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Large-eddy simulations of a round jet in
crossflow
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(Received 22 September 1997 and in revised form 4 August 1998)

This paper reports on a series of large-eddy simulations of a round jet issuing normally
into a crossflow. Simulations were performed at two jet-to-crossflow velocity ratios,
2.0 and 3.3, and two Reynolds numbers, 1050 and 2100, based on crossflow velocity
and jet diameter. Mean and turbulent statistics computed from the simulations
match experimental measurements reasonably well. Large-scale coherent structures
observed in experimental flow visualizations are reproduced by the simulations, and
the mechanisms by which these structures form are described. The effects of coherent
structures upon the evolution of mean velocities, resolved Reynolds stresses, and
turbulent kinetic energy along the centreplane are discussed. In this paper, the
ubiquitous far-field counter-rotating vortex pair is shown to originate from a pair of
quasi-steady ‘hanging’ vortices. These vortices form in the skewed mixing layer that
develops between jet and crossflow fluid on the lateral edges of the jet. Axial flow
through the hanging vortex transports vortical fluid from the near-wall boundary
layer of the incoming pipe flow to the back side of the jet. There, the hanging vortex
encounters an adverse pressure gradient and breaks down. As this breakdown occurs,
the vortex diameter expands dramatically, and a weak counter-rotating vortex pair is
formed that is aligned with the jet trajectory.

1. Introduction
The jet in crossflow (JICF) is a highly complex turbulent flow, with applications

in a vast array of engineering problems. The basic case of a non-buoyant turbulent
jet issuing normally into a flat plate boundary layer provides an excellent model
for applications ranging from understanding pollutant dispersion from smokestacks
to designing V/STOL airplanes. Experimental and numerical investigations of the
flow physics of the jet in crossflow have been quite plentiful, and we can only cite
a small selection of the literature here. For readers who would like more coverage,
Margason (1993) conducts a more thorough review of jet in crossflow research.

Early experimental work, such as performed by Pratte & Baines (1967) centred
around measuring the jet trajectory for different combinations of flow parameters.
Later research began focusing on collecting mean velocity data and turbulence statis-
tics. Ramsey & Goldstein (1970) and Crabb, Durao & Whitelaw (1981) were some
of the first to use hot wires and laser-Doppler anemometry to measure mean and
fluctuating velocity magnitudes in the jet. More thorough measurements were later
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72 L. L. Yuan, R. L. Street and J. H. Ferziger

taken by Andreopoulos & Rodi (1984), who used a triple wire probe to simultane-
ously measure all three components of velocity. Sherif & Pletcher (1989) performed
similar measurements, but used hot films in a water tunnel, so they were able to use
significantly lower Reynolds numbers.

As with many other turbulent flows, coherent structures dominate the behaviour
of the JICF, and interpreting turbulent statistics requires some understanding of the
evolution of these structures. The most important of these features is arguably the
counter-rotating vortex pair (CVP), which is often observed in the farfield aligned
with the trajectory of the jet. This flow structure has been documented repeatedly
in a variety of experiments, and its presence seems to contribute to many of the
distinctive characteristics of the jet. Its origins, however, are still the subject of
much debate. Andreopoulos (1985), Sykes, Lewellen & Parker (1986), Coehlo &
Hunt (1989), and many others have proposed mechanisms by which the CVP is
generated. All of the authors seem to agree that the original source of the vorticity
is the jet shear layer, but the means by which this vorticity realigns to produce
the CVP is still unclear. In visualizing the generation of the vortex pair from the
azimuthally-oriented vorticity in the jet shear layer, most researchers model the jet
as a series of vortex rings. Vorticity on the lateral edges of each vortex ring is
then correctly oriented to create a CVP. Mechanisms proposed by each author differ,
however, when explaining how consecutive vortex rings coalesce into two line vortices.
Andreopoulos (1985) hypothesises that the downstream edge of each vortex ring is
compressed by the mean strain, which eliminates the spanwise vorticity and leaves
the CVP. Sykes et al. (1986) propose a mechanism by which the upstream edge of
one vortex ring is cancelled through an interaction with the downstream edge of the
following ring. Coehlo & Hunt (1989) suggest that the reorganization of jet shear
layer vorticity caused by entrained crossflow fluid initiates the development of the
CVP. To date, though, no definitive mechanism for the formation of the CVP has
achieved widespread acceptance.

