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The double diffusive convection between two parallel plates is numerically studied
for a series of parameters. The flow is driven by the salinity difference and stabilised
by the thermal field. Our simulations are directly compared with experiments by
Hage & Tilgner (Phys. Fluids, vol. 22, 2010, 076603) for several sets of parameters
and reasonable agreement is found. This, in particular, holds for the salinity flux
and its dependence on the salinity Rayleigh number. Salt fingers are present in all
simulations and extend through the entire height. The thermal Rayleigh number seems
to have a minor influence on the salinity flux but affects the Reynolds number and
the morphology of the flow. In addition to the numerical calculation, we apply the
Grossmann–Lohse theory for Rayleigh–Bénard flow to the present problem without
introducing any new coefficients. The theory successfully predicts the salinity flux
both with respect to the scaling and even with respect to the absolute value for the
numerical and experimental results.

Key words: convection, double diffusive convection

1. Introduction
Double diffusive convection (DDC) can occur when the fluid density in a system

is affected by two components. Often the diffusivities of the two components are
very different. Double diffusive convection is relevant in many natural environments,
such as thermal convection with compositional gradients in astrophysics (Spiegel
1972; Rosenblum et al. 2011), thermohaline effects in horizontal convection (Hughes
& Griffiths 2008), sedimentation in salt water (Burns & Meiburg 2012) and double
diffusion in oceanography (Turner 1974; Schmitt 1994; Schmitt et al. 2005; Radko
2013). In oceanography, the sea water density depends on both the temperature and
the salinity. The Prandtl numbers, i.e. the ratio of viscosity to diffusivity of each
component, are approximately PrT = 7 for the temperature and PrS = 700 for the
salinity. Thus, heat diffuses on a time scale two orders of magnitude faster than that
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of the salinity. Due to this huge difference, long narrow vertical convection cells,
which are called salt fingers, may develop even when the averaged fluid density is
stably stratified (Stern 1960). Salt fingers are crucial to the salinity transfer (Turner
1974). More generally and from now on the component with the smaller diffusivity
is called salinity and the other one temperature.

Extensive studies have been conducted both experimentally and numerically to
reveal the structure of salt fingers and the fluxes associated with them. Early
experiments often focused on a single finger layer which grows from an interface
of two homogeneous layers with different components. This includes the heat–salt
system of Turner (1967), McDougall & Taylor (1984) and Taylor & Bucens (1989),
the heat–sugar system of Linden (1973) and the sugar–salt system of Shirtcliffe &
Turner (1970) and Pringle & Glass (2002). Numerical simulations of DDC began
in the 1980s and generated reasonable results compared with experiments (Yoshida
& Nagashima 2003, and the references therein). Sreenivas, Singh & Srinivasan
(2009) conducted two-dimensional simulations of salt fingers starting from a sharp
interface, and systematically investigated the relation between the control parameters
and the finger width, vertical velocity and fluxes. In most of these studies, the
salt fingers occupy more and more volume as they grow in height. Some large-scale
three-dimensional simulations have been performed for periodic domains with uniform
background component gradients, such as Stellmach et al. (2011), Traxler et al.
(2011), Mirouh et al. (2012) and Wood, Garaud & Stellmach (2013).

The DDC flow has also been investigated for fluids bounded by two reservoirs with
fixed temperature and salinity, for example Linden (1978) and Krishnamurti (2003).
For different control parameters, single finger layer or alternating stacks of finger and
convective layers were observed. The overall flux then depends on the number of flow
layers between reservoirs. Hage & Tilgner (2010) (HT hereafter) conducted a series of
DDC experiments with a copper-ion concentration heat system in an electrodeposition
cell. For all the parameters they explored, one single finger layer emerges in the cell
and is bounded by two thin boundary layers adjacent to the top and bottom walls.
Schmitt (2011) performed a theoretical analysis to explain the finger convection in
the HT experiments, and Paparella & von Hardenberg (2012) numerically simulated
the DDC flow between two parallel free-slip plates for the very large salinity Rayleigh
number Ra= 1013.

One of the key issues of DDC flow is to understand the dependence of the fluxes
on the control parameters. In early experiments, it has been found that the dimensional
salinity flux follows a scaling law FS =C(1S)4/3, where 1S is the salinity difference
across the finger layer and C is a function determined by experiment (Turner 1967;
McDougall & Taylor 1984; Taylor & Bucens 1989). The same scaling law was also
obtained by Radko & Stern (2000) using an asymptotic analysis. The experimental
results of HT show good agreement with the ∝(1S)4/3 scaling, although the prefactor
of the scaling law has to be determined by experiment. Recently, Radko & Smith
(2012) proposed a model for double diffusive transport with constant background
gradients of temperature and salinity. The model predicts the heat and salt transport
at a so-called equilibrium state, which occurs when the growth rates of the primary
and secondary instabilities are comparable. The growth rates are obtained by linear
analysis for the primary instability and numerically for the secondary instability. The
ratio between the two growth rates has to be determined by simulation data.

