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Packing Ferrers Shapes
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Answering a question of Wilf, we show that, if n is sufficiently large, then one cannot cover

an n × p(n) rectangle using each of the p(n) distinct Ferrers shapes of size n exactly once.

Moreover, the maximum number of pairwise distinct, non-overlapping Ferrers shapes that

can be packed in such a rectangle is only Θ(p(n)/ log n).

1. Introduction

A partition p of a positive integer n is an array p = (x1, x2, . . . , xk) of positive integers

such that x1 > x2 > . . . > xk and n =
∑k

i=1 xi. The xi are called the parts of p. The

total number of distinct partitions of n is denoted by p(n). A Ferrers shape of a partition

p = (x1, x2, . . . , xk) is a set of n square boxes with sides parallel to the coordinate axes

such that, in the ith row, we have xi boxes and all rows start at the same vertical line.
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Figure 1 The Ferrers shape of (4,2,1)

The Ferrers shape of the partition p = (4, 2, 1) is shown in Figure 1. Clearly, there is an

obvious bijection between partitions of n and Ferrers shapes of size n.

If we reflect a Ferrers shape of a partition p with respect to its main diagonal, we

get another shape, representing the conjugate partition of p. Thus, in our example, the

conjugate of (4,2,1) is (3,2,1,1).

Recently, Herb Wilf [6] has asked the following intriguing question. Consider all distinct

Ferrers shapes consisting of n boxes. Is it true that, for sufficiently large n, one can always

tile a rectangle of side lengths p(n) and n using (rotations of) each of these shapes exactly

once? Obviously, in such a tiling, if one exists, the shapes cannot overlap each other. For

small values of n, one gets mixed answers: for n = 1, 2, 4 such a tiling exists; however, for

n = 3 there is no such tiling.

In this short paper we answer Wilf’s question in the negative by showing that for

sufficiently large n no such tiling exists. In fact, we prove the following stronger statement.

Theorem 1.1. If n is sufficiently large, then one cannot cover an n × p(n) rectangle by

using each of the p(n) distinct Ferrers shapes of size n exactly once. Moreover, the maximum

fraction of the area of this rectangle that can be covered by non-overlapping distinct Ferrers

shapes of size n is at most c
log n

, for some absolute constant c.

The c/ log n upper bound is tight, up to the constant c, and shows that as n grows we

cannot even cover a fixed fraction of the area by non-overlapping distinct shapes.

To prove the result, we use some geometric properties that are shared by the vast

majority of the Ferrers shapes of size n and imply that these shapes cannot be packed

in an efficient way. The geometric properties we need can be derived from the extensive

available information on the typical form of a Ferrers shape, given, for example, in [4],

as well as in several earlier papers. However, in order to make the paper self-contained,

we prefer to derive all of them directly from the Hardy–Ramanujan asymptotic formula

for p(n). This is done in the next section. In Section 3, we apply the geometric properties

to prove our main result. Throughout the paper we assume, whenever this is needed, that

the size n of the Ferrers shapes considered is sufficiently large.
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2. Some geometric properties of typical Ferrers shapes

The corner of the first row and first column of a Ferrers shape will be called the apex

of that shape. In this section we prove some asymptotic geometric properties of Ferrers

shapes of size n. Our basic tool is the well-known Hardy–Ramanujan asymptotic formula

for the number of shapes of size n; see, for instance, [1]. It asserts that

p(n) = (1 + o(1))
eC
√
n

4n
√

3
, (2.1)

where C = π
√

2
3
, and the o(1)-term tends to 0 as n tends to infinity.

Lemma 2.1. Let x1 > x2 > . . . > xk denote the parts of the partition corresponding to the

Ferrers shape F , and let y1 > y2 . . . > ys denote the parts of the conjugate partition. The

following hold for all but at most p(n)/(log n)2 Ferrers shapes F of size n.

I. There exists an absolute constant c1 such that, for sufficiently large n, we have

c1

√
n log n < x1 and also c1

√
n log n < y1.

II. There exists an absolute constant c2 > 0 such that F has at least c2

√
n parts of size at

least c2

√
n each.

Proof. I. This follows from classical results. Erdős and Lehner [2] proved that, for

almost all partitions of n, the largest term and the number of terms differ from
√

6
2π

√
n log n

by less than c
√
nω(n), where ω(n) → ∞ arbitrarily slowly. A result of Szalay and Turán

(Theorem IV in [5]) makes this information more precise by showing that this holds for

all but O(p(n)e−ω(n)) partitions. To get the required result, set ω(n) = 2 log log n.

For self-containment, however, we include a short direct proof for this lemma. The

inequalities for x1 and y1 are clearly equivalent by taking conjugates. Thus it suffices to

prove the statement for x1.

We need to prove that for almost all partitions we have x1 > c1

√
n log n, for some

positive constant c1. Let S be the set of partitions of n violating this constraint, and

attach two additional parts x0 and x−1 in all possible ways to all partitions in S so that

the following hold:

x0 + x−1 = 3 · [c1

√
n log n],

and

x−1 > x0 > c1

√
n log n.

Let S ′ be the set of partitions obtained in this way. It then follows that x−1 and x0 are

the two largest parts in all partitions in S ′, and that S ′ contains partitions of the integer

n+ 3 · [c1

√
n log n].