Recent advances in experimental flow visualization techniques have provided the
means for researchers to probe the flow and identify other large-scale features. Fric
& Roshko (1994) use smoke illuminated by a laser sheet to examine the vortical
structure in the wake of the jet. They find vertically oriented vortices which connect
the jet body with the wall boundary layer. Their studies reveal that these vortices
arise from separation events of the wall boundary layer as it sweeps around the edge
of the jet. Kelso & Smits (1995) use a hydrogen bubble technique to examine the
horseshoe vortices which appear upstream of the jet exit. These vortices form when
the wall boundary layer encounters an adverse pressure gradient at the front of the
jet and separates. They find a connection between the oscillations in the horseshoe
vortices and oscillations in the wake behind the jet. Haven (1996) performs extensive
flow visualization and velocity measurements above the jet exit. She proposes that
lateral edge vorticity in the incoming pipe flow is tilted by a gradients in the vertical
velocity profile. The tilted vorticity then rolls up into streamwise vortices that form
the CVP. Kelso, Lim & Perry (1996) employ dye tracers in a water tunnel and flying
hot wires in a wind tunnel to shed further light upon the nature of the jet structure.
They postulate that the initial vortical roll-up of the jet shear layer initiates the
downstream development of the CVP through a vortex breakdown mechanism.

Numerical simulations can provide a useful source of new data for turbulent flows,
as simulations allow examination of quantities which are difficult to measure accu-
rately in experiments. Up until very recently, the only feasible means of numerically
simulating this flow has been through solving the Reynolds-averaged Navier–Stokes
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Large-eddy simulations of a round jet in crossflow 73

equations. Sykes et al. (1986) solved them using a version of the Mellor Yamada
2.5 turbulence model. They used a very limited number of points and did not re-
solve the flow near the bottom wall, which limits the value of their results. Claus
& Vanka (1992) used a simple k–ε turbulence model with many more points and
still had trouble reproducing mean experimental results. They concluded from their
study that Reynolds-averaged Navier–Stokes models developed for use with simple
boundary layer flows were not accurate enough for the complexities of the jet in
crossflow. Kim & Benson (1992) attempted to improve on the turbulence model
by introducing turbulent time scales which vary in the flow. They also employed a
numerical method which allowed them to simulate the flow beneath the flat plate,
greatly improving the inflow boundary condition for the jet. Their results reproduced
mean flow statistics reasonably well, but severely underpredicted turbulent kinetic
energy. Demuren (1993) modelled the full Reynolds stress transport equations in his
simulations, but still failed to accurately reproduce mean velocities and overpredicted
turbulent kinetic energy.

The advent of faster computers with larger core memories has allowed researchers
to contemplate time-accurate simulations of the flow. Rudman (1994) performed a
simulation of the JICF that resolved the temporal evolution of the flow. However,
he did not resolve all scales of motion and did not use a subgrid-scale model, which
affected the quantitative accuracy of his results. He did generate qualitative temporal
results which shed some light into the evolution of large-scale structures in the flow.
Jones & Wille (1996) performed a large-eddy simulation using a dynamic turbulence
model. However, they used approximate boundary conditions at the wall rather than
resolving the turbulent wall boundary layer, which introduced inaccuracies in their
computed results that are difficult to evaluate.

While recent experiments have shed much new light upon the effects of large-scale
structures in the JICF, many questions remain unanswered. Numerical simulations
can provide more complete information about the velocity field, but most simulations
to date have been unable to accurately reproduce the flow. In this paper we report on
large-eddy simulations that we have performed of the JICF in which we have achieved
quantitative agreement with experimental measurements. The main focus of this paper
is to examine the development of large-scale features in the flow and to understand
how these features affect turbulent statistics. We will discuss other characteristics of
the flow, such as scalar transport, entrainment, and the jet trajectory, in subsequent
papers.

The rest of this paper is organized as follows. We discuss the equations which
govern the behaviour of this flow and the numerical method we use to solve these
equations in §2. In §3 we present the computational domain used to represent the
flow and discuss the boundary conditions which have been applied. We then compare
simulation results with experimental measurements in §4 and discuss reasons for
the observed discrepancies. Section 5 is devoted to examining the coherent vortical
structures observed in the flow and comparing them to experimental observations.
We present turbulent statistics in §6 and draw final conclusions in §7.

