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This paper solves the known problem of elimination of unnecessary internal element

construction as well as variable elimination in XML processing with (a subset of) XQuery

without ignoring the issues of document order. The semantics of XQuery is context sensitive

and requires preservation of document order. In this paper, we propose, as far as we are

aware, the first XQuery fusion that can deal with both the document order and the context

of XQuery expressions. More specifically, we carefully design a context representation of

XQuery expressions based on the Dewey order encoding, develop a context-preserving

XQuery fusion for ordered trees by static emulation of the XML store, and prove that our

fusion is correct. Our XQuery fusion has been implemented, and all the examples in this

paper have passed through the system.

1. Introduction

Fusion (Chin 1992; Fegaras and Maier 2000; Wadler 1988) is a well-known technique for

improving efficiency by removing unnecessary intermediate data from the computation.

Although it has been applied to optimize query languages such as SQL (Daniels et al.

1991) and object query languages (Fegaras and Maier 2000), it remains as a challenge to

implement fusion for XQuery optimization. This is because XQuery has more complicated

semantics (Hidders et al. 2004); it is context-sensitive and requires preservation of document

order. One may consider, for example, the following naive fusion transformation† (as

studied in (Deutsch et al. 2004)).

<e>{E1, . . . , En}</e>/c �→ σc(E1), . . . , σc(En). (F)

This transformation works correctly only if the order of the XML document and the

context can be ignored. However, order is an important issue in XML documents (Amano

et al. 2009; Fernández et al. 2005), and various index structures for ordered trees have

been developed for XML documents (Lu et al. 2005; Tatarinov et al. 2002; Xu et al. 2009).

When we view an XML document as an ordered tree, an existing fusion transformation

like (F) by naive elimination of element constructors does not work correctly because

the context, which is a navigation of newly constructed trees, is missing during the

transformation.

† Analogous to relational algebra operators, σc is used as a selection, which extracts data with their element

name being c.
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Fig. 1. Source XML: S (left). XQuery expression: Qm (middle) and the serialized result: T (right).

Consider the simple case illustrated in Figure 1, where the query Qm (the middle) is

applied to the source S (the left), and the target T (the right) is obtained as the serialized

result. Let us apply the following query Q1 to the serialized T ,

Q1. let $v := (/sa/rhs, /sa/lhs) return $v/item.

Since the semantics of ‘axis access’ by using ‘/’ in XQuery (and XPath) requires sorting

without duplicates in the document order, the correct result is the following sequence of

‘item’ elements:

<item><c/></item>,

<item><d/></item>,

<item><a/></item>,

<item><b/></item>.

On the other hand, consider the composite query of Qm and Q1, that is a ‘let’-expression,

in which first a variable is bound to the result of Qm then the path expression referring

to the root element in Q1 in ‘return’-clause is replaced by the variable. We write this

composite query as (Qm; Q1), and the following expression is obtained:

let $t :=< sa>{(<lhs>{/na/rhs/item}</lhs>,<rhs>{/na/lhs/item}</rhs>)}</sa>

return let $v := ($t/rhs, $t/lhs) return $v/item.

Now, if we perform the calculation† according to the context-insensitive fusion rule (F):

Qm; Q1

→ {(variable elimination for $t); (F)}
let $v := (<rhs>{/na/lhs/item}</rhs>,<lhs>{/na/rhs/item}</lhs>)

return $v/item

→ {(variable elimination for $v); (F)}
(/na/lhs/item, /na/rhs/item)

† In this rewriting, the variable $v is eliminated by replacing it with its value. This elimination does not work

correctly either in XQuery processing. This problem will be described later.
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then evaluating the transformed query (/na/lhs/item, /na/rhs/item) on S gives

<item><a/></item>,

<item><b/></item>,

<item><c/></item>,

<item><d/></item>

whose order of ‘item’ elements is different from the previous expected result. Furthermore,

if we consider the query Q2 on T :

Q2. let $v := /sa/rhs/item return $v/..

then, although the expected result of Q2 to T is the ‘rhs’ element, the result of the

transformed query from (Qm; Q2) via similar steps above is the ‘lhs’ element. In both

examples, due to the disregard of the context, a tree navigation over the newly constructed

XML fragment using <sa>{. . .}</sa> in Qm is ignored.

The problem of the existing fusion transformation lies in that the naive elimination

of internal element constructors during the transformation does not preserve the (com-

putation) context because element constructors construct ordered trees. This implies that

eliminating element constructors in XQuery expressions and preserving the context of

the expressions are conflicting requirements. The purpose of our work is to propose a

new fusion mechanism to meet these two requirements. To this end, we should find a

way to manage the context of the original expressions in developing a correct fusion

transformation.

While we will show the concrete solution to both examples at the end of this paper, we

shall give an intuitive idea of our solution to the first example here. For two expressions

/na/rhs/item and /na/lhs/item in Qm which constructs the ordered tree T , there is

a fact that the items of the sequence generated by /na/rhs/item always precede ones

generated by /na/lhs/item in the ordered tree T for an arbitrary XML store. By adding

this information to these two expressions, for given (Qm; Q1), we can formulate the

correct XQuery expression (/na/rhs/item, /na/lhs/item) from this information, which is

captured as the context in our fusion.

In this paper, we propose a novel context-preserving XQuery fusion for when an

XML document is modelled as an ordered tree. Our idea is to lift dynamic operations

on XML store to the static level of expression, and it is based on the observation that

Dewey order encoding of the result of the evaluation of an expression corresponds well

to the structure of the expression. Dewey order encoding of XML nodes is a lossless

representation of a position in the document order and it has been used for index

structure of XML documents (Lu et al. 2005; Tatarinov et al. 2002). We use extended

Dewey codes as the context representation of XQuery expressions. We extend the Dewey

code to be suitable for the context of XQuery expressions, especially for ‘for’-expressions

and sequence expressions.

Our twofold main contributions can be summarized as follows. First, to keep track of

context, we carefully design the context representation (extended Dewey code and its order)

of XQuery expressions to reflect the properties of element constructions. This enables us

to statically emulate newly created XML fragments – created by element constructors – in
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the XML store. Second, we develop a context-preserving fusion for XQuery by partial

evaluation and prove the correctness of our fusion. Our fusion introduces an annotated

XQuery, which is an XQuery expression with the context as an annotation. This keeps

the context of the input expressions even when the element constructors are eliminated

during our fusion transformation.

