptomic changes, in subjects between 40 and
49 years old, did not separate samples according to CTQ or
sex in PCA (Fig. 5a and 5b). However, clear clustering was
noticed according to DEG (Fig. 5c) between ACE and control
subjects aged between 40 and 49 years, with a higher proportion
of upregulated genes (876 up- vs. 688 downregulated tran-
scripts) (Fig. 5d). Similarly, transcriptomic changes in subjects
over 50 years old did not separate samples according to CTQ or
sex in PCA (Fig. 6a and 6b), but there was a clear clustering
according to DEGs, (Fig. 6c), with a higher proportion of upre-
gulated genes (1016 up- vs. 856 downregulated transcripts)
(Fig. 6d).

The concordance between genes with DMCs and differential
expression was addressed by Venn diagram analysis. Based on

those genes sharing transcriptional and methylation changes
in subjects over 50 years of age (Fig. 7a), functional enrich-
ment of GO biological processes were determined (Table 4,
Supplementary Table 2). Most of the hypomethylation changes
were associated with upregulated genes. More than 50% of biologi-
cal processes associated with upregulated genes and hypomethyla-
tion were also associated with downregulated genes (Fig. 7b).
Additionally, most of these biological processes, common in upre-
gulated genes as well as in hypomethylated CpG sites, were related
to nervous system physiology and development (Fig. 6c).

Discussion

This meta-analysis aimed to determine the effect of high
levels of ACE on the DNA methylation profile within gene
expression-related regions in circulating cells, to further iden-
tify potential markers of childhood trauma. Further compara-
tive analysis of transcriptomic changes related to ACE was
performed to support the programming of biological processes.
These data showed that ACE did not result in methylome
changes when ACE subjects from different ages are considered,
but there was an evident effect in subjects over 40 years old, in a
sex-independent manner. Progressive changes in DNA methy-
lation were associated with hypomethylation, which was more
consistent in aged subjects and paralleled by increased gene
expression in the comparison cohort. Furthermore, DNA
methylation and transcriptomic profiles allowed to cluster sub-
jects within each age range (40–49 years and over 50s) according
to their exposure to ACE, and both profiles were associated with
enriched biological processes related to the nervous system
homeostasis and cortisol response. Altogether, these results sug-
gest that ACE primes epigenetic and transcriptomic changes
more evident in mature adults and suggest a potential window
for interventions in young adults in which no prominent
changes are observed.

Compelling evidence shows that ACEs, including prenatal con-
ditions, can negatively impact cognitive development, chronic
health problems, mental illness, impaired social functioning, and
deviant behavior during the life course1–4. Current knowledge
largely relied on observational data and are thus limited by endo-
geneity bias, have retrospective designs, and show substantial
heterogeneity in ACE definitions; therefore, there is a lack of causal
relationships, with mechanisms and pathways poorly understood.
Several reports have suggested that epigenetic mechanisms are at
the forefront of how early-life experiences alter gene expression,
frequently over the lifetime of the organism13. Despite a growing
number of studies concerning gene-specific and genome-wide
DNA methylation changes, no consensus epigenetic biomarker
for ACE has been identified10,23. One of the main issues in
DNA methylation profiling studies is the functional relation-
ship between changes in CpG methylation and gene expression.
DNAmethylation has been frequently associated with decreased
gene expression; however, there is a complex interplay between
the context and time in which a change in DNA methylation
occurs and its effect on gene expression, and there is no clarity
regarding the biological significance of intergenic DNA
methylation changes24,25. Nonetheless, a recent study in human
embryos suggests that DNA methylation within the gene pro-
moter and first exon shows the best correlation with gene
expression18. Conversely, diverse samples and methods to

Table 2. Differentially methylated CpG sites obtained according to age ranges

Age
range

CTQ tertile 1
(n)

CTQ tertile 3
(n)

