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Summary

The present study evaluated maternal and additive influences that contribute to phenotypic
variation in various growth traits in Munjal sheep. The targeted traits that pertained to
2278 records of 706 lambs were birth weight (BWT), weaning weight (WT3), 6-month body
weight (WT6), 12-month body weight (WT12), average daily gain (ADG1: 0–3months; ADG2:
3–6 months, ADG3: 6–12 months of age) and their corresponding Kleiber ratios designated as
KR1, KR2 and KR3. The direct heritability estimates for BWT, WT3, WT6, WT12, ADG1,
ADG2, ADG3, KR1, KR2 and KR3 under animal models were 0.20 ± 0.08, 0.28 ± 0.08, 0.17
± 0.07, 0.47 ± 0.09, 0.33 ± 0.08, 0.09 ± 0.06, 0.36 ± 0.10, 0.33 ± 0.08, 0.09 ± 0.06 and 0.32
± 0.10, respectively. The estimates of maternal genetic effects contributed significantly and were
8% and 7% for BWT and WT3 traits, respectively, which highlighted the considerable role of
maternal effects on early growth traits. Genetic and phenotypic correlations ranged frommod-
erate to high between weaning and post-weaning traits. It was concluded that early selection
that considered additive as well as maternal effects at weaning age may be delivered to the
desired genetic progress in Munjal sheep.

Introduction

Environmental influences on the mother have a significant effect on the offspring’s phenotypic
performance. Maternal effects include the influence of dam milk production, uterine feeding
and mothering abilities on her lamb that may be temporary or permanent (Tosh and Kemp,
1994; Saatci et al., 1999; Maniatis and Pollott, 2002; Gowane et al., 2010a; Bangar et al.,
2020; Magotra et al., 2021). Maternal permanent environmental effects explain the dam effect
for each lambing rather than the genetic influence. Additionally, neonatal lamb behaviours are
also important indicators for lamb survival and growth (Matheson et al., 2012). Lamb growth
rate is an expression of the adaptability and economic viability of the animal and can be con-
sidered as a selection criterion for superior germplasm. Therefore, a sequential selection pro-
cedure should be adopted for the improvement of growth rate in sheep. The investigation of
pre-weaning and post-weaning body weight additionally directs the breeders to choose the ideal
management practices to achieve the gain at optimum level (Van den Bergh, 1990; Kumar et al.,
2018).The existence of covariance components and genetic variability among different growth
traits are a guiding light for formulating appropriate selection strategies for the genetic improve-
ment of small ruminants.

Many researchers (Tosh and Kemp, 1994; Saatci et al., 1999; Maniatis and Pollott, 2002; Van
Wyk et al., 2009; Gowane et al., 2010a; Bangar et al., 2020) have indicated that maternal envi-
ronmental effects make substantial contributions to the offspring’s phenotypic performance.
Therefore, incorporation of maternal component in the analytical models will increase the accu-
racy of parameter estimates, while exclusion may lead to biased estimates (Saatci et al., 1999;
Prince et al., 2010; Singh et al., 2016; Gowane et al., 2010a, 2018; Bangar et al., 2020;
Magotra et al., 2021).

Munjal is a mutton-type non-descript sheep breed of Indian origin. The Munjal is a quite
massive sheep with a dark brown face (Figure 1). Wool obtained from this breed is very coarse
and hairy. Munjal sheep is economically a very efficient animal due to its early maturity, faster
growth rate and shorter lambing interval compared with Magra, Malpura and Muzaffarnagri
sheep breeds (Poonia, 2008; Yadav et al., 2011). There has been no published study on the esti-
mation of (co)variance components and genetic parameters for additive andmaternal effects for
growth traits, average daily gain and Kleiber ratio in Munjal sheep.

Therefore, the objective of the present investigation was to estimate the genetic parameters of
direct and maternal effects on the growth traits of Munjal sheep by fitting six animal models.
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Materials and methods

Data records

The data and pedigree information onMunjal sheep were collected
from the Sheep Breeding Farm, Department of Animal Genetics
and Breeding, LUVAS, Hisar (India), over the period from 2004
to 2019. This information included pedigree information (animal,
sire and dam number), birth information (date of birth and lamb’s
sex) and performance records [birth weight (BWT), weaning
weight (WT3), 6-months body weight (WT6) and 12-month body
weight (WT12)]. Average daily gain [0–3 months (ADG1), 3–6
months (ADG2) and 6–12 months (ADG3)] and Kleiber’s ratio
(KR1 = ADG1/WT30.75; KR2 = ADG2/WT60.75 and KR3 =
ADG3/WT120.75) were also calculated from primary data included
in the study.