The paper proceeds as follows. Section 2 reviews the XQuery semantics by using Dewey

code to represent nodes in XML fragments and introduces value-equivalent expressions

to show our fusion concisely. In Section 3, to design the context of XQuery expressions

by extending Dewey code and its order to suite the semantics of XQuery expressions,

we establish the correspondence between dynamic operations on XML store and static

property of XQuery expressions. Section 4 presents the algorithm of context-preserving

fusion using the extended Dewey code and its order. Also, the correctness of the algorithm

is shown. Section 5 describes one typical application, which is XML data integration, and

its experimental results. We discuss related work in Section 6 and conclude the paper in

Section 7.

2. XQuery semantics

To give our XQuery fusion concisely and show that it is semantics-preserving, we briefly

review the semantics of the core part of XQuery that is based on (Hidders et al. 2004).

Our target XQuery expressions, a subset of XQuery, are as follows:

e::=$v | (e, e, . . . , e) | () | e/α::τ | for $v in e return e

| let $v := e return e | <t>{e}</t>.

A query expression can be a variable $v, a sequence expression (e1, . . . , en) where each

subexpression ei is not a sequence expression†, an empty sequence (), a location step

expression e/α::τ where α is any of all 13 XPath axes, which can be child, self , parent

(..) and so on , τ is a name test which can be a tag name t or ∗ (an arbitrary tag),

a ‘for’-expression, a ‘let’-expression, or an element construction expression <t>{e}</t>.

Since we focus on newly constructed trees that consist of XML nodes, to simplify the

presentation, we use ‘empty-element tags’ like < c /> to represent constant c. Although

constants themselves are not nodes, they become a (text) node when they occur in an

element constructor. For example, a constant ‘b’ is not a node i.e. this constant does

not populate any ordered trees. On the other hand, consider <a>{‘b’}</a>. In this

expression, the constant ‘b’ is a text node because the constant occurs in the element

construction of <a>{(. . .)}</a>, i.e. this constant is a child node of the element node of

a. We could define the semantics of constants with such behaviour, but this would make

our presentation unnecessarily complex.

While location step expressions can be translated into ‘for’-expressions (World Wide Web

Consortium 2010b), our target includes location step expressions because of the following

three reasons: (1) path expressions have better chances to exploit efficient evaluation

† For simplifying our presentation, we impose this syntactic restriction. Since this restriction is not essential,

our algorithm can be extended straightforwardly to treat nested sequence expressions. Our prototype system

can deal with nested sequence expressions.
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algorithm through alternative semantics (Gottlob et al. 2005; Parys 2009) which would

have been impossible if these expressions were translated into theoretically equivalent

‘for’-expressions; (2) since the feature of our fusion is based on a partial evaluation of

location steps, if location steps are translated into ‘for’-expressions, we have to prepare a

specific rule for such ‘for’ -expressions translated from location steps in addition to one

for other ‘proper’ ‘for’-expressions; and (3) previous work on XQuery dealt with location

steps (Grust et al. 2004; Grust et al. 2010; Koch 2005).

2.1. Sequence: data model in XQuery

The data model of XQuery is sequences (World Wide Web Consortium 2010a). A sequence

is an ordered collection of zero or more items. One important characteristic of the data

model is that sequences are flat in the sense that a sequence never contains other sequences;

if sequences are combined, the result is always a flattened sequence. In addition, there

is no distinction between an item and a singleton sequence containing that item, i.e. we

often write (a) as a or vice versa.

We denote the empty sequence as (), non-empty sequences for example as (a, b, c), and

the concatenation of two sequences s1 and s2 as s1 ◦ s2. We use ∈ for sequence membership

in addition to set membership, (d|d ∈ D ∧ φ(d)) for a sequence of d obtained by selecting

them from D such that all items satisfy φ(d), and |s| for the length of a sequence s.

2.2. Dewey order encoding and XML store

An XML document is modelled as an ordered tree. Document order in an XML document

is a total order defined over the nodes in a tree, and this order is determined by a preorder

traversal of the tree. This order plays an important role in the semantics of XQuery,

especially in node creation and axis accesses. An XQuery expression is evaluated against

an XML store which contains XML fragments with their document order. This store

contains fragments that are created as intermediate results, in addition to the initial XML

documents (Hidders et al. 2004).

2.2.1. Dewey code and axis relation. Dewey order encoding of XML nodes is a lossless

representation of a position in the document order (Lu et al. 2005; Tatarinov et al. 2002).

Definition 2.1 (Dewey code). In Dewey order, each node is represented by a Dewey code

which is defined as follows:

d ::= n x

x ::= ε | . d.
Where n ∈ (R ∪ I) with R being a set of special codes and I being the set of integers.

A Dewey code is a path from a root using ‘.’ : (1) a root node is encoded by r ∈ R,

where R is a countably infinite set of special codes; (2) say that a node a is the nth child

of a node b in the document order; then the Dewey code of a, did(a), is did(b).n. The

fact that the relative order of nodes in distinct trees is implementation-dependent leads

to non-determinism in XQuery. Therefore, if two Dewey codes begin with different codes
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which are in R, it implies that the two nodes are in different ordered trees. The special

code represents the root of the ordered tree because we cannot define order among roots.

By using Dewey order encoding, one can easily compute axis relations in the document

order. For example, ancestor(d1, d2) holds when d1 has the form d2.n1.n2. · · · .nk . Therefore,

Dewey codes have been used as index structure for XML documents (Lu et al. 2005;

Tatarinov et al. 2002).

2.2.2. Simple XML store. Let T be a set of symbols for element names, and D be a

countably infinite set of Dewey codes on which a strict partial order < and the equality

= is defined.

Definition 2.2 (simple XML store). A simple XML store is a pair St = (D, ν), where (a)

D is a finite subset of D and (b) ν is a total function ν : D → T that maps a Dewey code

to its element name.

For instance, the store of the source S in Figure 1 is defined as St0 = (D0, ν0), where

D0 = {s, s.1, s.1.1, s.1.1.1, s.1.2, s.1.2.1, s.2, s.2.1, s.2.1.1, s.2.2, s.2.2.1} and ν0(s) = na, ν0(s.1) =

lhs, ν0(s.2) = rhs, ν0(s.1.1) = ν0(s.1.2) = ν0(s.2.1) = ν0(s.2.2) = item, ν0(s.1.1.1) = a,

ν0(s.1.2.1) = b, ν0(s.2.1.1) = c, ν0(s.2.2.1) = d. In what follows, we will refer to a simple

XML store as an XML store.