In the field of Rayleigh–Bénard (RB) flow it is now widely accepted that there does
not exist a single scaling exponent and the Grossmann–Lohse (GL) theory (Grossmann
& Lohse 2000, 2001, 2002, 2004; Stevens et al. 2013) provides a unifying viewpoint
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for understanding the dependence of the heat flux on the control parameters (Ahlers,
Grossmann & Lohse 2009). The model is based on the global balance between the
dissipation rates and the convective fluxes of momentum and temperature. The
predictions of the theory are in agreement with most of the experimental and
numerical data (Stevens et al. 2013).

The purpose of the present study is twofold. First, we numerically simulate the
DDC flow between two parallel plates, in a set-up that is the same as in HT. Direct
comparison will be made between simulations and experiments for the same control
parameters. Second, inspired by its success for RB flow, the GL theory will be applied
to the DDC problem. As we will explain, we can in fact do so without introducing
any new parameters, thus providing a new theoretical framework to understand the
numerical and experimental data for DDC.

The structure of the paper is as follows. In § 2 we will describe the theoretical
formulation of the problem. In § 3 we will provide the numerical set-up and control
parameters, along with the visualisation of salt fingers. Then we will show the system
response to the control parameters in § 4, and discuss the effects of the temperature
field in § 5. The application of the GL theory to DDC flow will be given in § 6.
Section 7 is devoted to conclusions.

2. Governing equations
We consider DDC flow between two parallel plates that are perpendicular to

the direction of gravity and separated by a height L. The Oberbeck–Boussinesq
approximation is employed, which means that the fluid density is assumed to depend
linearly on the two scalar fields, namely the temperature T and salinity S,

ρ(T, S)= ρ0[1− βT(T − T0)+ βS(S− S0)]. (2.1)

Here, ρ0 is some reference density, and βT (respectively βS) is the positive expansion
coefficient associated with the temperature (respectively salinity). The governing
equations read (Landau & Lifshitz 1959; Hort, Linz & Lücke 1992)

∂tui + uj∂jui =−∂ip+ ν∂2
j ui + gδi3(βTθ − βSs), (2.2a)

∂tθ + uj∂jθ = λT∂
2
j θ +

λSk2
T

cpT0

[
∂µ

∂s

]0

T,p

∂2
j θ +

λSkT

cp

[
∂µ

∂s

]0

T,p

∂2
j s, (2.2b)

∂ts+ uj∂js= λS∂
2
j s+ λSkT

T0
∂2

j θ. (2.2c)

The flow quantities include the velocity u(x, t), the kinematic pressure p(x, t), the
temperature field θ(x, t) and the salinity field s(x, t). Both θ and s are relative to
some reference values, g is the gravitational acceleration, ν is the kinematic viscosity
and λT and λS are the diffusivities of temperature and salinity. The last two terms
of (2.2b) represent the Dufour effect, which is the heat flux driven by the salinity
gradient. Here, cp is the specific heat at constant p, kT is the thermal diffusion ratio
and µ(T, s, p) is the chemical potential. The term [∂µ/∂s]0T,p denotes the derivative
of µ with respect to s at constant T and p. The last term of (2.2c) denotes the Soret
effect, which is the salinity flux driven by the temperature gradient. The Soret effect
is characterised by the separation ratio (Liu & Ahlers 1997)

Ψ =−βS

βT

kT

T0
=−βS

βT
S0(1− S0)ST . (2.3)
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Here, ST is the Soret coefficient. The Dufour effect is characterised by Ψ , the Lewis
number (often used in oceanography) Le= λT/λS and the Dufour number (Hort et al.
1992)

Q= T0β
2
T

cpβ
2
S

[
∂µ

∂s

]0

T,p

. (2.4)

Hort et al. (1992) showed that, relative to the Fourier heat transfer, the magnitudes
of the second and third terms on the right-hand side of (2.2b) are of order Le−1QΨ 2

and Le−1Q|Ψ | respectively. For liquid mixtures usually Le−1∼ 10−2 and Q∼ 0.1, and
for gas mixtures Le−1 ∼ 1 and Q∼ 10. This implies that the Dufour effect in liquid
mixtures can be 104 times smaller than that in gas mixtures. Liu & Ahlers (1997)
measured the two coefficients Le−1QΨ 2 and Le−1Q|Ψ | for several gas mixtures and
for most cases they are smaller than 0.5. Thus, we can anticipate that the Dufour
effect should be negligible in the present problem. The Soret effect may introduce
new types of instabilities (Turner 1985) and affect the onset of convection and pattern
formation (Cross & Hohenberg 1993; Liu & Ahlers 1996). In the present paper we
focus on the fully developed convection, and as in studies in the field we also neglect
the Soret effect, as it is small for DDC of turbulent salty water. Then, in (2.2b) and
(2.2c) only the respective first term on the right-hand side survives.