2. Governing equations and numerical method
The governing equations are the grid-filtered, incompressible Navier–Stokes equa-

tions:

∂uk

∂xk
= 0, (2.1a)
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∂ui

∂t
+

∂

∂xj
(ujui) = − ∂p

∂xi
+

1

ReD

∂2ui

∂x2
j

− ∂

∂xj
τij , (2.1b)

where summation over the three coordinate directions is implied in terms with
repeated indices, and a line over a variable indicates a grid-filtered quantity; ui are
the Cartesian velocity components non-dimensionalized by the crossflow velocity U∞,
and p is the pressure divided by the density and non-dimensionalized by U2∞. The
spatial coordinates have all been non-dimensionalized by the initial jet diameter, D.
Thus, the appropriate Reynolds number for this flow is defined as ReD = U∞D/ν,
where ν, the kinematic viscosity of the fluid, is assumed to be constant over the flow
conditions of the simulations.

The effects of velocities not resolved by the computational grid are included by
means of a subgrid-scale stress, which is defined as

τij = uiuj − uiuj; (2.2)

τij is modelled in these simulations using the dynamic subgrid-scale model described
in Zang, Street & Koseff (1993), in which the model coefficient is determined locally
from the velocity field which has been filtered on two different levels. This model has
been shown to be effective in transitionally turbulent flows and to have the capacity
to predict the backscatter of energy from the subgrid scales to the resolved flow. The
model is also stable with only local averaging of the model coefficient. Thus, it is
ideally suited to this flow, which has no homogeneous directions and contains both
laminar and turbulent regions.

The governing equations are transformed into a generalized coordinate system and
discretized using a control volume formulation. The fractional step, non-staggered
solution technique of Zang, Street & Koseff (1994) is then used to solve the equations.
This technique uses two sets of variables, defining Cartesian velocities and pressures
at cell centres, and contravariant volume fluxes at cell faces. This ‘co-located’ variable
layout combines the low metric storage requirements of a non-staggered grid layout
with the pressure convergence qualities of a staggered grid layout. The solution is
advanced in time using a semi-implicit scheme that is formally second-order accurate.
All spatial discretizations are also second-order accurate.

The code has been validated extensively against standard test cases, reproducing
both analytical solutions to the Navier–Stokes equations and experimentally measured
flows fields (see Zang et al. 1994). This code has been used to simulate a variety of
laboratory-scale flows ranging from free surface turbulent channel flows to upwelling
flows, some of which have been documented in Salvetti et al. (1997) and Zang &
Street (1995 a). Formal grid resolution studies were conducted in these simpler flows,
and in general, these studies found that while some minor quantitative changes occur
as the grids are refined, the code reproduces the same qualitative features as long as
the large-scale structures are sufficiently resolved. Because the simulations run for this
study require significant amounts of computer time, formal grid resolution studies are
impractical. Instead, we have followed the guidance provided by previous simulations
in selecting the number and spacing of grid points and in resolving key features, such
as boundary and shear layers. Then, based on the previous grid resolution studies
using this code, it follows that qualitative features are realistically reproduced by the
simulations, and that quantitative results are reasonable.

The physical geometry of the JICF problem consists of a circular hole extending
a short distance below a flat plate. Forcing a single grid to conform to both the
plate and the hole would be extremely difficult, so we divide the computational

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

33
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098003346


Large-eddy simulations of a round jet in crossflow 75

Lz

Ly

Lx

x3

x2

x1

U∞; T∞

D
Ujet; Tjet

Figure 1. Flow configuration schematic (dimensional).

domain into several subdomains, using cylindrically shaped grids near the round
hole and rectangular grids in the main domain. The algorithms used in this domain
decomposition are based on the techniques of Zang & Street (1995 b). In the current
set of simulations, we use a total of thirteen grids as described in Yuan (1997) (see
also Yuan & Street 1996), which allows us to efficiently resolve the circular boundary
condition of the jet exit and the flow through the main channel.

3. Flow configuration
The flow configuration we use in our simulations is that of an idealized jet in

crossflow (JICF). The jet begins as a turbulent pipe flow which then issues into a
flat-plate boundary layer through an orifice which is flush with the plane of the
flat plate (figure 1). The coordinate system we use is also depicted in figure 1, with
the origin located at plate level and in the centre of the orifice. Here, x1 represents
distance in the streamwise direction, x2 the spanwise direction, and x3 the vertical. In
this paper, the coordinate system (x, y, z), which corresponds directly with (x1, x2, x3),
will also be used. In this alternative coordinate system, (u, v, w) represent velocities in
each of the three directions.