Definition 2.3 (disjoint union of stores). Two stores St1 = (D1, ν1) and St2 = (D2, ν2) are

said to be disjoint when D1 ∩ D2 = �. For two disjoint stores St1 and St2, the disjoint

union of the two stores, denoted as St1 ∪ St2, is defined as St1 ∪ St2 = (D1 ∪D2, ν
′) where

ν ′ : (D1 ∪ D2)→ T with ν ′(d1) = ν1(d1) when d1 ∈ D1 and ν ′(d2) = ν2(d2) when d2 ∈ D2 .

Definition 2.4 (value equivalence, ≡(St1 ,St2)). Given two stores St1, St2 and two nodes, d1

in St1 and d2 in St2, d1 and d2 are said to be value equal, denoted as d1 ≡(St1 ,St2) d2, if d1

and d2 refer to two isomorphic trees, i.e. there is a one-to-one function h : D1 → D2 with

D1 = {d|d ∈ DSt1
∧ ancestor-or-self (d, d1)} and D2 = {d|d ∈ DSt2

∧ ancestor-or-self (d, d2)},
such that for each d and d′ ∈ D1, it holds that (1) h(d) ∈ D2, (2) ν(d) = ν(h(d)), and (3)

d < d′ iff h(d) < h(d′). This definition can be extended to the value equivalence over two

sequences, straightforwardly.

2.3. Formal semantics

Figure 2 shows the semantics of our target XQuery using a set of inference rules based on

(Hidders et al. 2004). In these rules, a judgment of the form St; En 
 e⇒ (St ′, s) indicates

that the evaluation of expression e against the store St and environment En (mapping

variables to values) results in a (new) store St ′ and value s. The semantics of sequence

expressions, ‘let’-expressions and variables are straightforward. The semantics of a ‘for’-

expression (for $v in e1 return e2) is the concatenation of the results of e2 evaluated N

times for each item in the result of e1 but with v in the environment bound to the item in

question in the result of e1, where N is the length of the sequence of the result of e1. The

semantics of the element constructor (<t>{e}</t>) and location step (e/α :: τ) are worth

further attention because they are evaluated using the document order. The semantics of
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Fig. 2. Semantics of XQuery using the simple XML store.

<t>{e}</t> is as follows. A new store St2 that contains a new root node having t as

its name and having contents is created. The contents are the value-equivalent sequence

to the result of e. St2 is added to the input store, and the newly created root node is

returned. We use ‘→’ for logical implication. Note that an element constructor has a side

effect in a sense that it creates a new ordered tree. The semantics of e/α :: τ is as follows.

First, e is evaluated. Then, for each node di in its result, construct a sequence si such that

for each content d′i in si, d
′
i is contained in St0, and α-relation holds for di and d′i, and

the element name of d′i is τ. The results of these sequences are concatenated. Finally, this

sequence is sorted in the document order and duplicates are removed from it because an

axis access by ‘/’ requires sorting and duplicate elimination in the document order. This

sorting without duplicates is performed by using the function ddo (distinct-doc-order),

which is implemented easily when its domain is Dewey codes (Tatarinov et al. 2002).

While document order plays an important role in XQuery semantics, the serialized

result of a query expression is not associated with the document order which is in the

store used in the XQuery processing. For example, assuming identical bindings of the

externally defined variable $v, the serialized result of <t>{($v/c, $v/a)}</t>/c cannot be

distinguished from one of $v/c. This enables us to introduce value-equivalent expressions,

which will be used to prove the correctness of our fusion later.
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Definition 2.5 (value-equivalent expressions). Given a store St , an environment En and two

XQuery expressions e1 and e2, e1 and e2 are said to be value equivalent, if the following

conditions hold; St; En 
 e1 ⇒ (St1, s1), St; En 
 e2 ⇒ (St2, s2) and s1 ≡(St1 ,St2) s2.

2.4. The problem of context insensitiveness

As described in the formal semantics of XQuery, an element constructor has a side effect

on the document order of nodes: it constructs a new ordered tree. This side effect is a

barrier to query optimization based on two standard query rewriting techniques – fusion

and variable elimination – because these standard techniques are developed for side effect

free languages. These techniques cannot handle a location step expression being applied

to an element constructor to extract contents of the newly constructed ordered tree, since

the axis access used in the location step expression requires sorting in the document order

without duplicates. As will be seen in Section 5, such an expression that a location step

expression is applied to an element constructor is often used in data integration, which is

a typical application using XML documents and XQuery expressions.

An example of the problem of fusion based on eliminating unnecessary internal element

constructors is described in the introduction. Here, a simple example of the variable

elimination in XQuery is shown.

Example 2.1 (variable elimination). Consider the following expression,

let $v := <a/> return ($v, $v)/ self ::a.

This expression first constructs a new ‘a’ element with an empty content. The expression

in the return clause performs sorting without duplicates in the document order over two

occurrences of the variable $v. Since the two occurrences of the variable $v have the same

identity, the result of the evaluation of this expression is <a/>. On the other hand, when

variable elimination for $v is applied to this expression, we get (<a/>,<a/>)/ self ::a.

Now, since two ‘a’ elements have distinct identities, the result of this expression is

(<a/>,<a/>).

The problem solved in this paper is that both the existing fusion for eliminating internal

element constructors and standard variable elimination cannot convey their contexts but

just convey their values. The solution will be described in the next section.

Before moving to the next section, we demonstrate that this complicated but practical

semantics of XQuery may have a wrong rewriting rule. For example, Fegaras states in

(Fegaras 2010) that many XQuery optimizers use the following rule.

(<A>{e}</A>)/ child ::B = e/ self ::B.

However, this rule is not correct when the following expression is considered

let $v := <B/> return <A>{($v, $v)}</A>/ child ::B.

This expression first constructs a new ‘B’ element with an empty content. The expression

in the return clause constructs a new ‘A’ element containing two copies of the ‘B’ element

– that is, the element bound to the variable $v and the two elements contained in the ‘A’
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element have distinct identities. Therefore, the result of the evaluation of this expression

is (<B/>,<B/>). However, by applying the above rule, we get the following expression:

let $v := <B/> return ($v, $v)/ self ::B.

As described in Example 2.1, the result of the evaluation of this expression is <B/>.