DMCs
(P< 0.05) Genes

20–29 16 12 179 151

30–39 17 26 64 60

40–49 25 32 1912 1378

50–77 36 25 1608 1068

DMCs, differentially methylated CpG sites
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determine DNA methylation have been applied, decreasing the
applicability of the current knowledge26,27. To overcome these
issues, and to unveil an epigenomic mark for ACE with potential
biological consequences, we searched DNA methylation data-
sets from studies reporting CTQ score, using peripheral blood
cells, and similar profiling platforms to perform a meta-analysis
only considering CpG sites within gene promoters and first
exons. Based on the selection criteria, a dataset from the

Grady Trauma Project sample was selected (GSE72680), and
extreme CTQ score terciles were defined as control (no ACE,
low CTQ score tercile) and ACE (high CTQ -tercile).

A comparison of DNA methylation profile between ACE and
control subjects showed very few DMCs between ACE and no
ACE subjects. Further analysis considering sex showed no
differences. Notably, there are no comparable results between
the present data and the original study from Zannas and

Fig. 4. Similarities in age-dependent changes in DNA methylation associated with ACE. Schematic representation of genes with DMC found in 20–29 years and
30–39 years, and their occurrence in older groups for (a) hypo- and (b) hypermethylations. Age–gene connecting ribbons represent the occurrence of a DMC for that gene
in the corresponding decade, and concordance among age ranges is denoted by the concurrence of ribbons to a defined gene. Violin plots showing the distribution
of changes in methylation (c, hypomethylation; d, hypermethylation) at different age ranges in ACE subjects. Values expressed as median (solid line) and
interquartile range (red dotted lines), small letters denoting significant differences (P < 0.05) with 20–29 years (a), 30–39 years (b), 40–49 years (c), and over 50 years
(d), one-way ANOVA.
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Table 3. Top 10 hypo- and hypermethylated probes by decade