The dimensions of the main section vary slightly depending upon the jet-to-
crossflow velocity ratio, R. For the higher R results presented in this paper, the size
of the domain is 12.7D in the streamwise direction, 8.0D in the spanwise, and 12.0D
in the vertical. For the lower R cases, the jet penetrates less deeply into the crossflow,
so the vertical extent of the domain can be reduced. The computational domain is
therefore 13.7D × 8.0D × 9.0D. In all cases, the centre of the jet is 2.7D downstream
of the crossflow inlet plane.

Domain decomposition provides a convenient technique for placing fine grids in
optimal locations. A total of 1.34 × 106 control volumes is used to discretize the
domain, of which approximately 45% are placed directly downstream of the jet exit.
Individual grids are also refined as they approach solid surfaces, so the first control
volume next to the jet exit has dimensions of ∆x = 0.004D and ∆z = 0.006D. If we
scale these dimensions by the shear velocity of the incoming turbulent pipe flow, we
find ∆x+ = 1.4 and ∆z+ = 2.2. This fine resolution is consistent with the limiting
behaviour of the subgrid-scale model, ensuring that virtually all scales of the fluid
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motion are resolved and that the subgrid-scale contributions to the turbulent stresses
are negligible near solid surfaces.

The flow in the main section is driven by fixing the inflow velocity profile as a
laminar boundary layer profile, with an initial boundary layer height of 0.5D and
free-stream velocity of U∞, matching the experimental conditions listed by Sherif &
Pletcher (1989). On the lateral and top surfaces, free-slip boundary conditions are
prescribed, while on the bottom, a no-slip boundary condition is enforced. The inlet
plane, lateral walls, and upper wall were all placed at distances that were judged to be
sufficient to prevent the imposed boundary conditions from artificially constraining
the solution. Subsequent inspection of velocity profiles between these boundaries and
the region of interest confirmed the initial assumption, as the effects of the jet do not
appear in the velocity profiles until well into the computational domain.

We have evaluated a variety of possible outflow conditions, including recently
proposed schemes by Jin & Braza (1993) and Johansson (1993). However, we have
found that the outflow condition which best combines simplicity of implementation
with good performance is simply a zero gradient condition for all flow variables. The
more complex boundary conditions added computational cost and did not appreciably
improve results.

The incoming pipe velocity profile is prescribed in the pipe a distance of 1.0D
below the flat plate, allowing the flow to develop naturally as the jet emerges into
the crossflow. To provide a realistic turbulent pipe flow at the inflow boundary,
we simultaneously ran a second simulation of a temporally-evolving pipe flow and
extracted instantaneous velocity profiles at each time step. These profiles were then
used as velocity boundary conditions at the pipe inflow for the JICF simulation.
The appropriate Reynolds number for the pipe flow simulation was determined
beforehand through an iterative process, such that the volume flux supplied by the
pipe matched that required by the JICF simulation. For the high ReD simulations, the
temporal pipe flow simulation was run at Reτ = 380, while the low ReD simulations
required Reτ = 211. Reτ is the Reynolds number based on the shear velocity of the
incoming turbulent pipe flow.

Stability constraints are quite restrictive in these simulations, as the high jet velocity
flows normal to very fine grids. Consequently, the time steps used in the simulations
are quite small, and each simulation requires a significant amount of computer time.
Approximately 2000 hours are required for each simulation when run on a single
processor of a Cray J90, and approximately a quarter the time is required when
run on a single processor of a Cray C90. This computation time corresponds to
approximately 80Tu, where the time scale is defined as Tu = D/U∞.

4. Comparisons to experiment
We compare the numerical results to the experimental measurements of Sherif &

Pletcher (1989, hereafter referred to as SP) who recorded measurements for a JICF
with a moderate ReD. Numerical values for our simulation parameters are compared
with those used in the experiment in table 1. As can be seen from the table, ReD in
the experiment is approximately twice the magnitude of the largest simulation ReD,
and the values of R used in Cases 3I and 3II are approximately 18 % less than those
used in SP. We discuss the reasons for these choices in parameter values in subsequent
sections.

SP only used a single hot-film probe to measure velocity on the centreplane. Con-
sequently, they only provide vertical profiles of velocity magnitude and fluctuations.
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R ReD

Case 2I 2.0 2100
Case 3I 3.3 1050
Case 3II 3.3 2100
Sherif & Pletcher (1989) 4.0 4820

Table 1. Simulation and experimental parameters.
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0
0 2 4 0 2 4 0 1 20 1 2

x = 0 x = 1.84 x = 3.67 x = 5.54

〈Um〉

z

Figure 2. Vertical profiles of mean velocity magnitude at the centreplane. Solid line, Case 3II;
dashed line, Case 3I; open circles, SP.