3. Emulating XML stores with extended Dewey codes

Since element constructors have side effects, eliminating internal element constructors is

a known difficult problem (Brundage 2004). The problem of the existing fusion trans-

formation is that the naive elimination of element constructors during the transformation

does not preserve the context. To give a correct fusion transformation, we should be able

to emulate (keep track of) the context information (i.e. XML store) during the static

transformation when an element is constructed. Our idea is to lift dynamic operations on

XML store to the static level of expression, and it is based on the observation that Dewey

order encoding of the result of the evaluation of an expression corresponds well to the

structure of the expression.

3.1. XML store emulation on expression

First, we show an important property for element constructors in terms of Dewey code:

the Dewey order encoding of the result of an evaluation of an expression corresponds

to the structure of the expression. This enables us to associate the static transformation

world with the dynamic evaluation world by using Dewey code.

Given an XQuery expression e, its result s has a common shape according to the

structure of the expression. We denote this relation by e : s if there exist St ,En , St ′ such

that St; En 
 e⇒ (St ′, s).

Property 3.1 (Dewey code correspondence in element construction). For an element con-

struction, <t>{e}</t>, the semantics of element constructors implies that e is an

expression that is value equivalent to <t>{e}</t>/ child ::∗, and the following properties

hold from the XQuery semantics.

(i) If <t>{e}</t> : r then r ∈ R and r is not in the input store. Note that this r is

a single item, which cannot be distinguished from the singleton sequence, (r), in the

data model of XQuery as described in Section 2.

(ii) If <t>{e}</t> : r and (<t>{e}</t>/ child ::∗) : s then d ∈ s implies d = r.n for

n ∈ I .

(iii) If (<t>{(e1, . . . , eN)}</t>/ child ::∗) : (s1 ◦ . . . ◦ sN) then di ∈ si and dj ∈ sj for

1 � i < j � N imply di < dj .

(iv) If (<t>{(e1, . . . , eN)}</t>/ child ::∗) : s then there is a unique decomposition

(s1 ◦ . . . ◦ sN) of s such that for all i (1 � i � N), si is value equivalent to the result of

the expression of ei.

The above correspondence property hints that we should associate each expression with

a Dewey code, so that these codes can be used to keep track of context information during
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the fusion transformation. We will give the property of this code for XQuery expressions

in Property 3.2. Now we introduce annotated XQuery expressions.

Definition 3.1 (annotated XQuery expressions). For an XQuery expression e, annotated

XQuery expressions are defined as follows:

ed::=$vd | (ed, ed, . . . , ed)d | (ed/α::τ)d | (for $v in ed return ed)d

| (let $v := ed return ed)d | (<t>{ed}</t>)d.

Where d is a context information, to establish such association between expressions and

their context information based on Dewey codes.

For instance, for the element construction <t>{($v/c, $v/a)}</t>, we may give the

following Dewey order encoding to the expression:

(<t>{($v/c)r.1, ($v/a)r.2}</t>)r

where ed denotes that d is the Dewey order encoding of the expression e.

One difficulty, however, remains in associating Dewey codes to expressions to keep the

context information: how do we deal with the ‘for’or (‘let’) expressions in XQuery? We

have to extend Dewey code for this purpose.

3.2. Extended Dewey code

To be able to associate XQuery expressions with suitable context information, we propose

an extended Dewey code.

Definition 3.2 (extended Dewey code). In extended Dewey order encoding of XQuery

expressions, each expression is annotated with an extended Dewey code which is defined

as follows:

d ::= n x | ε | (d, d, . . . , d)
x ::= ε | . d | # d

where n ∈ (R∪I) with R being a set of special codes which are used for topmost element

constructors, and I being the set of integers.

The extended Dewey code has a hierarchical structure, the same as in XQuery expressions,

because it is an annotation for an XQuery expression. Here, the underlined parts are our

extension, and ε is used for a termination, so, every extended Dewey code ends with ε.

Intuitively, the form of this code is as follows. ε is annotated to an expression, which

does not occur inside an element constructor. For a sequence construction, the form of

sequence† is used. The delimiter ‘.’, which plays the same role as in the original Dewey

codes, is used to represent parent-child relationships.

The delimiter ‘#’, which is our extension, represents the association of a ‘return’ clause

with a ‘for’ or ‘let’ expression and is used to resolve sorting with duplicate elimination for

multiple ‘for’ or ‘let’ expressions that are derived from identical ‘for’ or ‘let’ expressions.

† This sequence is the same as the data model of XQuery. So, it is flattened, and singleton and its element

cannot be distinguished.
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Q3. <a>{for $u in e return ($u/c, $u/d)}</a>.

To show the idea behind the design of our delimiter ‘#’, let us consider the fusion

transformation for the expression (Q3/d,Q3/c)/ self :: ∗. For the expressions Q3/d and

Q3/c, we can get the value-equivalent expressions Q4 and Q5, respectively, from the

XQuery semantics.

Q4. for $u in e return $u/d.

Q5. for $u in e return $u/c.

Now consider the following expression Q6.

Q6. ((Q4), (Q5))/ self :: ∗.

As described in the previous section, since axis access by ‘/’ requires sorting and duplicate

elimination in document order, the correct transformation of Q6 should result in Q7, in

which two ‘for’ -expressions Q4 and Q5 are merged.

Q7. for $u in e return ($u/c, $u/d).

Here, we can capture the order of the two expressions in the ‘return’ expressions by using

‘#’. Thus, by encoding Q3 into

(<a>{(for $u in e return ($v/c, $v/d))r.1#(1,2)}</a>)r

and encoding Q4 and Q5 into

(for $u in e return $v/d)r.1#2 and (for $u in e return $v/c)r.1#1

we can apply the transformation to Q7 (see Section 4), thanks to sorting on subsequences

produced by the ‘for’-expressions.

Returning to our extend Dewey codes, we can introduce the context position of sorting

and duplicate elimination over d in a way similar to the original Dewey code (see

Appendix A for details). Therefore, we can use the functions dc sort and remove dup

for sorting and duplicate elimination, respectively. The difference from the sorting of the

original Dewey code is in merging two extended codes sharing the same prefix until they

reach #. For instance, sorting (r.1#2, r.1#1) results in r.1#(1, 2).

Now, extended Dewey order encoding of XQuery expressions has to have the following

property to exploit both of Property 3.1 and the above discussion.

Property 3.2 (extended Dewey order encodeing of element constructors). For an element

constructor <t>{e}</t>, the annotated element constructor is <t>{ed2}</t>d1 such that

d1 is a new Dewey code and the axis relation child(d2, d1) holds from Properties 3.1(i) and

(ii), respectively. Furthermore, the following properties hold when the content expression

is a sequence expression or a ‘for’-expression.