The dynamical system (2.2) is constrained by the continuity equation ∂iui = 0 and
the appropriate boundary conditions. In the present paper, both the top and the bottom
plates are non-slip, i.e. u≡ 0. In the horizontal directions we use periodic conditions.
The aspect ratio Γ = d/L, where d is the domain width, indicates the domain size
in the simulations. The dimensionless control parameters are the Prandtl numbers and
the Rayleigh numbers of temperature and salinity, which are, respectively,

PrT = ν

λT
, PrS = ν

λS
, RaT = gβTL3∆T

λTν
, RaS = gβSL3∆S

λSν
. (2.5a−d)

We define the total temperature or salinity difference as

∆T = Tbot − Ttop, ∆S = Stop − Sbot, (2.6a,b)

which ensures that the Rayleigh number is positive when the component destabilises
the flow. The subscripts ‘top ’ and ‘bot ’ denote the values at the top and bottom
plates respectively. We note that PrS is also called the Schmidt number (Sc). The other
parameters can be calculated from the four numbers above. For instance, the Lewis
number and the density ratio are

Le= λT/λS = PrS Pr−1
T , Rρ = (βT∆T)/(βS∆S)= Le RaT Ra−1

S . (2.7a,b)

The key responses of the system are the non-dimensional fluxes of heat and salinity
and the Reynolds number,

NuT = 〈u3θ〉A − λT∂3〈θ〉A
λTL−1∆T

, NuS = 〈u3s〉A − λS∂3〈s〉A
λSL−1∆S

, Re= UcL
ν
. (2.8a−c)

Here, 〈·〉A denotes the average over any horizontal plane and time, and correspondingly
〈·〉V denotes the average over time and the entire domain; Uc is a characteristic
velocity.

Similarly to RB flow, exact relations can be derived from (2.2) between the
dissipation rates for momentum, temperature and salinity and the global fluxes. It
should be pointed out that these relations only hold provided that the cross-diffusion
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terms in (2.2b) and (2.2c) are negligible and the flow reaches a statistically steady
state. Following Shraiman & Siggia (1990), one then readily obtains from the
dynamical equations of θ 2, s2 and the total energy u2/2− gβTzθ + gβSzs the relations

εθ ≡
〈
λT[∂iθ ]2

〉
V = λT (∆T)

2 L−2 NuT, (2.9a)

εs ≡
〈
λS[∂is]2

〉
V =−λS (∆S)

2 L−2 NuS, (2.9b)

εu ≡
〈
ν[∂iuj]2

〉
V = ν3L−4

[
RaT Pr−2

T (NuT − 1)− RaS Pr−2
S (NuS + 1)

]
. (2.9c)

These exact relations are the cornerstones for applying the GL theory to DDC flow.
Moreover, they can be used to validate the convergence of the simulation by checking
the global balances between the dissipation rate and the flux, as we did in Stevens,
Verzicco & Lohse (2010) for RB flow.

The above discussions provide several methods to calculate the Nusselt numbers.
One can either compute NuT and NuS based on the definition (2.8), in which the
average can be taken as the surface averaging of the temperature and salinity gradients
at the top or bottom plate, or by the volume average of the flux over the entire
domain. At the same time, according to the exact relations (2.9a) and (2.9b) the
Nusselt numbers can also be computed by the volume average of the dissipation
rates. Stevens et al. (2010) have discussed these four methods in detail. The four
methods must give identical values when the flow is fully resolved. This is used as
a validation of the numerical set-up.

3. Numerical simulations and visualisations of salt fingers
In our numerical simulation, (2.2) is non-dimensionalised by using the length L,

the free-fall velocity U = √gβT |∆T |L and the temperature and salt concentration
differences |∆T | and |∆S| respectively. Both the top and the bottom plates are set
to be no-slip and with fixed temperature and salinity. Here, we always set ∆T > 0
and ∆S > 0. Thus, the flow is driven by the salinity difference while it is stabilised
by the temperature field. The computational domain has the same width in both
horizontal directions and periodic boundary conditions are employed for the sidewalls.
Similarly to the experimental set-up of HT, we start each case with a vertically linear
distribution for temperature and uniform salinity equal to (Stop+ Sbot)/2. To trigger the
flow motion, the initial fields are superposed with small random perturbations whose
magnitudes are 1 % of the corresponding characteristic values. The numerical scheme
is the same as in Verzicco & Orlandi (1996) and Verzicco & Camussi (1999, 2003).
The salinity field is solved by the same method as for the temperature field. We use
a double resolution technique to improve the efficiency. Namely, a base resolution is
used for flow quantities except for the salinity field, which is simulated with a refined
resolution. The details and validation of this method are reported in Ostilla-Mónico
et al. (2015).

Two different types of simulations are conducted in the present work. For the first
type we set the Prandtl numbers at (PrT,PrS)= (7, 700), which are the typical values
for seawater. We vary RaS systematically for two temperature Rayleigh numbers,
RaT = 105 and 106. The details of these simulations are summarised in table 1.
Moreover, in order to make a direct comparison with the experiments, five cases
from HT are numerically simulated with exactly the same parameters, which are
summarised in table 2.