We compute the same quantities on the centreplane from our data using the following
equations:

Um = (u2
1 + u2

2 + u2
3)

1/2,
u′′m = Um − 〈Um〉,
urms = 〈u′′2m 〉1/2,

 (4.1)

where 〈 〉 denotes a long time average. At this point we also drop the cumbersome
overline notation, and the variable, ui, now represents only the non-dimensional,
grid-filtered, resolved velocities. In figure 2, we have plotted vertical profiles of
velocity magnitude on the centreplane at four streamwise locations for Cases 3I
and 3II. (Notice that the horizontal scale changes for the last two plots.) The
data of SP at the same locations are plotted as symbols on the same graphs. The
agreement between simulation and experimental results is quite good. The simulations
reproduce the two local maxima observed in the experiment in each downstream
profile and correctly predict the evolution of the velocity profile. Quantitatively, the
locations of the local maxima predicted in Case 3I are too high. Case 3II matches the
experimental measurements more closely in the placement of the maximum magnitude
in each vertical profile, although the maximum magnitude is slightly underpredicted
at x = 1.84. We speculate on the cause of this strong dependence on ReD in the
context of coherent structures in §5.1. Overall, each Case 3II profile seems to match
experiment closely above the point of maximum velocity; but, below this point, the
computed velocity magnitudes are consistently higher than experiment.
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Figure 3. Vertical profiles of r.m.s. fluctuations in velocity magnitude. Solid line, Case 3II; dashed
line, Case 3I; open circles, SP.

In figure 3 we plot the r.m.s. fluctuations of velocity magnitude defined in (4.1) for
Cases 3I and 3II with the experimental measurements of SP. The trends observed
in the mean velocity are valid here. Case 3I profiles rise too rapidly, while Case 3II
profiles compare quite well with experiment. At the first station, directly over the
jet exit, the agreement between Case 3II and experiment is excellent. At subsequent
stations downstream, computed profiles agree well with experiment in the upper
half of the profile, but underpredict r.m.s. magnitudes in the lower half. Because
we follow SP and normalize r.m.s. values by the local mean velocity, some of this
underprediction may stem from the high mean velocities we observed in figure 2.
However, the high mean velocities do not fully explain the discrepancies we observe.

The vertical locations of the maximum r.m.s. intensities seem to occur just below
the vertical location of maximum mean velocity, where the gradients in the velocity
magnitude are high. Very near the wall, mean velocities approach zero, so the scaled
r.m.s. fluctuations become very large. Directly above this, a second peak in the vertical
profiles can be detected. This peak corresponds to the fluctuations generated by the
wall wake vortices. Some of the experimental measurements hint at this behaviour (for
example, at x = 1.84), but in general, the measurements were not taken sufficiently
close to the wall to capture the trend.

Two main discrepancies occur in the comparisons between computed results and
experimental measurements. Velocities are consistently higher than experiment in the
lower regions of the vertical profiles, and to achieve comparable rise heights, the
simulation velocity ratio must be smaller than that used in experiment. We believe
these discrepancies occur for two reasons. First, the jet inflow conditions of the
experiments differ from the idealized inflow conditions of the simulations. Secondly
the lower ReD of the simulations results in a fundamentally different crossflow wall
boundary layer.

4.1. Jet inflow conditions

The development of the downstream flow is particularly sensitive to the characteristics
of the inflow jet. In addition to the main production runs, we have performed several

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

33
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098003346


Large-eddy simulations of a round jet in crossflow 79

R ReD Flow condition

Case A 4.0 1050 Plug flow
Case B 4.0 1050 Mean turbulent pipe profile
Case C 4.0 1050 Temporally-evolving pipe
Case 3I 3.3 1050 Temporally-evolving pipe
Case 3II 3.3 2100 Temporally-evolving pipe

Table 2. Inflow profile specifications.

5

4

3

2

1

0
0 1 2 3 4 5 6

Case A
Case B
Case C
Case 3I
Case 3II
Sherif & Pletcher (1989)

z

Um

Figure 4. Effect of jet inflow conditions. See text for descriptions of cases. Lines, computed
results; open circles, SP.

short simulations to examine the effects of different types of inflow conditions. In
these test simulations, denoted Cases A, B and C, we varied ReD, the velocity ratio,
and the flow condition (listed in detail in table 2). One other difference of note is
that in Case A the inflow condition was specified at the level of the flat plate, while
in all subsequent cases the profile was specified 1.0D below the plate. The timescale
of the turbulence near the jet exit is short relative to that farther downstream, so the
convergence of the time-averaged velocity profiles near the jet exit is relatively rapid.
Thus, the computational expense of these test cases was somewhat smaller than the
production runs.