(i) When e is a sequence expression (e1, . . . , eN), the annotated expression is

(ed1

1 , . . . , edNN )(d1 ,...,dN )

such that for 1 � i < j � N, di < dj holds from Properties 3.1(iii) and (iv).
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(ii) When e is a ‘for’-expression for $v in eb return (e1, . . . , eN), the annotated expression

is

for $v in eb return (ed1

1 , . . . , edNN )r.1#(d1 ,...,dN )

such that for 1 � i < j � N, di < dj holds from the above discussion.

4. XQuery fusion

This section describes our algorithm for automatic fusion of XQuery expressions so that

unnecessary element constructions can be correctly eliminated. Basically, we will focus on

fusing the following subexpression,

e/α::τ

so that unnecessary element constructions in the query expression in e are eliminated

under the context of ‘selection’ by α::τ.

We add annotations of the extended Dewey codes to the XQuery expression. We

sometimes omit the annotation if it is clear from the context. To simplify our presentation,

we will assume that there is a global environment for storing all annotated expressions

during our fusion transformation, and a function

getExpGlobal (d )

that can be used to extract the set of the expressions whose codes are d from the global

environment.

4.1. Fusion transformation

Figure 3 summarizes our fusion transformation on XQuery expressions. The fusion

transformation is defined by a partial evaluation function peval:

peval :: e→ Θ→ ed

which accepts an XQuery expression and an environment Θ (mapping variables bound

by ‘let’ or ‘for’ to expressions):

Θ :: Var → (ed, let | for)

and produces an XQuery expression in which subexpressions are annotated by the

extended Dewey codes. As will be seen later, the annotation is used to keep track of

information of the order and the context among expressions, and it plays an important

role in our fusion transformation. When the fusion transformation is finished normally,

we can ignore all the annotations and get a normal XQuery expression as the final result.

Otherwise, we end fusion by returning the input expression.

The definition of peval in Figure 3 is straightforward. For a variable, if it is bound by

the outside ‘let’, we retrieve its corresponding expression from the environment; otherwise,

it must be a variable bound by the outside ‘for’, and we leave it as is. For a sequence

expression, we partially evaluate each element expression and group them into a new

sequence annotated with Dewey codes from the results of each element expression. Note
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Fig. 3. Fusion by partial evaluation.

that we use flatten to remove nested sequences (e.g. flatten((ed1

11, e
d2

12)
(d1 ,d2), ed3

3 )((d1 ,d2),d3) =

(ed1

11, e
d2

12, e
d3

3 )(d1 ,d2 ,d3)). For a location step expression e/α::τ, we perform fusion transforma-

tion to eliminate unnecessary element constructions in e after partially evaluating e. We

will discuss the definitions of the important fusion functions axis fusion, later. For a ‘let’-

expression, we first partially evaluate the expression e1, and then partially evaluate e2 with

an updated environment and return it as the result. We do similarly for a ‘for’-expression

except that we finally produce a new ‘for’-expression by gluing partially evaluated results

together. For an element construction, after partially evaluating its content expression

e into e′, we create a new Dewey code for annotating this element and propagate this

Dewey code information to all subexpressions in e′ (with the function dc assign) so that

we can access (recover) this element constructor when processing the subexpressions of e′.

It is this trick that helps to solve the problem of (Qm; Q2) in the introduction.

4.1.1. Dewey code propagation. Propagating the Dewey code of an element construction

to its subexpressions plays an important role in constructing our fusion rules, described

later, for correct fusion transformation.

Figure 4 defines a function dc assign e− d:

dc assign :: ed → d→ ed

which is to propagate the Dewey code d into an annotated expression e by assigning

proper new Dewey codes to e and its subexpressions. In what follows, we will explain

some of the important equations in this definition. Note that we write e− to denote that

the Dewey code of e is ‘do not care’.
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Fig. 4. Dewey code propagation.

The equation (dcpSeq) horizontally numbers sequence expressions. The function succ

is used to enforce numberings using a strictly greater value relative to previously processed

expressions (e.g. succ d.1 = d.2). (dcpEc) introduces a vertical structure to the numbering

by initiating dc assign for the subexpression e by adding ‘.1’ to its second parameter. The

equations that needs additional attention are (dcpStp) and (dcpFor). In (dcpStp), it may

seem unusual for dc assign not to recurse subexpression e. However, considering that the

path expression itself does not introduce an additional parent–child relationship and that

dc assign always handles expressions already partially evaluated, there is no additional

chance to simplify the path expression further by using the Dewey code allocated to the

subexpression. In particular, the characteristic equation (dcpFor), which introduces #

structure to the Dewey code, numbers the expression e at the return clause. Note that the

second parameter of the recursive call for e is reset to 1. d1 that reflects the horizontal

structure produced by the return clause is combined with the # sign to produce r#d1 as

the top level code allocated to the ‘for’-expression.

Lemma 4.1. From the definition of dc assign, which is invoked by peval with an element

constructors, given an XQuery expression e, the extended Dewey code assigned by

dc assign e− d satisfies Property 3.2.

Proof. We assume that d satisfies Property 3.2 for e when dc assign e d is invoked. For

an empty sequence, there has no Dewey codes correspondence. For a variable, from the

definition of peval this variable is bound in a ‘for’-clause and d satisfies these properties

from the assumption. For a step expression, it also satisfies these properties from the

assumption. For a sequence expression (e1, . . . , eN), for each i ∈ [1, N], ei has an extended

Dewey code succi−1 d as its context by (dcpSeq) and these codes satisfy Property 3.2(i).

For an element constructor <t>{e}</t>, dc assign e d.1 is invoked by (dcpEc) and

the assigned code satisfies Property 3.2. For a ‘for’-expression, the extended Dewey code

assigned by (dcpFor) satisfies Property 3.2(ii).

Definition 4.1 (correct context information). For a given annotated XQuery expression ed,

d is said to be correct context information when ed is a result of dc assign e− d.
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Fig. 5. Fusion rules for location step expressions.

4.1.2. Fusion rules. Our fusion transformation on e/α::τ is based on a function axis fusion.

The definition of axis fusion is given by fusion rules in Figure 5, where each fusion rule

corresponds to an axis type. The basic procedure is as follows:

1. extract (get) subexpressions from the global environment according to the axis α by

using get axis function;

2. select those that produce nodes whose name is equal to the tag name τ by using a

filter;

3. sort the remaining subexpressions according to their Dewey codes;

4. if the above sort step succeeds, remove the duplicated subexpressions and return its

sequence as the result; otherwise, end fusion with ⊥, which indicates the fusion has

failed. The reason why we use ⊥ in case dc sort fails is that when dc sort fails,

the result expression should be the initial expression, not ed because peval is called

recursively.