The data structure, numbers of sires and dams, least squares
means, standard deviation (SD) and coefficient of variation for
each trait are summarized in Table 1. Data that were available
for analysis included 706 lamb records born from 48 sires and
199 dams for BWT, 678 lamb records born from 48 sires and
198 dams for WT3, 511 lamb records born from 46 sires
and 181 dams for WT6, 383 lamb records born from 45 sires
and 154 dams for WT12 were included in this study.

Statistical analysis

The general linear model that consisted of the fixed effects of
period of birth [two groups: (1) 2004–2011; and (2) 2012–2019],
sex of the lamb (two groups: male and female) and dam’s age at
lambing (three groups: less than 3 years; 3–5 years and more than
5 years) was used to estimate its significance on targeted traits.
Then, the following six univariate animal models were used under
restricted maximum likelihood method (AI-REML) using
WOMBAT software (Meyer, 2006):

Y ¼ Xβ þ Za�þ " (1)

Y ¼ Xβ þ Za�þ Zmmþ "withCovða;mÞ ¼ 0 (2)

Y ¼ Xβ þ Za�þ Zmmþ "withCovða;mÞ ¼ Aσam (3)

Y ¼ Xβ þ Za�þ Zccþ " (4)

Y ¼ Xβ þ Za�þ Zmmþ Zccþ "withCovða;mÞ ¼ 0 (5)

Y ¼ Xβ þ Za�þ Zmmþ Zccþ "withCovða;mÞ ¼ Aσam (6)

where Y is the vector of observations; β, a, m, c and ϵ are vectors of
fixed, direct additive genetic, maternal genetic, maternal perma-
nent environmental effects and residual effects, respectively; with
respective association matrices X, Za, Zm and Zc; A is the numer-
ator relationship matrix between animals; and σam is the covari-
ance between additive direct and maternal genetic effects. The
selection of the most appropriate animal model for a particular
trait was done using log-likelihood ratio. Furthermore, genetic,
phenotypic and residual correlation among targeted traits was
obtained under a bivariate model.

Results

Least squares analysis revealed significant (P< 0.05) association of
period of birth and sex of lamb with the traits under study except
for BWT6 and KR2 respectively. The least squares mean with stan-
dard error for BWT, BWT3, BWT6 and BWT12 in Munjal sheep
was 3.99 ± 0.03, 15.26 ± 0.10, 19.79 ± 0.11, and 25.34 ± 0.17 kg,
respectively. ADG1, ADG2, ADG3, KR1, KR2 and KR3 were
observed as 125.25 ± 0.87 g, 48.28 ± 0.94 g, 32.30 ± 0.76 g,
16.12 ± 0.06, 5.09 ± 0.09 and 2.80 ± 0.06, respectively. Age of
dam at lambing showed significant (P< 0.05) association with
all the traits except ADG1, ADG3 and their corresponding
Kleiber ratio (Table 1). Based on the best model, the estimates
of variance components and genetic parameters for various traits
under study are presented in Table 2. The respective log-L value
obtained after successful convergence for best model is also given
for each trait. The model including direct additive genetic and
maternal genetic effect (Model 2) without taking covariance
between them into account was the most appropriate model for
BWT andweaning weight, i.e.WT3.While for the remaining traits,
the addition of maternal genetic or environmental effects (Models
2–6) was non-significant. Therefore, Model 1 with direct additive
effects only was considered as most appropriate model for these
traits.

The genetic and phenotypic correlations among various growth
traits were estimated under a bivariate model and are given in
Table 3. The genetic correlation estimates of BWT were positive,
with ADG2 (0.23) and KR1 (0.39) only. While, they were negative
and ranged from −0.56 to−0.07 with remaining traits. The genetic
correlation of WT3 was high and positive with post-weaning
growth traits (0.86–0.98), growth rates (0.05–0.99) and Kleiber
ratios (0.80–0.97). Additionally, the phenotypic correlations of
WT3 with WT6, WT12, ADG1 and KR1 were moderate to high
(0.39–0.96).