The resulting velocity magnitude profiles over the jet exit for each case are shown
in figure 4. The run conditions of Case A differ the most from the experimental
parameters, and consequently produce the worst results. At about z = 1.7 we observe
an odd shoulder in the profile before it drops off toward the jet outlet. The strange
shape of the profile results from prescribing the inflow boundary condition at the
surface of the flat plate, which forces horizontal velocities to zero at the inflow and
constrains the flow in an unphysical manner.

In Case B, we moved the location of the inflow plane below the flat plate and
specified a steady mean turbulent pipe profile, using a standard 1/7 law approximation
to the pipe flow. This velocity profile is rounder than the plug flow of Case A, and
so, to achieve the same bulk velocity, the centreline velocity of Case B is substantially
higher. This high centreline velocity is evident in the high velocity magnitude at z = 0.
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Moving the inflow location below the plane of the flat plate corrected the general
shape of the profile, but the jet still rises too quickly, and the slope of the velocity
profile is too flat.

In all subsequent cases (C, 3I, and 3II) data from a temporally-evolving pipe
simulation were used as the inflow boundary condition. The improvement is obvious.
The slope of the profile is greater in the high shear region, matching the experimental
measurements and indicating that the jet turns more gradually into the crossflow.
However, Case C still overshoots the experimental data substantially.

In Cases 3I and 3II, we reduced the velocity ratio from 4.0 to 3.3 because the data
of SP showed a slight discrepancy. They quote a pipe Reynolds number (Repipe) of
19 280, based on pipe bulk velocity and pipe diameter. This value of Repipe is high
enough to warrant the use of a standard 1/7 power law profile to model the velocity
profile in the pipe. With such a profile, the ratio between centreline velocity and bulk
velocity is approximately 1.22. Since velocity ratio, R, is based on crossflow velocity
and pipe bulk velocity, with R = 4.0, Ujet = 4.0U∞. Then, using the value given by the
1/7 power law, we find that the centreline velocity, Vc = 4.9U∞. In the measurements
reported by SP, the jet centreline velocity as it emerges from beneath the flat plate
is only 4.3U∞. This discrepancy probably occurs because the pipe flow used in the
experiments of SP was not fully developed by the time it emerged into the main test
section. S. A. Sherif (personal communication) confirms that the length of the inflow
pipe was not sufficient to guarantee a fully developed profile. Setting the velocity
ratio at 3.3 is an attempt to match the centreline velocity of our temporal pipe with
the centreline velocity given by SP. In figure 4 notice that at z = 0 the centreline
velocity of Case 3I matches that of SP. When we increase ReD for Case 3II, the
resulting centreline velocity is too low, but we choose to hold R constant in order to
better isolate the effects of ReD. Increasing ReD to the same magnitude as that used
by SP would have required significantly more grid points to achieve sufficient flow
resolution. Because computational resources are limited, we only doubled ReD, and
this proved sufficient to demonstrate clearly the effects of ReD.

4.2. Flat-plate boundary layer differences

SP used flow tuft visualizations to establish that their flat-plate boundary layer was
laminar when the jet flow was turned off. However, an analysis of the flow conditions
of SP shows that their laminar boundary layer was very close to transition. They list
the characteristics of their laminar flat-plate boundary layer over the jet exit (with no
jet flow) as

δ99 = 6.9 mm; U∞ = 0.35 m s−1, (4.2)

where δ99 is the 99% boundary layer thickness. From these values we can estimate
the momentum thickness of the boundary layer, θ, using well known correlations
for a Blasius boundary layer. Using this estimate of the momentum thickness, we
compute a Reynolds number based on the momentum thickness, Reθ = 320. Kays
& Crawford (1980) list the value of the critical Reθ for transition from a laminar
to a turbulent boundary layer as 162, for a variety of flow conditions. Although SP
specified that their boundary layer was laminar, its Reθ indicates that it was very
close to transitioning. Upon encountering the perturbation introduced by the jet, the
boundary layer probably transitions rapidly to a fully turbulent one. The Reθ of the
simulations are 70 and 140 for Cases 3I and 3II, respectively. Thus, the flat-plate
boundary layers in the simulations are well below the critical Reθ and do not transition
as readily to turbulence. The higher velocities we observe in the lower portions of the
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computed profiles are due to differences between the flat-plate boundary layers in the
simulations and the experiments.