In all simulations thin salt fingers grow from the boundary layers adjacent to both
plates and extend through the entire cell height. Slender convection cells develop along
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RaT RaS Rρ Γ Nx(mx) Nz(mz) NuT NuS Re DifT (%) DifS (%)

1× 105 1× 106 10 2.5 192(2) 96(2) 1.0052 8.6347 0.1107 <0.1 0.50
1× 105 2× 106 5.0 2.5 192(2) 96(2) 1.0125 11.064 0.1814 <0.1 0.31
1× 105 5× 106 2.0 2.0 192(3) 144(2) 1.0350 15.050 0.3521 <0.1 0.25
1× 105 1× 107 1.0 2.0 240(2) 144(2) 1.0775 17.854 0.5254 <0.1 0.16
1× 105 2× 107 0.5 1.6 240(3) 144(2) 1.1706 22.107 0.8275 <0.1 0.91
1× 105 5× 107 0.2 1.6 240(3) 192(2) 1.4265 29.259 1.4652 <0.1 0.40
1× 105 1× 108 0.1 1.6 288(3) 144(2) 1.8826 35.342 2.3496 0.19 0.70
1× 106 1× 107 10 2.0 240(2) 120(2) 1.0116 17.352 0.2773 <0.1 0.69
1× 106 2× 107 5.0 1.2 192(2) 144(2) 1.0277 22.037 0.4584 <0.1 0.39
1× 106 5× 107 2.0 1.2 240(2) 192(2) 1.0789 29.542 0.8727 <0.1 0.44
1× 106 1× 108 1.0 1.0 240(2) 192(2) 1.1791 35.516 1.3349 0.25 0.59
1× 106 2× 108 0.5 1.0 288(2) 192(2) 1.3929 42.500 2.0749 0.17 0.83
1× 106 5× 108 0.2 1.0 360(2) 240(2) 2.0197 56.184 3.8484 0.59 1.3
1× 106 1× 109 0.1 1.0 384(3) 385(2) 3.0231 68.098 6.2142 0.51 1.7

TABLE 1. Summary of the simulations with PrT = 7 and PrS = 700. The columns are,
from left to right, the Rayleigh numbers of temperature and salinity, the density ratio, the
aspect ratio of the domain, the resolutions in the horizontal and vertical directions (with
refinement coefficients for multiple resolutions), the Nusselt numbers of temperature and
salinity, the Reynolds number based on the root mean square (r.m.s.) value of velocity
and the maximal differences between the Nusselt numbers computed by four methods. The
meshes in the y direction are the same as in the x direction.

PrT PrS RaT RaS Rρ Γ Nx(mx) Nz(mz) NuT NuS Re DifT DifS Nue
S

(×105) (×108) (%) (%)

8.8 2031.3 4.19 5.85 0.17 1.0 360(2) 288(2) 1.40 60.21 1.725 0.6 1.7 37.8
8.8 2046.1 4.18 8.78 0.11 1.0 360(2) 288(2) 1.65 65.98 2.216 0.8 1.7 60.6
8.8 2044.2 20.9 8.41 0.58 0.6 288(2) 288(2) 1.19 67.44 1.515 0.2 1.0 51.6
9.2 2229.8 61.2 33.3 0.44 0.5 288(2) 360(2) 1.36 100.3 2.624 0.2 1.4 91.4
9.4 2309.6 121 147 0.20 0.4 288(3) 432(2) 2.07 153.3 5.537 0.7 1.9 141.0

TABLE 2. Summary of simulations of five experimental cases. The first two columns are
the Prandtl numbers and the last column is the experimental measurement of NuS. The
other columns are the same as in table 1. The complete experimental results for these
cases can be found in HT.

with the salt fingers. In figure 1(a) we show a three-dimensional visualisation of the
salt fingers with RaT = 106 and RaS= 2× 108. The salty and fresh fingers are located
alternately in space and correspond to individual convection cells. Near the top and
bottom plates some sheet-like structures connect the roots of the fingers and form the
boundaries of adjacent convection cells.

To illustrate this more clearly, in figure 1(b–d) we show salinity contours on three
cross sections: z= 0.05 near the bottom plate, z= 0.5 in the middle plane and z= 0.95
near the top plate. Near both plates, the sheet-like structures are very distinct. The
patterns are quite similar to those found in the sugar–salt experiments by Shirtcliffe
& Turner (1970). In the middle plane, the fingers take a nearly circular shape,
although some weak links can be observed between fingers. This may explain why
a ‘sheet-finger’ assumption generates a better representation of the experimental data
than the ‘circular-finger’ assumption in HT. These flow visualisations also suggest
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(e) ( f ) (g)

(a)