Discussion

Our findings implied that the addition of maternal genetic effects
to a direct additive model led significantly to change in log-
likelihood values and provided a low-to-moderate estimate of
direct and maternal heritability to birth weight. Under the best

Figure 1. Photograph of a Munjal sheep.
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model, Model 2, the estimates of direct and maternal genetic var-
iances were 0.09 and 0.03 respectively, which indicated the signifi-
cant influence of maternal effects on BWT trait. The inclusion of
maternal effects in the model showed reduction in direct additive
variance as well as the estimate of direct heritability that was also
reported by Kushwaha et al. (2009).

The estimate of direct heritability for BWT was 0.20 ± 0.08,
which was in agreement with the estimate of Matika et al.
(2003) in Sabi (0.25), Abegaz et al. (2005) in Horro (0.20),
Eskandarinasab et al. (2010) in Afshari (0.23), Gowane et al.
(2010a) in Malpura (0.19), Jafaroghli et al. (2010) in Moghani
(0.25), Prince et al. (2010) in Avikalin (0.28), Prakash et al.
(2012) in Malpura (0.21) and Singh et al. (2016) in Marwari sheep
(0.28). Lower estimates than the current study were reported by
Bangar et al. (2020) in Harnali (0.10), Gowane et al. (2010b) in
Bharat Merino (0.05), Mohammadi et al. (2010) in Sanjabi
(0.14) and Rashidi et al. (2008) in Kermani sheep (0.04).

The maternal heritability for BWT in this study was 0.08 ± 0.04,
which was in accordance with findings of Baneh et al. (2010) in
Ghezel sheep (0.04), Mohammadi et al. (2013) in Shal (0.12)

and Singh et al. (2016) in Marwari sheep (0.09). However, it
was lower than Duguma et al. (2002) in Tyger-hoek Merino
(0.25), Rashidi et al. (2008) in Karmani sheep (0.24) and Bangar
et al. (2020) in Harnali sheep (0.16). The strong influence of mater-
nal genetic effect at birth weight indicated the potential of maternal
ability for lamb’s initial performance.

Weaning weight (WT3)

The direct andmaternal genetic variance for weaning weight (WT3)
under the best Model 2 was observed as 1.33 and 0.35, respectively.
This estimate was in accordance with estimates reported byDuguma
et al. (2002) in Tyger-hoek Merino, Baneh et al. (2010) in Ghezel,
Abbasi and Ghafouri-Kesbi (2011) in Makooei, Kamjoo et al.
(2014) in Iran-Black and Lalit et al. (2016) in Harnali sheep, but
was higher than reports of Ozcan et al. (2005) in Turkish
Merino, Mohammadi et al. (2013) in Shal and Boujenane et al.
(2015) in D’man sheep. That the role of maternal effects reduces
from birth to weaning and post-weaning was also reported previ-
ously by Mandal et al. (2006) and Kushwaha et al. (2009).

Table 1. Data structure for growth traits in Munjal sheep

Trait BWT WT3 WT6 WT12 ADG1 ADG2 ADG3 KR1 KR2 KR3

No. of records 706 678 511 383 678 511 383 678 511 383

No. of sires 48 48 46 45 48 46 45 48 46 45

No. of dams 199 198 181 154 198 181 154 198 181 154

Mean ± SE (kg) 3.99 ±
0.03

15.26 ±
0.10

19.79 ±
0.11

25.34 ±
0.17

125.25 ±
0.87

48.28 ±
0.94

32.30 ±
0.76

16.12 ±
0.06

5.09 ±
0.09

2.80 ±
0.06

SD (kg) 0.71 2.28 2.54 3.34 22.75 21.24 14.95 1.44 1.97 1.25

CV % 17.90 14.93 12.81 13.17 18.16 43.98 46.28 8.93 38.64 44.71

Period of birth ** ** NS ** ** ** ** * ** **

Sex of lamb * ** ** ** ** ** ** ** NS *

Dam’s age at
lambing

** ** * * NS * NS NS * NS

CV, coefficient of variation; SD, standard deviation; SE, standard error. *P< 0.05; **P< 0.01; NS: non-significant.