Decade Probe ID Gene
Fold

change
Mean
DNAm Adj. P-val

20–29 cg14993186 RPS6KA6 0.76 0.24 8.85E-03

20–29 cg16866567 PLEKHA2 0.76 0.05 4.61E-02

20–29 cg09500531 MAGEE1 0.77 0.26 3.76E-03

20–29 cg01333849 PGRMC1 0.77 0.28 4.06E-03

20–29 cg24971873 KIAA2022 0.80 0.42 6.26E-04

20–29 cg17936021 ZNF280C 0.82 0.40 9.61E-03

20–29 cg00891541 SMPD3 0.83 0.62 1.55E-02

20–29 cg05962092 KCNA7 0.83 0.43 3.51E-02

20–29 cg13221899 C13orf27 0.83 0.46 4.90E-02

20–29 cg02944422 ZNF81 0.83 0.35 1.33E-02

20–29 cg21762589 BNIP3 1.22 0.73 2.90E-02

20–29 cg04089788 PLXNB2 1.22 0.52 1.20E-02

20–29 cg17878899 KIAA1210 1.23 0.68 1.20E-02

20–29 cg01412970 PLD6 1.35 0.41 1.20E-02

20–29 cg05674437 PIGZ 1.48 0.92 3.64E-02

20–29 cg09393362 QRICH2 1.63 0.93 1.20E-02

20–29 cg09796800 SLC25A31 1.65 0.96 1.13E-02

20–29 cg24010988 OOEP 1.65 0.96 1.13E-02

20–29 cg06900650 TUBA3E 1.65 0.96 1.13E-02

20–29 cg01263854 MC3R 1.65 0.96 1.13E-02

30–39 cg11961138 IGFBP4 0.93 0.33 2.96E-02

30–39 cg19587616 PRAF2 0.93 0.33 4.92E-02

30–39 cg20560169 DIO3 0.94 0.10 4.88E-02

30–39 cg07536910 EVX2 0.94 0.09 2.31E-02

30–39 cg21159993 C5orf32 0.94 0.11 1.05E-02

30–39 cg11286196 PRAF2 0.94 0.33 2.96E-02

30–39 cg25499099 TNK1 0.94 0.15 4.31E-02

30–39 cg06988368 ACP6 0.94 0.08 4.88E-02

30–39 cg18292664 DBX1 0.95 0.06 2.96E-02

30–39 cg07448060 MAGI2 0.95 0.11 4.31E-02

30–39 cg07917127 C4orf37 1.09 0.05 4.40E-02

30–39 cg19576556 DUS1L 1.10 0.74 4.31E-02

30–39 cg16593917 HPDL 1.11 0.36 2.96E-02

30–39 cg02249732 HOXD10 1.12 0.28 1.02E-02

30–39 cg01563671 KLHL34 1.14 0.61 2.96E-02

30–39 cg10272954 PRR23A 1.16 0.43 4.88E-02

30–39 cg26896946 MIR886 1.36 0.46 3.86E-02

30–39 cg26328633 MIR886 1.52 0.49 4.88E-02

30–39 cg18678645 MIR886 1.60 0.47 3.04E-02

30–39 cg09762182 C1orf159 3.81 0.55 1.05E-02

40–49 cg06103394 PAQR4 0.35 0.31 8.85E-04

(Continued)

Table 3. (Continued )