More concretely, let us consider the definition of axis fusion. We use get axis ed to

get a sequence of expressions that contribute to producing the axis relation in the

document order of the XML fragments that can be obtained by evaluating e, and use the

filter (equal to τ) function to keep those expressions, the result of which is a sequence of

node ni such that ν(ni) = τ, where filter p xs = (x | x← xs , p x). The resulting sequence

expression is sorted according to their Dewey codes by dc sort. This sorting may fail

since not all of the Dewey codes are comparable. Whether dc sort succeeds or not is

detected by using the predicate given in Definition A.3. If the sorting succeeds, we return

a sequence expression by removing all duplicated element subexpressions; otherwise, we

end fusion by returning the original expression e/α :: τ.

It is worth remarking that we could merge two algorithms, peval and dc assign, so

that the combined algorithm could handle the fusion in a lazy way, since both of the

algorithms have the same structure. However, developing this combined algorithm is in

our future work.

Our fusion transformation always terminates and is correct, as summarized by the

following theorem.

Lemma 4.2. For a ‘let’-expression let $v := e1 return e2, when e1 and e1′ are value-

equivalent expressions, then e2 and e2′ are value-equivalent expressions where e2′ is

constructed from e2 with replacing the occurrence of $v by e1′ (e2′ = e2[$v/e1′ ]).

Proof. This is trivial from the semantics of ‘let’-expressions.
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Theorem 4.1 (correctness of fusion). For an XQuery expression e, if peval e Θ = ed1 then

e and e1 are value-equivalent expressions.

Proof. It is sufficient to show the correctness when our fusion succeeds since when our

fusion fails, the result is the input expression. The proof uses structural induction on

the expressions. It is worth remarking that syntactical base case shows only an empty

sequence expression, however, the meaningful case is in an ‘empty-element tag’ which

represents a constant as described in Section 2.

Base case. For an empty sequence expression (), peval () Θ = ()().

Induction step. For a sequence expression (e1, . . . , eN), we assume that ei and ei′ are value-

equivalent expressions where peval ei Θ = edii′ for each i ∈ [1, N]. From the definition

of peval for sequence expression, (e1, . . . , eN) and (e1′ . . . , eN ′ ) are value-equivalent

expressions.

For a ‘let’-expression let $v := e1 return e2, we assume that e1 and e1′ are value-

equivalent expressions where peval e1 Θ = ed1

1′ with correct context information

d1. From Lemma 4.2, we can assume that e2 and e2′ are value-equivalent expressions

where peval e2 (Θ∪{$v �→ (e1′ , let)}) = ed2

2′ with correct context information d2. From

both of the semantics and peval for ‘let’-expression, let $v := e1 return e2 and e2′

are value-equivalent expressions.

For a ‘for’-expression for $v in e1 return e2, we assume that e1 and e1′ are value-

equivalent expressions where peval e1 Θ = ed1

1′ with correct context information d1.

Also, assume that e2 and e2′ are value-equivalent expressions where peval e2 (Θ ∪
{$v �→ (e1′ , for)}) = ed2

2′ with correct context information d2. From both of the semantics

and peval for ‘for’-expression, for $v in e1 return e2 and for $v in e1′ return e2′ are

value-equivalent expressions.

For a step expression e/α :: τ, we assume e and e1 are value-equivalent expressions

where peval e Θ = ed1, and d is a correct context information on e1. To show the

correctness for step expressions, we have to show ed1/α :: τ and ed
′

2 are value-equivalent

expressions with correct context information d and d′ where axis fusion ed1 α τ = ed
′

2 .

This correctness is implied by the definition of axis fusion and Lemma A.3 in

Appendix A together with the semantics of the location step expressions. Note that

since getExpGlobal (d ) used in axis fusion results in the expressions which is already

processed by our fusion algorithm, this does not interfere with the structural argument.

For an element constructor <t>{e}</t>, we assume e and e1 are value-equivalent

expressions when peval e Θ = ed
′

1 . From the semantics of element constructors,

<t>{e}</t> and <t>{e1}</t> are value-equivalent expressions where

peval <t>{e}</t> Θ = (<t>{ed1

1 }</t>)d. Moreover, d and d1 are a correct context

information by the Lemma 4.1.

For a variable $v, we assume the variable binding for $v. When the variable $v is

bound in a ‘for’-clause, peval results in $v, whereas when $v is bound in a ‘let’-clause,

peval eliminates the variable by replacing it with the expression, of which result binds

to the variable in the ‘let’-clause. In both cases, peval results in the value-equivalent

expressions.
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4.2. Examples

For (Qm; Q1) described in the introduction, our fusion function peval works as follows:

peval (Qm; Q1) {}
� {(peStp); (peLet); (peEc)}

let $t := < sa>{( <lhs>{/na/rhs/itemr.1.1}</lhs>r.1,

<rhs>{/na/lhs/itemr.2.1}</rhs>r.2)(r.1,r.2)}</sa>r

return let $v := ($t/rhs, $t/lhs) return $v/item

� {(peLet); (peSeq); (peStp); (peStp)}
let $v := ( <rhs>{/na/lhs/itemr.2.1}</rhs>r.2,

<lhs>{/na/rhs/itemr.1.1}</lhs>r.1)(r.2,r.1)

return $v/item

� {(peStp)}
remove dup (dc sort (/na/lhs/itemr.2.1

, /na/rhs/itemr.1.1))

→
(/na/rhs/itemr.1.1

, /na/lhs/itemr.2.1).

Similarly, for (Qm; Q2), our fusion function peval works as follows:

peval (Qm; Q2) {}
� {(peLet); (peSeq); (peStp); (peStp)}

let $t := < sa>{( <lhs>{/na/rhs/itemr.1.1}</lhs>r.1,

<rhs>{/na/lhs/itemr.2.1}</rhs>r.2)(r.1,r.2)}</sa>r

return let $v := $t/rhs/item return $v/..

� {(peLet); (peStp); (peStp); (peVr)}
/na/lhs/itemr.2.1

/..

� {(CPFusion)}
<rhs>{/na/lhs/itemr.2.1}</rhs>r.2.