The flow field in the wake behind the jet has been shown to be highly complex
(Fric & Roshko 1994; Kelso et al. 1996), containing both upright and streamwise
oriented vortices. Since vorticity for these structures originates only from the flat-plate
boundary layer, its nature is of critical importance. A turbulent boundary layer would
provide a stronger source of vorticity which might result in stronger, more frequent
structures. Thus, the flow measured by SP over a turbulent boundary layer would
have lower mean velocities and higher levels of turbulent fluctuation than a similar
flow over a laminar boundary layer, as we observe.

Given the uncertainties in the experimental configuration of SP, the overall agree-
ment between simulations and experiment is quite good, reinforcing our assessment
that the numerical simulations produce an accurate representation of the flow physics.

5. Coherent vortical structures

Fric & Roshko (1994) and others have categorized the coherent structures into four
groups: jet shear layer vortices, horseshoe vortices, wake vortices, and the counter-
rotating vortex pair (CVP). We observe all of these structures in our simulations and
find that the majority arise from vortical interactions within the jet shear layer in
the near field of the jet. Thus, to better understand the formation of the structures
described by Fric & Rosho (1994), we must first look at near-field structures. We
then look at how the CVP arises from near-field interactions and examine the weaker
structures found in the jet wake.

5.1. Near-field structures

To illustrate the variety of different vortical structures formed from the jet shear
layer in the near field, we examine two flow quantities, vorticity and pressure; they
are plotted as isosurfaces in figure 5(a,b). Regions of high vorticity often mark the
locations of coherent structures, but can also mark regions where no structures are
present. Also, the spatial variability of the vorticity magnitude is quite high, and
this can obscure large-scale features. Pressure isosurfaces mark the locations of the
low-pressure cores of vortical structures and provide another means of visualizing
large-scale features in the flow field. Together, the two quantities provide a more
complete picture of the flow field. In figure 5(a), we combine three different isosurfaces
within a single plot. The green isosurface marks regions in the flow where |ωx| = 20.0,
the blue surface marks the same magnitude for |ωy|, and the red surface marks the
same magnitude for |ωz|. Of course, regions exist where more than one component of
vorticity is significant, but in such regions, the component which covers the greatest
volume in the flow field obscures the isosurfaces of the remaining components.
Visualizing the flow in this manner allows one to see how vorticity aligned in a
particular coordinate direction can tilt into other directions. From figure 5(a) we
immediately see that the JICF is not composed of an orderly progression of vortex
rings, but instead contains an extensive array of different vortical structures. For ease
of discussion, we have given the following names to the structures: hanging vortices,
spanwise rollers, and vertical streaks, as indicated in the figure. In figure 5(b), we plot
pressure relative to the free-stream pressure, defined as p̃ = (p− p∞)/ρU2∞.
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Hanging vortices

(a)

(b)

Figure 5. (a) Isosurfaces of vorticity. Green: ωx, blue: ωy , red: ωz . |ω| = 20.0. (b) Isosurfaces of
pressure. p̃ = −1.8.

5.1.1. Hanging vortices

Kelso et al. (1996) marked the jet shear layer by injecting dye into their jet through
a circumferential slot located 1.6D below the flat plate. They observed that a large
fraction of the dye collected in tube-like structures which began directly above the
exit on the lateral edges of the jet. These tubes, one on each side of the jet, extended
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(a) (b)
Ujet

Hanging vortex

Ucrossflow

Ujet

Un1

Ucrossflow

Un2

Umean

Figure 6. (a) Hanging vortex and orientations of jet and crossflow velocities. Ujet is the bulk velocity
of the incoming jet, and Ucrossflow is the mean streamwise component of the crossflow velocity.
(b) Vector sum of relevant velocities.

around the jet body and then up along the back side of the jet, roughly matching
the jet trajectory. Kelso et al. (1996) hypothesized that the tubes marked the location
where the jet shear layer folded and rolled up into a vortex. They also proposed that
vorticity found in these tubes contributed to the circulation of the CVP. We observe
the same phenomenon in our simulations. Directly above the jet exit in figure 5(a),
two vortical structures are clearly evident. One begins directly at the exit on the lateral
edge of the jet and extends up and around the jet body, while the second is located
approximately 0.3D above the first and extends horizontally along the lateral edge of
the jet. We have named these vortical structures the hanging vortices.