Table 2. Estimates of variance components and heritability for growth traits in Munjal sheep

Trait Model σa2 σm2 σe2 σp2 h2 m2 Log-L

BWT 2 0.09 0.03 0.31 0.42 0.20 ± 0.08 0.08 ± 0.04 −57.97

WT3 2 1.33 0.35 3.07 4.76 0.28 ± 0.08 0.07 ± 0.04 −844.01

WT6 1 1 – 4.76 5.76 0.17 ± 0.07 – −701.00

WT12 1 3.75 – 4.3 8.06 0.47 ± 0.09 – −571.12

ADG1 1 168.8 – 331.15 499.95 0.33 ± 0.08 – −2411.97

ADG2 1 38.32 – 347.64 385.968 0.09 ± 0.06 – −1768.88

ADG3 1 72.98 – 126.35 199.32 0.36 ± 0.10 – −1185.02

KR1 1 0.7 – 1.39 2.09 0.33 ± 0.08 – −570.51

KR2 1 0.31 – 2.96 3.27 0.09 ± 0.06 – −562.54

KR3 1 0.46 – 0.99 1.44 0.32 ± 0.10 – −257.18

σa2, σm2, σe2 and σp2 are additive genetic, maternal genetic, residual variance and phenotypic variance, respectively; h2and m2 are direct and maternal heritability respectively; and log-L is log-
likelihood.
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The direct heritability estimates for weaning weight from the
best model was 0.28 ± 0.08. This moderate estimate was in
accordance with estimates reported by Duguma et al. (2002)
in Merino (0.26), Bahreini Behzadi et al. (2007) in Kermani
(0.22), Eskandarinasab et al. (2010) in Afshari (0.27), Baneh
et al. (2010) in Ghezel (0.29), Prakash et al. (2012) in
Malpura (0.24) and Singh et al. (2016) in Marwari (0.27).
Lower estimates than found in the current study were obtained
by Gowane et al. (2010b) in Bharat Merino (0.04) and Jafaroghli
et al. (2010) in Moghani sheep (0.17). Higher estimates were
reported by El Fadili et al. (2000) in Moroccan Timahdit
(0.49), Abbasi and Ghafouri-Kesbi (2011) in Makooei,
Kamjoo et al. (2014) in Iran-Black, Lalit et al. (2016) and
Bangar et al. (2020) in Harnali sheep (0.38 and 0.45, respec-
tively). The maternal heritability for WWT in this study was
0.07 ± 0.04 and was within the range of published values by
Hanford et al. (2005) in Rambouillet (0.08), Ekiz et al. (2004)
and Ozcan et al. (2005) in Turkish Merino (0.03) and Mandal
et al. (2006) in Muzaffarnagri sheep. Whereas, Bahreini
Behzadi et al. (2007) in Kermani sheep (0.19) reported higher
estimates. Maternal effects are defined as the maternal genotype
or phenotype causal influence on the offspring’s phenotype.
Because the mother contributes a specific mRNA or protein
to the oocyte, maternal effects are common (Schier, 2007).
Therefore, maternal influences at the weaning stage must be
taken into consideration, along with direct effects in our
resource population to make effective selection strategies.

Post-weaning traits

The estimates of direct additive heritability were due to most
appropriate model for WT6 0.17 ± 0.07. This finding for WT6
was in agreement with results reported by Kushwaha et al.
(2009) in Chokla (0.16), Gowane et al. (2010a) in Malpura
(0.27), Mohammadi et al. (2011) in Zandi sheep (0.13) and
Mohammadi et al. (2013) in Shal sheep (0.16). These estimates
were lower than those accounted by Kamjoo et al. (2014) in
Iran-Black and Singh et al. (2016) in Marwari sheep (0.28 and
0.29) and Bangar et al. (2020) in Harnali sheep (0.32 and 0.23).
As WT6 was the existing selection criteria at the farm, our results
showed low levels of additive variation at this stage that may be less
effective for improving the performance of lambs. For the high
expected genetic gain, one must choose a trait with at least mod-
erate range additive variation, which was the weaning stage under
the present study. The selection criteria can be switched depending
upon additive variation among the traits. However, optimization of
variability and selection criteria over the years is of utmost impor-
tance for setting efficient breeding programmes.