Next, consider the following expression where the expression of the let-bound variable

itself is a non-element composed expression such as a ‘for’-expression.

let $u := for $v in /a/b return ($v/c, $v/d)

return($u/ self ::d, $u/ self ::c).

Our algorithm results in the same expression as this expression since dc sort fails for

both expressions $u/ self ::d and $u/ self ::c. This is because the ‘for’-expression binding

to $u has ε as its context information.

5. Application

Integrating data coming from different sources is a very important task. Since XML is

developed for data exchange format, an XML data integration system is one solution to

the task. In this section, we will show how our XQuery fusion technique is useful in XML

data integration systems and report our experimental results using synthetic queries and

XML documents.
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Fig. 6. An XML data integration system based on P2P approaches.

5.1. XML data integration

XML data integration systems offer an architecture for data sharing in which the data

is queried through peers’ schema (Tatarinov and Halevy 2004). Consider an XML data

integration based on P2P approaches shown in Figure 6, which is adapted from (Tatarinov

and Halevy 2004). In Figure 6, each rectangle shows a peer, which manages data under

its own schema and each arrow denoted by qi shows a schema mapping in XQuery. A

direction of each arrow shows a mapping direction. For example, the schema mapping q2

defines Roma as a query over DBLP.

<Roma>

< pubs>

{for $v in /DBLP/publication

return <paper>{($v/author, $v/title)}</paper>}
</pubs>

</Roma>

One can share data among multiple peers in the data integration setting. For example,

a query q to a peer Roma can get data not only stored in Roma but also stored in DBLP

by using q2. Note that the person who writes the query q knows only schema information

for Roma. She does not have to know all the schema information connected by schema

mappings. A schema mapping bridges a gap of schema differences. A schema mapping

in XQuery typically has element constructions, since it changes the schema information

from one to another by using element constructions.

In XML data integration systems, a query to a peer is reformulated the query over its

immediate neighbours by expanding the schema mapping. Such queries have redundant

internal element constructors because schema mappings has element constructors. In this

situation, the proposed technique based on the eliminating internal element constructors

without ignoring the order issues is useful.

5.2. Experimental results

While actual evaluation times are predictable, for example from (Michiels et al. 2008),

we have tested two kinds of queries Q8(n) and Q9(n) using two XQuery engines, Galax

https://doi.org/10.1017/S096012951300008X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951300008X


H. Kato, S. Hidaka, Z. Hu, K. Nakano and Y. Ishihara 934

Fig. 7. Schema mappings in Q8.

version 1.0.1† and Saxon-HE version 9.4.0.2‡ on 2.6GHz Intel Core2 Duo with 4GB RAM,

running MacOS 10.5.6. The reason why we have chosen Galax and Saxon-HE as XQuery

engines is that both engines closely track the definition of XQuery 1.0 as specified by

the W3C. Both queries are extreme cases for document order and they are synthetic for

XML data integration systems with n steps as schema mappings inspired by (Tatarinov

and Halevy 2004).

The query Q8(n), which is for a document ‘d1.xml’, is defined as follows:

let $r1 := <r1>{let $s := doc(‘d1.xml’)/s

return <a>{$s/b/b}</a>,<b>{$s/a/b}</b>}
</r1>

return

let $r2 := <r2>{<a>{$r1/b/b}</a>, <b>{$r1/a/b}</b>}</r2>

return

...

let $rn := <rn>{<a>{$r(n-1)/b/b}</a>, <b>{$r(n-1)/a/b}</b>}</rn>

return

let $v := ($rn/b,$rn/a)

return $v/b.

In the ‘d1.xml’, the root node s has three child nodes a, b and c shown as the left-most

tree in Figure 7. We prepared two documents, in which the number of b elements at level

3 under the a and b elements at level 2 (where the root is at level 1) is 100 (1000). In

Q8, each step of schema mapping swaps b elements at level 3 under a element with ones

under b element. This mapping is shown in Figure 7.

The query Q9(n), which is for a document ‘d2.xml’, is defined as follows:

† http://galax.sourceforge.net/, default optimization option turned on.
‡ http://saxon.sourceforge.net/, Java implementation.
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Fig. 8. Schema mappings in Q9.

let $r1 := <r1>{for $t1 in doc(‘d2.xml’)/s/t

return <t>{(<a>{$t1/b/b}</a>, <b>{$t1/a/b}</b>)}</t>}
</r1>

return

let $r2 := <r2>{for $t2 in $r1/t

return <t>{(<a>{$t2/b/b}</a>, <b>{$t2/a/b}</b>)}</t>}
</r2>

return

...

let $rn := <rn>{for $tn in $r(n-1)/t

return <t>{(<a>{$tn/b/b}</a>, <b>{$tn/a/b}</b>)}</t>}
</rn>

return

let $v := ($rn/t/b,$rn/t/a)

return $v/b.

For ‘for’-expressions, we prepared the two documents ‘d2.xml’ shown in the left tree in

Figure 8. In this document, the root node s has 10 (100) t elements, and each t element

has two elements a and b at level 3. Under both of the a and b elements, there are 10

(100) b elements at level 4. In Q9, each step of schema mapping swaps b elements at

level 4 under the a elements with ones under the b elements. This mapping is shown in

Figure 8.

Figures 9 and 10 show the execution times for naive queries(N), optimized queries(O)

and query rewriting costs plus optimized queries(R+O) for Q8 and Q9, respectively. Since

naive queries produce redundant intermediate results in proportional to the number of

steps, the execution times are increasing with respect to steps. Whereas, since optimized

queries rewritten by our prototype system always degenerate to queries to the extensional

DB only, the execution time remain constant. For an even number of steps, our prototype

system rewrites Q8(n) into the following optimized query:

(doc(‘d1.xml’)/s/a/b, doc(‘d1.xml’)/s/b/b, ()).

For an odd number of steps, our prototype system rewrites Q9(n) into the following

optimized query:

for $t1 in doc(‘d2.xml’)/s/t return ($t1/b/b, ($t1/a/b, ())).
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Fig. 9. Times for Q8 using Galax(left) and Saxon-HE(right).

Fig. 10. Times for Q9 using Galax(left) and Saxon-HE(right).

Both Figures 9 and 10 show that the rewriting costs are not neglectable when the

steps are increased. However, in the data integration settings, we can assume that schema

mappings do not change frequently because the schema on each peer does not change

frequently. This assumption implies that since the time for optimization can be done

statically at compile time, this time is not necessarily to be included. Most of the

rewriting cost comes from the global environment that is kept in memory. Since the

global environment is only used in solving reverse axis, it can be safely discarded when

input queries include forward axis only. This optimization will be incorporated in the next

version of our prototype system.