FIGURE 1. Instantaneous flow visualisation for the case with RaT = 1 × 106 and RaS =
2×108. (a) Three-dimensional visualisation of salt fingers. Both the colour and the opacity
are set by the salinity field. The red salty fingers grow from the top plate and extend to
the bottom one, while the blue fresh fingers extend from the bottom plate to the upper
one. (b–d) The contours of s on the horizontal planes with z = 0.05L, 0.5L and 0.95L
respectively. (e–g) The contours on a vertical section plane of salinity, vertical velocity
and temperature respectively. Panels (b–d) have the same colourmap as (e).

that the periodic condition in the horizontal directions is appropriate, provided that
there are enough salt fingers and convection cells in the computational domain. For
the case (RaT, RaS) = (105, 5 × 106) in table 1 we run a simulation with the same
mesh size and half the domain size. The difference in the Nusselt numbers for the
two domain sizes is smaller than 1 %. For all simulations Γ is chosen so that the
flow domain contains a similar number of convection cells.

Figure 1(e–g) depicts the different patterns of the salinity, velocity and temperature
fields in a vertical plane. The salinity field has the smallest scale in the horizontal
directions. Naturally, each salt finger is associated with a plume of high vertical
velocity, which has a larger width than the salt finger. Due to its large diffusivity, the
temperature field only exhibits wavy structures, and no thermal plumes can be found.
The very different horizontal scales among various quantities verify the suitability
and advantage of the double resolution method we used in our simulation.

In figure 2 we plot the mean profiles s(z) and θ(z) for the cases listed in table 1.
The overline stands for an average over the time and (x, y) planes. Clearly, the
salinity field has two distinct boundary layers adjacent to both plates, and in between
there is a bulk region with s of approximately 0.5. As RaS increases, the thickness of
the boundary layers decreases and the bulk region becomes more homogeneous. In
contrast, there is no distinct division of the boundary layers and the bulk region in
the temperature field. For given RaT , when RaS is small the mean temperature profile
stays linear. Small deviations from the linear profile are only visible for large RaS
(equivalently small Rρ). This is reasonable since the fast diffusion of temperature (as
compared with salinity) prevents the development of the small-scale structures.

4. System response in the explored parameter space
The parameter space we have explored is shown in the (RaS, RaT) plane in

figure 3(a). The experimental cases of HT are also included in this figure. The cases
listed in table 2, which serve for the direct comparison between the numerical and
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0 1 2 3 4 5 6 7
0

0.5

1.0(a)

(b)

0 1 2 3 4 5 6 7
0

0.5

1.0

z

z

FIGURE 2. Mean profiles of s (black) and θ (grey) for cases in table 1: (a) RaT = 105

and from left to right RaS increases from 106 to 108; (b) RaT = 106 and from left to right
RaS increases from 107 to 109. For clarity, each curve is shifted rightward by 1 from the
previous one.

104

105

106

107

108

106106 108

1010

109

107 108 109 1010 1011 10101012 1012

100

101

(a)

10−2

10−1

(b)

FIGURE 3. (Colour online) Parameter space in the RaS–RaT (a) and RaS–Rρ (b) planes.
Circles, cases in table 1 with RaT = 105; squares, cases in table 1 with RaT = 106; black
pluses, experiments from HT; grey (red online) crosses, cases listed in table 2. The same
symbols will be used in all similar figures hereafter.

experimental results, are marked by grey (red online) crosses in the two parameter
spaces. Together, our simulations and the HT experiments cover a RaS range of over
six decades and a RaT range of over four decades.

In figure 3(b) we plot the same parameter space in the (RaS, Rρ) plane. Here, Rρ
measures the ratio of the stabilising force of the temperature field to the destabilising
force of the salinity field. When Rρ > 1, the flow is in the traditional finger regime
which has been studied extensively. When Rρ < 1, the destabilising force of the
salinity field is stronger than the stabilising force of the temperature field, thus the
flow is more similar to RB flow. Most of the HT experiments are in the latter regime,
and interestingly these authors found that fingers develop even with a very weak
temperature difference. Schmitt (2011) extended the theory for the traditional finger
regime to that with Rρ < 1 and revealed that a narrow finger solution may still exist.
Here, in our simulation we systematically vary Rρ from 0.1 to 10, which covers both
regimes.

As discussed in § 2, the Nusselt numbers for temperature and salinity are measured
by four different methods. The final Nusselt numbers are the averages of these four
values, which are given in tables 1 and 2. In these tables the maximal differences
among the four values are also given. The maximal differences of NuT and NuS are
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FIGURE 4. (Colour online) Plots of NuS (a) and Re (b) versus RaS for simulations and
experiments. For the cases listed in table 2, the grey (red online) pluses represent the
experimental results and the grey (red online) crosses represent the simulation results.
The predictions of the GL model are given by the dashed line for PrS = 700 and the
dash dotted line for PrS = 2100. For NuS these two lines almost collapse with each other
(see (a)).

less than 1 % for all the cases with RaS< 5× 108. When RaS > 5× 108 the differences
increase but they are still below 2 %. This confirms the convergence of our simulations.
For the Reynolds number we choose the characteristic velocity Uc as the r.m.s. value
of velocity computed with all three components.