For the WT12 trait, surprisingly, we observed moderate level
heritability (0.47 ± 0.09) under Model 1 that was contrary to
and higher than the reports by Bahreini Behzadi et al. (2007) in
Kermani (0.10 and 0.14), Gowane et al. (2010b) in Bharat
Merino (0.00 and 0.09) and Mohammadi et al. (2011) in Zandi
sheep (0.13). However, estimates on a similar line for this trait have
been reported in previous publications such as Ozcan et al. (2005)
in Turkish Merino (0.25), Kushwaha et al. (2009) in Chokla (0.23),

Table 3. Genetic (above diagonal), phenotypic (below diagonal) and residual (in parenthesis) correlations among various growth traits in Munjal sheep

Traits BWT WT3 WT6 WT12 ADG1 ADG2 ADG3 KR1 KR2 KR3

BWT −0.36 ±
0.75

−0.18 ±
0.74

−0.17 ±
0.28

−0.47 ±
0.50

0.23 ± 0.82 −0.13 ±
0.28

−0.56 ±
0.36

0.39 ± 0.9 −0.07
± 0.26

WT3 0.32 ± 0.05
(0.39 ±
0.06)

0.86 ± 0.11 0.98 ±
0.11

0.99 ± 0.04 0.05 ± 0.38 0.89 ± 0.21 0.97 ± 0.08 −0.26 ±
0.23

0.80 ±
0.24

WT6 0.21 ± 0.05
(0.25 ±
0.06)

0.70 ± 0.03
(0.67 ±
0.05)

0.85 ±
0.08

0.84 ± 0.11 0.56 ± 0.19 0.59 ± 0.19 0.81 ± 0.12 0.28 ± 0.23 0.45 ±
0.21

WT12 0.02 ± 0.05
(0.07 ± 0.1)

0.39 ± 0.04
(0.11 ±
0.10)

0.56 ± 0.04
(0.48 ±
0.08)

0.95 ± 0.09 0.08 ± 0.13 0.92 ± 0.06 0.91 ± 0.09 −0.21 ±
0.18

0.85 ±
0.08

ADG1 0.02 ± 0.05
(0.07 ±
0.07)

0.96 ± 0.01
(0.95 ±
0.02)

0.68 ± 0.03
(0.64 ±
0.05)

0.41 ±
0.04 (0.09
± 0.1)

0.02 ± 0.53 0.86 ± 0.18 0.99 ± 0.04 −0.29 ±
0.21

0.77 ±
0.21

ADG2 −0.08 ±
0.05 (−0.1 ±

0.06)

−0.19 ±
0.05 (−0.23
± 0.07)

0.57 ± 0.04
(0.57 ±
0.05)

0.33 ±
0.05 (0.52
± 0.09)

−0.17 ±
0.05 (−0.21
± 0.07)

−0.29 ±
0.20

0.01 ± 1.26 0.95 ± 0.07 −0.42
± 0.22

ADG3 −0.18 ±
0.05 (−0.21
± 0.07)

−0.23 ±
0.05 (−0.62
± 0.08)

−0.32 ±
0.05 (−0.63
± 0.07)

0.61 ±
0.04 (0.37
± 0.09)

−0.19 ±
0.05 (−0.59
± 0.08)

−0.17 ±
0.05 (−0.15
± 0.08)

0.81 ± 0.16 −0.53 ±
0.22

0.99 ±
0.02

KR1 −0.32 ±
0.05 (−0.32
± 0.06)

0.79 ± 0.03
(0.74 ±
0.04)

0.56 ± 0.04
(0.49 ±
0.06)

0.38 ±
0.04 (0.05
± 0.1)

0.93 ± 0.01
(0.91 ±
0.02)

−0.14 ±
0.05 (−0.18
± 0.07)

−0.1 ± 0.05
(−0.47 ±
0.09)

−0.31 ±
0.21

0.72 ±
0.18

KR2 −0.14 ±
0.05 (−0.17
± 0.06)

−0.41 ±
0.04 (−0.44
± 0.06)

0.35 ± 0.05
(0.37 ±
0.06)

0.2 ± 0.05
(0.42 ±
0.1)

−0.39 ±
0.04 (−0.42
± 0.06)

0.96 ± 0.01
(0.97 ±
0.01)

−0.11 ±
0.05 (−0.02
± 0.08)

−0.33 ±
0.05 (−0.35
± 0.07)

−0.63
± 0.25

KR3 −0.20 ±
0.05 (−0.23
± 0.07)

−0.34 ±
0.05 (−0.67
± 0.07)

−0.46 ±
0.04 (−0.72
± 0.06)

0.46 ±
0.04 (0.23
± 0.1)

−0.3 ± 0.05
(−0.64 ±
0.07)

−0.24 ±
0.05 (−0.21
± 0.07)

0.97 ± 0.01
(0.97 ±
0.02)

−0.20 ±
0.05 (−0.51
± 0.08)

−0.14 ±
0.05 (−0.06
± 0.07)
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Kamjoo et al. (2014) in Iran-Black, Singh et al. (2016) in Marwari
sheep (0.29) and Bangar et al. (2020) in Harnali sheep (0.23). This
high heritability estimate in our study might be due to the lesser
dataset.