As x−1 > x0, we must have 1.5 · c1

√
n log n 6 x−1 6 2 · c1

√
n log n, so we have

0.5 · c1

√
n log n choices for x−1. This implies

|S ′| = |S | · 0.5 · c1

√
n log n 6 p(n+ 3 · [c1

√
n log n]),
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which yields

|S | = |S ′|
0.5 · c1

√
n log n

6
p(n+ 3 · [c1

√
n log n])

0.5 · c1

√
n log n

6
p(n) · e1.5Cc1 log n

0.5 · c1

√
n log n

6
p(n) · n1.5Cc1

0.5 · c1

√
n log n

,

as
√
n+ 3c1

√
n log n <

√
n + 1.5c1 log n. By choosing a sufficiently small c1 (e.g., c1 =

1/1000), we see that all but p(n)/n0.49 partitions satisfy x1 > c1

√
n log n. (Note that it is

not difficult to show that, in fact, for every fixed r there is some c1 > 0 such that, for all

but at most p(n)/nr partitions of n, x1 > c1

√
n log n. This can be done by adding more

than 2 parts with a prescribed sum to each partition that does not satisfy the above,

and by repeating the above argument. For our purpose here, however, the above estimate

suffices.)

II. It is known ([5], Theorem II) that, for any λ satisfying

11 log n 6 λ 6

√
6

2π

√
n log n− 3

√
n log log n,

the number of terms exceeding λ is(
1 + O

(
1

log n

))√
6

π

√
n log

1

1− e−πλ/√6n
,

with the exception of O(p(n)n−7/4) partitions, and our claim follows.

Here, too, we include a self-contained, short proof relying only on (2.1). Let S =

{p : p = (x1, . . . , xk) is a partition of n and |{i|xi > c2

√
n}| < c2

√
n}. Let F be a family of

at least, say, 20.1c2

√
n subsets of a set of cardinality 10c2

√
n in which the Hamming distance

between any two subsets is larger than 2c2

√
n. (Proving the existence of such a family

is easy and follows from the Gilbert–Varshamov bound; see, for instance, [3].) Let the

underlying set of F be the set {c2

√
n+ 1, c2

√
n+ 2, . . . , 11c2

√
n}.

Define S ′ = {P ∪ F |P ∈ S, F ∈ F}. It is not too difficult to check that all |S | · |F|
partitions in S ′ are pairwise distinct; indeed, if two such unions have the same P or the

same F then they clearly differ. On the other hand, for distinct P , P ′ in S and distinct

F, F ′ in F, P ∪F and P ′ ∪F ′ do not have the same sets of parts of size bigger than c2

√
n,

by the definition of S and the choice of F. Therefore, we have

|S ′| = |S | · |F|,
which yields

|S | 6 |S ′|
20.1c2

√
n
. (2.2)

All the elements of S ′ are partitions of integers not larger than n+ 110c2
2n. As these are

all distinct it follows that

|S ′| 6 ∑
k6n+110c2

2
n

p(k) 6 e
C√

n(1+110c2
2
) 6 eC

√
n+55C·c2

2

√
n,

and therefore, by inequality (2.2),

|S | 6 eC
√
ne55C·c2

2

√
n

20.1c2

√
n

,
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Figure 2 A diamond

which gives the desired result since by choosing, say, c2 = 0.001 the second term of the

numerator becomes much smaller than the denominator.

This completes the proof of Lemma 2.1.

3. The proof of the main result

In this section we prove Theorem 1.1. Let us call a partition having properties I and

II regular. Assume that Kp(n)/ log n disjoint Ferrers shapes are packed in an n × p(n)
rectangle for sufficiently large n. We may and will assume, without loss of generality, that

all the apices are in the left upper corner of the Ferrers shapes used, and that all the

partitions are regular.

Define the diamond as follows. The diamond is a plane region which is the union of a

disk and two triangles. The disk is centred at the origin of the xy plane and has radius
c2

4

√
n. One triangle is the convex hull of the vertices(

0,
c2

4

√
n
)
,
(c2

4

√
n, 0
)
,
( c1√

2

√
n log n,

c1√
2

√
n log n

)
.

The second triangle is the mirror image of the first triangle with respect to (0, 0). The

point (0, 0) is the centre of the diamond.

For every apex of a Ferrers shape in the packing, draw a translated copy of the

diamond centred at the apex. Note that the diamonds associated with the apices are

pairwise disjoint. Indeed, if the disk of a diamond intersects with the disk of another

one, then looking at the corresponding partitions, we see that their Durfee squares are

overlapping. In the case of any other intersection, either the squares are overlapping, or

the first row of one of the partitions intersects the first column of the other.

For the last step, define the exceptional region as the four quarterdisks around the four

corners of the n × p(n) rectangle, with radius c2

2

√
n log n each. It is easy to check that

diamonds centred in the rectangle but not in the exceptional region have at least half of

their areas in the rectangle. The exceptional region may contain very few (O(log2 n)) apices

of partitions, since apices have distance at least c2

√
n from each other. Each diamond not
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210 N. Alon, M. Bóna and J. Spencer

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

l
l
l
l
l
l

c
c
c
c
c
cc

Figure 3 An efficient packing

located in the exceptional region covers at least ( c1√
2

√
n log n × √2 c2

4

√
n)/2 = c1c2

8
n log n

from the rectangle, and those pieces are disjoint. Since the area of the rectangle is np(n),

this gives an absolute constant upper bound for K , completing the proof.

It is not difficult to see that the assertion of the theorem is tight, up to the multiplicative

constant c. Indeed, one can first omit all shapes for which, in the notation of Lemma 2.1,

either x1 > C
√
n log n or y1 > C

√
n log n, where C is an absolute constant chosen to

ensure that there are fewer than p(n)/ log n such shapes (it is easy to see that such a C

exists.) Then it is possible to pack the remaining shapes along diagonals, where the apex

of each shape touches the furthest point on the main diagonal of the previous shape. An

illustration appears in Figure 3.
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