In figure 4(a,b) we plot the dependences of NuS and Re on RaS respectively. It is
clear that NuS shows the same dependence on RaS in the whole range considered
here, despite the different Prandtl numbers in simulations and experiments. In our
simulations we have four pairs of cases at RaS= 1× 107, 2× 107, 5× 107 and 1× 108.
Within each pair RaT ∈ {105, 106} and we can see that NuS is very similar, i.e. it has
only a weak dependence on RaT . Indeed, the symbols with same RaS and different RaT
are very close to each other. Experimental results also show the same trend, especially
in the higher RaS region. For instance, in figure 4(a) at RaS ≈ 1011 there are actually
four data points with RaT ranging from 2.42× 107 to 9.7× 107. This implies that NuS
depends mainly on RaS and is only slightly affected by the change of RaT .

Changing RaT while keeping RaS fixed does have a notable influence on Re, as
shown in figure 4(b). For the same RaS, larger RaT generates smaller Re. It should
be recalled that RaS measures the unstable driving force and RaT represents the
stabilising force of the temperature field. Then, fixing RaS and increasing RaT means
that the stabilising force becomes relatively stronger, therefore a smaller Re. The
same phenomenon is also found in the HT experiments.

The cases in table 2 are marked by the grey (red online) crosses and plus symbols
in figure 4. The grey (red online) crosses are numerical results and the grey (red
online) pluses are experimental results from HT. As compared with the experiments,
the numerical simulations generate larger NuS. It seems that the discrepancy becomes
smaller as the experimental Nusselt number Nue

S increases. For the three cases
with higher Nue

S the discrepancy is below 10 %, which is within the uncertainty
of experimental measurement. The discrepancy of Re between experiments and
simulations is larger than that of NuS. This may be attributed to the way in which
the r.m.s. velocity is computed. In HT the r.m.s. value was computed by using
the velocity components within a vertical plane where the flow field was measured.
Here, we compute the r.m.s. value by all three components and averaging over
the entire domain. Since the salt fingers keep their position for a very long time,
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FIGURE 5. (Colour online) Log–linear plot of 1−Rf versus Rρ . Circles, cases with RaT =
105 in table 1; squares, cases with RaT = 106 in table 1; cases in table 2.

the r.m.s. value measured in the HT experiments depends on the location of the
measured plane. Nonetheless, numerical results show a dependence of Re on RaS
similar to experiments.

5. Effects of the temperature field
The density flux ratio, i.e. the ratio of the density anomaly flux due to temperature

and that due to salinity, is defined as

Rf = βT〈u3θ〉V
βS〈u3s〉V = Le Rρ

NuT − 1
NuS − 1

. (5.1)

Then, from (2.9c) one can easily obtain

εu = ν3L−4RaS Pr−2
S (NuS − 1)(1− Rf ). (5.2)

Thus, the temperature field affects the global balance between the momentum
dissipation and the convection through the factor 1 − Rf . In figure 5 we plot the
variation of 1 − Rf with Rρ . Since the HT experiments did not measure the heat
flux, in the figure we only show the numerical results. This dependence is similar
for all analysed RaT (corresponding to different symbols in the figure). Namely, it
decreases as Rρ increases. As Rρ→ 0, the influence of the temperature field becomes
weaker and Rρ = 0 recovers the RB flow purely driven by the salinity difference.
When Rρ →∞, the stabilising force of the temperature field becomes stronger and
eventually there is no motion. For Rρ = 10, 1 − Rf is approximately 0.3. Therefore,
the temperature field has quite a strong effect on momentum convection even when
NuT is much smaller than NuS. This is again due to the huge difference between λT
and λS, which is reflected by a large Le in (5.1).

It should be pointed out that in our simulations Rf increases as Rρ becomes larger,
while it was reported in the literature that Rf is inversely proportional to Rρ for Rρ > 1
and Rf→ 1 as Rρ→ 1, e.g. see the review of Kunze (2003) and the references therein.
The reason for this difference may be the different flow configurations. For most of
the experiments and simulations examined by Kunze (2003) the fingers start from an
interface between two homogeneous layers and grow freely during time. However, for
our configuration the maximal vertical length of the fingers is limited to the height
between the two plates, and indeed for all the parameters we simulated the fingers
extend from one boundary layer to the opposite one and they have almost the same
height.
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FIGURE 6. Comparison of salinity fields for fixed RaS = 107 and different values of RaT .
From left to right: RB flow, RaT = 103, RaT = 105 and RaT = 106. (a) Horizontal sections
at z = 0.95 near the top plate; (b) vertical sections. For all plots the colourmap is the
same as in figure 1(e).