6. Related work

There are many studies on rewriting XQueries into other XQueries (Gueni et al. 2008;

Koch 2005; Page et al. 2005; Tatarinov and Halevy 2004). The study most related to

ours in the sense of eliminating redundant expressions is (Gueni et al. 2008). The authors

of (Gueni et al. 2008) proposed a rewriting optimization that replaces expressions which

return empty sequences with () by using an emptiness detection based on static analysis.

In contrast, our rewriting eliminates redundant element constructors as well.

Koch (Koch 2005) and Page et al. (Page et al. 2005) introduced some classes for

composite XQuery and proposed XQuery-to-XQuery transformations over the classes of

XQuery they defined. Their target queries do not contain newly constructed nodes. In the
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real world, however, practical expressions such as schema mapping always return newly

constructed elements.

Tatarinov et al. proposed an efficient query reformulation in data integration systems, in

which XML and XQuery are used for the data model and schema mapping, respectively

(Tatarinov and Halevy 2004). In this system, the composition of the element construction

is typical because the schema mapping that maps one element to another element involves

element construction. They treat the actual reformulation algorithm as a black box. Our

work attempts to open the box and exploit some of its properties.

Fusion has been extensively studied in the functional programming (FP) community (Chin

1992; Gill et al. 1993; Ohori and Sasano 2007; Wadler 1988). Referentially transparent

FP languages allow naive fusion rules (F), as we saw in the introduction, if the element

constructor behaves like the constructors in FP. However, since the element constructor

introduces a new node identity in each evaluation, thereby breaking the referential

transparency, it is not directly applicable. It would be interesting to promote the identity

as a first class object by using the technique described in (Ohori 1990), but our focus

here is to perform XQuery-to-XQuery transformations, and the node identity is not a first

class object† in XQuery.

7. Concluding remarks

We proposed a new rewriting technique for XQuery fusion to eliminate unnecessary

element constructions in the expressions while preserving the document order. The

prominent feature of our framework is its static emulation of the XML store and

assignment of extended Dewey codes to the expressions. The result is easy construction

of correct fusion transformations.

We implemented a prototype system in Objective Caml. It consists of about 4600 lines

of code. Currently it works stand-alone by reading XQuery expressions from standard

input and produces rewritten XQueries to standard outputs. The system is available at

http://www.pl.nii.ac.jp/fusion.

The proposed technique is also useful in two directions. One is in ‘unordered mode’ in

XQuery. Order of data is not important in many database applications. Our approach is

also useful in these cases because the ‘unordered mode’ still requires eliminating duplicates

on nodes. The other is in checking non-determinism on order of a result of an expression.

By using our approach it becomes possible to detect that the order of user’s intention

may differ from the order of the result of an expression.

Future work includes extending the framework to graph structures through the use

of ID/IDREF attributes, refining context information by using schema information,

developing context-preserving common subexpression elimination, and more practical

applications of the system for eliminating internal element constructions.

† While node identity is not ‘first class’ in XQuery, one can compare node identities explicitly with ‘is’ and

nodes can be assigned an ID reference.
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Appendix A. Sorting without Duplicates on Extended Dewey Code

In this appendix, we use the standard list representation for the extended Dewey code to

simplify our presentation. First, our extended Dewey code(xD) is redefined as follows:

ds ::= [] | d : ds

d ::= ε | n x where n ∈ (R ∪ I)

x ::= ε | .d | #ds .

To show sorting without duplicates on xD, we define ordering and equivalence relation

on xD.

We use ≺d and ≺x for ordering on d and x , respectively. We define partial order on

xD.

Definition A.1 (xD order). For ordering on d , n1 x1 ≺d n2 x2 if and only if one of the

following three conditions hold;

— n1, n2 ∈ R and n1 = n2, x1 ≺x x2.

— n1, n2 ∈ I and n1 < n2.

— n1, n2 ∈ I and n1 = n2, x1 ≺x x2.

For ordering on x ,

— . d1 ≺x . d2 if and only if d1 ≺d d2 holds.

— ε ≺x x1 if and only if x1 �= ε holds.

Lemma A.1 (transitivity of xD order). If d1 ≺d d2 and d2 ≺d d3 then d1 ≺d d3.

Proof. Structural induction on d is used.

We use ∼d and ∼x for equivalence relation on d and x , respectively. We define

equivalence relation on xD.

Definition A.2 (equvalence relation). For equivalence relation on d , n1 x1 ∼d n2 x2 if and

only if n1 = n2 and x1 ∼x x2.

For equivalence relation on x ,

— ε ∼x ε.

— . d1 ∼x . d2 if and only if d1 ∼d d2 holds.

— # ds1 ∼x # ds2 if and only if ds1 ◦ ds2 is sortable.

Definition A.3 (sortable). For given a list of xD ds1, ds1 is sortable if and only if one of

the following three conditions holds:

— ds1 = []

— ds1 = d1 : []

— ds1 = d2 : ds2 and ∀d′ ∈ ds2(d2 ≺d d′ ∨ d′ ≺d d2 ∨ d′ ∼d d2).
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Lemma A.2 (irreflexivity of ≺d ). ≺d is irreflexive from its definition.

Theorem A.1 (reflexive partial order of �). � is a reflexive partial order.

Surprisingly, both duplicate eliminating and merging of two xD codes can be defined

as the following one algorithm.

Definition A.4 (duplicate elimination and merging). Given two xD codes n1x1 and n2x2

where n1x1 ∼d n2x2, both duplicate eliminating and merging, n1x1 ⊕d n2x2 is defined by

the following inference rules:

(x1 ⊕x x2)→ x3

(n1x1 ⊕d n2x2)→ n1 x3

(ε⊕x ε)→ ε

(d1 ⊕d d2)→ d3

(.d1 ⊕x .d2)→ .d3

xDDO(ds1 ◦ ds2)→ ds3

(#ds1 ⊕x #ds2)→ #ds3

Definition A.5 (sorting without duplicates on xD, xDDO). For a given list of xD ds1 where

ds1 is sortable, sorting without duplicates on ds1 (xDDO ds1) is defined straightforwardly

by using � and ⊕d .

Lemma A.3. For a given sortable list of xD ds1, the result of the sorting without duplicate

on ds1 (xDDO ds1) is strictly ordered under � from its definition.
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