Decade Probe ID Gene
Fold

change
Mean
DNAm Adj. P-val

40–49 cg13877915 ZNF132 0.59 0.40 3.20E-02

40–49 cg01449704 QRICH2 0.69 0.95 1.73E-02

40–49 cg25220359 HCRTR1 0.72 0.40 3.18E-02

40–49 cg03609493 MIR572 0.74 0.50 3.13E-02

40–49 cg15298323 ACAT2 0.74 0.26 1.02E-02

40–49 cg07042832 CLDN11 0.75 0.16 1.95E-02

40–49 cg06131755 ACAT2 0.77 0.18 6.10E-03

40–49 cg05531796 CCDC46 0.78 0.24 3.04E-02

40–49 cg03049249 CCDC144A 0.79 0.57 4.17E-03

40–49 cg16922167 FGR 1.16 0.54 7.07E-04

40–49 cg24484138 C20orf112 1.16 0.43 7.09E-03

40–49 cg05922253 DGKK 1.17 0.44 8.77E-04

40–49 cg19628988 CXXC5 1.17 0.41 1.57E-02

40–49 cg22292345 LOC100129354 1.18 0.43 9.28E-04

40–49 cg00713939 NAPRT1 1.22 0.09 1.72E-02

40–49 cg07122893 OLFML2B 1.28 0.82 1.32E-02

40–49 cg12497786 FAM50B 1.28 0.62 3.61E-03

40–49 cg13862524 TDRD12 1.36 0.95 5.39E-03

40–49 cg09370594 LINGO3 1.51 0.96 9.22E-03

≥50 cg06503255 DND1 0.61 0.89 4.79E-02

≥50 cg25975621 ESRRG 0.65 0.12 4.49E-05

≥50 cg00674365 ZNF471 0.66 0.12 4.58E-16

≥50 cg12869659 ZNF238 0.66 0.21 3.05E-11

≥50 cg13297960 NCAM2 0.67 0.20 1.30E-14

≥50 cg23479922 MARCH11 0.67 0.28 1.15E-12

≥50 cg24368848 ZSCAN1 0.67 0.13 3.39E-16

≥50 cg22664298 ADAMTS19 0.67 0.17 2.07E-02

≥50 cg19698993 ZNF238 0.67 0.19 5.20E-13

≥50 cg24713204 ZNF471 0.68 0.35 1.15E-14

≥50 cg12032027 ZNF217 1.18 0.89 1.33E-07

≥50 cg23463608 GNG7 1.18 0.44 1.16E-03

≥50 cg13925011 KCNA3 1.18 0.65 2.05E-05

≥50 cg22459924 GNG7 1.18 0.64 4.27E-04

≥50 cg01107178 ANKRD11 1.20 0.73 3.14E-05

≥50 cg27513667 ANKRD11 1.22 0.75 5.15E-05

≥50 cg01692482 ZNF217 1.23 0.71 2.66E-06

≥50 cg13662851 H1FNT 1.29 0.98 3.65E-02

≥50 cg00121551 ZNF831 1.29 0.96 2.81E-02

≥50 cg11704513 COX4I2 1.34 0.89 1.83E-03

Data expressed asmean DNAmethylation (DNAm; 0–1) and fold change of DNAm in ACE relative
to control; Adj. P-val, adjusted P-value.
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colleagues16 on this cohort, which focused on DNA methylation
as an aging predictor. Furthermore, other related studies using
data from this cohort have validated some epigenetic markers
with partial success28,29. In contrast, a study including two
cohorts of adult women with ACE history shows no association
between cumulative ACE score and DMCs, but some differen-
tially methylated regions are scarcely replicated between each
cohort30. Another study comparing epigenetic markers in young
adults with ACE shows comparable changes in females and
males31, suggesting that sex-specific epigenetic marks of ACE
remain elusive. Additionally, other studies have revealed a rel-
atively low number of, either, CpG sites or regions differentially
methylated (<1,000) in adult subjects, considering the large
number of sites assayed (from 20,000 up to more than
400,000)32–35. Altogether, this suggests that potential epigenetic

markers of ACE may be masked by analysis strategies used, and
further studies to identify commonmarkers of childhood adver-
sity are required.

Considering chronological age as an important source for
changes in DNA methylation, this study compared the methylation
profile among age ranges in ACE subjects. As the main result, DMC
in young adults was barely found in older subjects with ACE history.
While chronological age is arguably the strongest risk factor for
aging-related death and disease, it is important to distinguish
chronological time from biological aging. One potential bio-
marker that has gained significant interest in recent years is
DNA methylation (DNAm), which may reflect a marker for
aging using the Horvath’s clock36. In this regard, it has been
demonstrated in the cohort from which the dataset for this
meta-analysis was obtained, that ACE is associated with

Fig. 5. Differential expression analysis of subjects between 40 and 49 years old from the Comparison Library. (a) PCA for gene expression data of subjects between 40 and 49 years
old (n= 17), classified according to their CTQ score category. Red: ACE. (n= 8); light blue: control (n= 9). (b) PCA for gene expression data from the samples classified by sex.
Purple: female (n= 10); yellow: male (n= 7). (c) Heatmap for gene expression data classified by the CTQ score category. Orange: ACE; light blue: control; red: downregulated;
green: upregulated. The sex of each subject is indicated on the right side of the heatmap. (d) Volcano plot for gene expression data of the samples. Red: downregulated, green:
upregulated.
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accelerated aging16. In this study, nested comparison of control
and ACE subjects according to decades showed that either low
CTQ or high CTQ subjects show epigenomic modifications
unstable in time. Additionally, aged subjects with ACE showed
the highest intensity and number of DMCs, and similar findings
have been observed in terms of the Horvath’s clock. These
differences found in subjects with ACE over 50 years old
occurred in spite of this group have a narrow age range (i.e.,
50–63 years, mean age 55 years) compared with control
group (i.e., 50–77 years, mean age 56 years). Differentially
methylated genes reported in studies considering subjects in
the 20s31,33,34,37, 30s35, and over 40s38–40 are not comparable,
supporting that the methylome profile of aged ACE subjects
is not comparable with ACE young adults.

In contrast, several studies have shown the association between
different sources of ACE and epigenetic markers of accelerated
aging in adults8,41–43, an effect that may be evident since
childhood41,44,45. To address the consequences of these differences
in age-related epigenetic markers of ACE, we performed a by-
decade analysis of transcriptomic datasets from circulating blood
cells in datasets including subjects in middle and late adulthood17.
Complementary to the data in DNA methylation, differentiation
by decades resulted in a sex-independent clustering of ACE and
non-ACE subjects, with a higher effect in upregulated genes in
older subjects. However, there was a poor concordance among
differently methylated and DEGs, but a significant correspondence
in enriched biological processes. It is worth noting that several of
these enriched processes in older subjects were related to nervous