To further reveal the effects of the temperature field, we simulated another two cases
for RaS = 107. The first one has RaT = 103 and the other has no temperature field,
namely pure RB flow. We obtain NuS = 17.431 and 17.249 respectively. These values
are very close to the two cases with the same RaS in table 1, i.e. NuS = 17.854 with
RaT = 105 and NuS= 17.352 with RaT = 106. Figure 6 compares the salinity fields for
these four cases with different RaT . It can be seen that as RaT increases, the horizontal
size of the convection cells shrinks. In the RB flow shown in the left column, the
salt plumes from one plate become very weak before they reach the opposite plate.
For larger RaT the plumes are stronger and grow more vertically. Finally, almost all
plumes reach the opposite plate and form salt fingers. Therefore, with the stabilising
effect of the temperature field, the large-scale flows in the pure RB case are prevented
and the salt fingers tend to move vertically.

The above observations imply that the temperature field does change the morphology
of the salinity field, such as the horizontal size of the salt fingers and convection cells.
It should be recalled that Re has a notable dependence on RaT , while the dependence
of NuS on RaT is very weak. Thus, it seems that the temperature field affects the size
of the salt fingers and the speed of the flow motion in such a way that the salinity
flux stays fixed for certain RaS.

6. The GL theory applied to DDC
The GL theory developed by Grossmann & Lohse (2000, 2001, 2002, 2004)

successfully accounts for the Ra and Pr dependence of Nu and Re for RB flow. The
starting point of the theory is two exact relations for the kinetic and thermal energy
dissipation rates (the analogues of (2.9)). The volume averages of the dissipation
rates are then divided into the contributions of the bulk region and of the boundary
layers, which both can then be modelled individually, leading to

(Nu− 1)RaPr−2 = c1
Re2

g
(√

Rec/Re
) + c2Re3, (6.1a)

Nu− 1= c3Re1/2 Pr1/2

{
f

[
2aNu√

Rec
g

(√
Rec

Re

)]}1/2

+ c4Re Prf

[
2aNu√

Rec
g

(√
Rec

Re

)]
,

(6.1b)
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with Rec = 4a2 as the critical Reynolds number, describing the transition to the large-
Pr regime (Grossmann & Lohse 2002). The model has five coefficients, i.e. a and ci
with i= 1, 2, 3, 4. Their values are c1 = 8.05, c2 = 1.38, c3 = 0.487, c4 = 0.0252 and
a= 0.922, with which Nu(Ra,Pr) and Re(Ra,Pr) can very well be described (Stevens
et al. 2013).

In generalisation of this concept, now all three dissipation rates (2.9) are split into
bulk and BL contributions as

εu = εu,BL + εu,bulk, (6.2a)
εθ = εθ,BL + εθ,bulk, (6.2b)
εs = εs,BL + εs,bulk. (6.2c)

If both the temperature and the salinity differences drive the flow, then it is natural
to model both components in the same way, namely,

(NuS − 1)RaSPr−2
S + (NuT − 1)RaTPr−2

T = c1
Re2

g
(√

Rec/Re
) + c2Re3, (6.3a)

NuT − 1 = c3,θRe1/2 Pr1/2
T

{
f

[
2aNuT√

Rec
g

(√
Rec

Re

)]}1/2

+ c4,θRe PrT f

[
2aNuT√

Rec
g

(√
Rec

Re

)]
, (6.3b)

NuS − 1 = c3,sRe1/2 Pr1/2
S

{
f

[
2aNuS√

Rec
g

(√
Rec

Re

)]}1/2

+ c4,sRe PrSf

[
2aNuS√

Rec
g

(√
Rec

Re

)]
. (6.3c)

On first sight one may think that the seven constants c1, c2, c3,θ , c4,θ , c3,s, c4,s and a
would have to be obtained from a fit to experimental or numerical data. However, it
is much easier in this case: they can be deduced from the limiting cases for which
of course the same constants hold as in the general case. Imagine RaS = 0, i.e. only
thermal driving. Then (6.3) reduces to (6.1) with c3,θ = c3 and c4,θ = c4, i.e. the known
values. Next, imagine RaT = 0, i.e. only salinity driving. Then the salinity field takes
the role of the thermal field in the standard RB case and thus (6.3) again reduces
to (6.1), with c3,s = c3 and c4,s = c4, i.e. again the known values! Moreover, as by
construction of the model the prefactors do not depend on the control parameters RaT ,
RaS, PrT , PrS, these equalities not only hold in the limiting cases but throughout and
we have in general

c3,θ = c3,s = c3 and c4,θ = c4,s = c4 (6.4a,b)

with the known values for c3 and c4 and also for c1, c2 and a (Stevens et al. 2013).
If the flow is driven by one component and stabilised by the other one, which

is the case in the present study, the driving component can still be modelled in
the same fashion as in (6.3), but the other component must be modelled differently.
However, as we discussed in the previous section, RaT only has a minor effect on
the salinity transfer NuS in our problem. Moreover, the temperature field shows no
clear distinction between the boundary layer region and the bulk region, as indicated
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FIGURE 7. (Colour online) Compensated plots of NuS and Re versus RaS. The lines and
symbols are the same as in figure 4.

by the temperature field in figure 1(g) and the mean profiles in figure 2. Thus, one
can neglect the thermal terms in model (6.3) and still obtain accurate predictions of
the salinity transfer.