Average daily gain (ADG) and Kleiber ratio (KR)

The estimates of direct heritability for ADG1, ADG2, ADG3, KR1,
KR2 and KR3 resulting from the best model were 0.33 ± 0.08, 0.09
± 0.06, 0.36 ± 0.10, 0.33 ± 0.08, 0.09 ± 0.06 and 0.32 ± 0.10, respec-
tively. The estimates of direct additive heritability due to Model 1
for ADG1, ADG2, KR1 and KR2 were in conformity with those
reported by Bangar et al. (2020) in Harnali sheep. Lower estimates
than in the present study were reported by Eskandarinasab et al.
(2010) in Afshari, Ghafouri-Kesbi et al. (2011) in Zandi,
Prakash et al. (2012) in Malpura, Kesbi et al. (2008) in
Mehraban, Mandal et al. (2015) in Muzaffarnagari, Jafari and
Razzagzadeh (2016) in Makuie and Kumar et al. (2018) in
Nellore sheep. However, higher estimates than in the present study
were reported by Illa et al. (2019) in Nellore sheep.

As these ADG and KR traits are generated from the growth
traits under this study, moderate estimates of additive variation
for these traits were similar to those of pre-weaning growth traits.
These generated traits can be combined with weaning weight, i.e.
the moderately heritable trait under this study to set stringent
selection plan accounting growth rates and feed conversion
efficiency.

Correlation estimates

For the estimated genetic correlation of BWT with remaining
traits, the present findings were in accordance with estimates
reported by Kamjoo et al. (2014) in Iran-Black sheep. However,
these were higher than the findings reported by Kesbi et al.
(2008) in Mehraban and Gowane et al. (2010b) in Bharat
Merino sheep. The high and positive genetic correlation of WT3
with post-studied traits was in accordance with reports by Swain
et al. (2004) in Bharat Merino and by Bangar et al. (2018) in
Deccani sheep. This indicated a strong linear relationship between
weaning weight and other traits and also suggested that the selec-
tion for one trait can improve other traits. The genetic correlations
between WT6 and other traits were also positive and ranged from
0.28 to 0.85 and were in accordance with reports by Kamjoo et al.
(2014) in Iran-Black and Bangar et al. (2018) in Deccani and Kesbi
et al. (2008) in Mehraban sheep. The genetic correlations of ADG1
were low to highly positive (0.02 to 0.99) with all traits except for
BWT (−0.47) and KR2 (−0.24). The positive genetic associations
of ADG1 and KR1 with BWT, WT3, WT6, WT9 and WT12 were
also reported by Mohammadi et al. (2013) in Shal sheep. ADG2
also provided positive genetic correlation with all traits except
ADG3 and KR3.

The phenotypic correlations of BWTwith other traits were very
low and negative for all traits except WT3 (0.32) and WT6 (0.21),
which were lower than the report by Singh et al. (2016) onMarwari
sheep. These low estimates may be due to improper care of new-
born lambs in the initial days. The phenotypic correlations ofWT3
with WT6, WT12, ADG1 and KR1 were moderate to high (0.39 to
0.96), which was also reported by Mohammadi et al. (2013) in Shal
sheep. However, WT3 had a negative phenotypic correlation with
ADG2, ADG3, KR2 and KR3 due to compensatory growth effects,
whereas, all average daily gains, i.e. ADG1, ADG2 and ADG3 were
positively correlated with their corresponding KRs, i.e. KR1, KR2
and KR3. Phenotypic correlation was found to be negative among

all KRs. Similar findings were reported by Mandal et al. (2015) in
Muzaffarnagari sheep.

In conclusion, the moderate level of additive genetic variability
at weaning weight estimated under alternate animal modelling
indicated the scope for genetic improvement through early selec-
tion at weaning weight. In addition to this, maternal effects were
found to be contribute significantly to variation at early growth
traits. It is worth to mention here that the genetic relationship
of weaning trait was also moderately positive with other traits.
Therefore, it is suggested that the optimization of maternal effects
along with direct effects should be done under stringent breeding
plans to achieve the desirable performance of offspring in their
lifetime.
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