Fig. 6. Differential expression analysis of 50-year-old subjects or older from the Comparison Library. (a) PCA for gene expression data of 50-year-old subjects or older
(n = 42), classified according to their CTQ score category. Red: ACE. (n = 22); light blue: control (n = 20). (b) PCA for gene expression data from the samples classified by sex.
Purple: female (n = 29); yellow: male (n = 13). (c) Heatmap for gene expression data classified by the CTQ score category. Orange: ACE; light blue: control; red: downregu-
lated; green: upregulated. The sex of each subject is indicated on the right side of the heatmap. (d) Volcano plot for gene expression data of the samples. Red: down-
regulated, green: upregulated.
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system homeostasis and stress response. A limited correlation
between DEGs and their promoter methylation has been reported
in adults with ACE; however, that study only reports the enriched
biological processes related to gene expression with no further data
on DNA methylation46. Furthermore, the relationship between
DNA methylation and gene expression in these samples can be
moderated by cis- and trans-regulatory mechanisms47. Conversely,
previous studies show that the aging-related magnitude of epige-
netic changes associated with ACE differs between subjects in early
and middle-to-late adulthood, with a higher effect in the latter
group42,43, which may result from further exposure to adversity
after childhood16. Altogether, this data suggest that ACE may
prime aging and support our findings regarding a progressive epi-
genetic differentiation in middle and late adulthood, which poten-
tially involves the regulation of nervous system-related biological
processes.

A considerable limitation in the current evidence in that
inclusion of genetic and biological evidence is necessary for
understanding the effects of ACEs and their intergenerational
transmission13. A growing body of evidence suggests that geno-
types canmodify sensitivity to environmental adversity. Promising

avenues of research in this area include gene–experience interac-
tion, the influence of early-life experience on genomic expression
(epigenetics), and the role of inflammation10. In this regard, further
studies should integrate genetic and epigenetic markers with tran-
scriptomic profiling, considering more restricted age ranges and
non-biased methodologies (e.g., machine learning analysis) to
unveil the effects of ACE. Additionally, these results may be biased
by a different number of subjects within each range compared, but
no association between the number of subjects in each group and
the number of probes differentially methylated, as it evidenced
in 40s and <50 comparisons, was observed in this report.
Additionally, adjusted P-values were comparable between the three
youngest decades, despite the low number of subjects in 20s group.
Conversely, the datasets used for the Discovery and Comparison
studies comprised subjects from two different populations, which
limits the potential significance of the proposed pathways involved
in the long-term effects of ACE suggested in this study. In this
regard, further studies are required to confirm a potential epigenetic-
mediated regulation of gene expression in ACE adults, including
the factors previously discussed, with special attention in the
effect of age10.

Fig. 7. Associations and functional analysis of differentially methylated and differentially expressed genes in 50þ years old ACE subjects. (a) Differentially methylated (n= 818)
and expressed (n= 1232) genes (adjusted P-value < 0.05) listed in the 50þ years old ACE subject subsets from the Discovery and Comparison libraries were selected. Venn diagram
analysis revealed that 48 genes are present in both subsets. (b) Venn diagram analysis for the genes from the databases included in the study, classified according to the direction
of the change in DNAmethylation (hypo- or hypermethylated) and gene expression (down- or upregulated) (adjusted P-value < 0.05 for all the genes included). (c) List of biological
processes enriched in the subset of hypomethylated/upregulated genes (n= 33), in the 50þ years old ACE subject subset.
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Conclusions

This study provides evidence that the epigenetic effects of ACE are
age-dependent and not defined in the long term. DNAmethylation
in ACE subjects changes as aging proceeds, an effect characterized
by increased hypomethylation in middle and late adult subjects,
which are related to up- and downregulated biological processes
involved in nervous system physiology, development, and behav-
ior. The differences in the DNA methylation profile, and aging

effects between early, middle, and late adulthood, suggest a very
interesting window for interventions aimed to prevent the detri-
mental effects of ACE in young adults.
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