With the original values of the coefficients, NuS(RaS) has been computed for PrS=
700 and 2100, which are shown by lines in figure 4(a). Indeed, the GL predictions
agree excellently with both numerical and experimental results in the whole range
of 106 < RaS < 1012. The two lines with different values of PrS have only a slight
difference. This is similar to the RB flow where the Nusselt number saturates when
the Prandtl number is large enough. We want to emphasise that no new parameters
are introduced and the model developed for RB flow also works remarkably well for
the present DDC flow.

What about the dependence of the Reynolds numbers on the control parameters? As
pointed out by Grossmann & Lohse (2002), the distribution NuS(RaS,PrS) is invariant
under the transformation

a→ α1/2a, c1→ c1/α
2, c2→ c2/α

3, c3→ c3/α
1/2, c4→ c4/α. (6.5a−e)

Following the procedure of Stevens et al. (2013), we use one case to fix the
transformation coefficient α and thus rescale the Reynolds number Re(RaS,PrS) to the
present flow. By using the Reynolds number of the case with (RaT, RaS)= (105, 107),
α is determined as 0.126. The GL prediction of Re(RaS) is then computed with the
transformed coefficients for PrS = 700 and 2100, which is shown in figure 4(b). The
theoretical lines show reasonable agreement with simulations and experiments. Since
the effect of the temperature field is not included in the present model, thus the
dependence of Re on RaT is absent in the theoretical prediction.

Figure 4 demonstrates the success of our approach. As theoretically argued, it is
indeed possible to apply the GL model with the known parameters for RB flow to
DDC flow. The model not only captures the variation trends of NuS and Re, but also
shows quantitive agreement with numerical and experimental data on the log–log plot.

In order to compare the model and the data more precisely, we plot the data
and model predictions in a compensated way. Namely, NuS and Re are respectively
compensated by Ra−1/3

S and by Ra−1/2
S . The results are shown in figure 7. Here, we see

that our approach also inherits some weaknesses of the original GL model: looking
in this detail it becomes clear that NuS follows a trend different from the model,
especially when RaS < 109. A similar discrepancy between the original GL model
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and experimental data was also observed for RB flow at very large Prandtl number,
e.g. see figure 7 of Stevens et al. (2013). The difference between the GL model and
the data is even larger for the Reynolds numbers of the cases in table 1, as shown
by the circles and dashed line in figure 7(b). Surprisingly, the model prediction of
Re shows a reasonable agreement with the HT experiments even in the compensated
plot.

In closing this section, we would like to point out that the scaling laws given by
Hage & Tilgner (2010), which also capture the behaviour of the present numerical
and experimental data, exhibit a similar transition around RaS ≈ 109 when plotted in
the compensated way as in figure 7 (not shown here). Therefore, the discrepancy at
RaS < 109 requires further investigation in future work.

7. Conclusions

In conclusion, DDC flow was studied numerically for a series of flow parameters,
using a flow configuration similar to that of the experiments by HT, in which the
convection was driven by a salinity difference between two plates and stabilised
by a temperature difference. Direct comparison was made between experiments
and numerical simulations for several sets of parameters, and reasonable agreement
was achieved for the salinity flux. Salt fingers exist in all the simulations. Flow
visualisations show that the saltier and fresher fingers grow from the top and bottom
plates respectively, and extend to the opposite boundary layer. They are associated
with slender convection cells. Near the plate where the saltier or fresher fingers
grow, they usually originate from sheet-like structures. When the fingers reach the
opposite plate, they are bounded by the sheet-like structures near that plate. These
sheet-like structures are quite weak in the bulk region. This justifies the ‘sheet-finger’
assumption of HT.

Both our numerical results and the experimental results of HT exhibit the same
dependence of NuS on RaS. For the present configuration, the change of RaT has
a minor influence on NuS but affects Re. To provide a new interpretation of the
dependences of NuS and Re on PrS and RaS, we directly apply the GL theory
for RB flow to the present problem. Without any modification of the coefficients,
the theory successfully predicts NuS(PrS, RaS) with quite good accuracy for both
numerical and experimental results in the RaS range of (106, 1012). The Re(PrS, RaS)

predictions of the theory and the data also show reasonable agreement, especially for
the experimental results.

The effects of the temperature field are also discussed for the present flow
configuration. The temperature field changes the morphology of the salt fingers
but has a minor influence on the salinity flux. It is remarkable that the Nusselt
number of pure RB flow is very close to that of double diffusive flow when the
unstable component field has the same Prandtl and Rayleigh numbers.

Finally, it should be pointed out that the present model does not include the
influence of RaT and PrT . Thus, it cannot predict the behaviour of NuT , neither can
it describe the dependence of Re on RaT . Thus, an extension of the GL model would
be needed in future work to fully cooperate with the DDC problem.
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