The hanging vortices do not shed regularly into the main flow. Instead, the lower
hanging vortex is a quasi-steady structure which oscillates around a fixed location.
The upper hanging vortex behaves in an unpredictable manner. At times, it will shed
into the main flow, and a new vortex will form to replace it. At other times it will fold
upon itself and shed vertical vorticity from this internal interaction. Haven (1996)
observes similar structures in her experimental flow visualizations. In a transverse
slice downstream of the jet, she finds a pair of ‘unsteady’ counter-rotating vortices
that ride on top of a ‘steady’ pair of vortices.

The hanging vortices arise from the Kelvin–Helmholtz (K–H) instability between
the jet and the crossflow. As the crossflow deflects around the jet body, it accelerates
on the lateral edges, reaching velocities as high as 1.8U∞. Thus, on the lateral edges
of the jet, a mixing layer forms between two streams of fluid whose velocities are
not parallel (figure 6). Mixing layers formed from non-parallel streams are referred
to as skewed mixing layers. They have been studied in great detail, most recently
by Lu (1995). He found that the vortical structures formed in these layers grow in
the direction of the mean convective velocity and that they carry a strong axial flow.
To clarify this point, in figure 6 we have also drawn the orientations of the relevant
velocities. To estimate the orientation of the K–H instability, we decompose each
velocity into components parallel to the mean velocity (Umean) and normal to the
mean velocity (Un1 and Un2). The vortical roll-up should be approximately normal to
Un1 −Un2 and approximately parallel to Umean. In Case 3II, the mean magnitudes of
Ujet and Ucrossflow at this location are approximately 3.3U∞ and 1.8U∞, respectively.
The hanging vortex we observe extends upwards and downstream from the jet exit,
as would be expected based on the preceding analysis. We also observe a strong axial
flow through the hanging vortex, a result of the mean velocity of the two streams.
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z

y

x

Figure 7. Instantaneous streamlines through a hanging vortex. Partial scalar contours on the
centreplane also shown for perspective.

The hanging vortices produce several interesting effects which have important
consequences for the downstream behaviour of the jet. The strong axial flow in
each vortex transports a significant amount of scalar concentration, vorticity, and
vertical momentum away from the jet body. In essence, the hanging vortex provides
a path downstream for jet fluid. In figure 7 we have plotted two sets of instantaneous
streamlines. One set originates within the jet, 0.03D from the pipe wall and 0.25D
below the surface of the flat plate. Notice how streamlines from a wide expanse of
the lateral edge of the jet all collect in the hanging vortex. The second set originates
from the crossflow boundary layer upstream of the jet exit. These lines also collect in
the hanging vortex. Based on these streamlines, it appears that the fluid transported
downstream by the hanging vortex originates primarily from the near-wall region of
the pipe flow and from the crossflow boundary layer.

Because the mixing layers on the sides of the jet are skewed, we believe that it may
be misleading to view the vortical roll-ups in the JICF as vortex rings. Vortex rings
have been used quite often to interpret the flow physics and as a basis for developing
theories for the formation of the CVP (Kelso et al. 1996; Andreopoulos 1985; Sykes
et al. 1986). However, as we have described, the vortices on the sides of the jet
differ fundamentally from those that appear in vortex rings because they do not
shed regularly downstream and because they carry a strong axial flow through their
cores. One consequence that develops from this new view of the near-field vorticity
dynamics is a new CVP formation mechanism, which we describe in the rest of this
section.

Based on their flow visualizations, Kelso et al. (1996) hypothesized that a vortex
breakdown occurs in the hanging vortex, and we observe this phenomenon in our
flow. The breakdown process is probably instigated by two mechanisms. First, on
the lateral edge of the jet, velocities are high and pressures low; so, as the vortex
moves downstream from the lateral edge of the jet, it encounters an adverse pressure
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z

y

x

Figure 8. Vortex lines through the hanging vortex. Isosurface of pressure at p̃ = −3.6 included to
show locations of structures.

gradient. Secondly, we observe a strong upstream flow in the wake of the jet (see
§6.1), which generates compressive stresses on the lee side of the jet. The combination
of these two factors leads to vortex breakdown.

We can best observe this breakdown process by examining vortex lines drawn
through the hanging vortex (figure 8). Vortex lines are created from the simulation
data simply by computing lines which are everywhere tangent to the vorticity vector
field. In the figure, an isosurface of pressure is included to help identify the location of
the hanging vortex. The vortex lines entering the bottom of the vortex are relatively
parallel, and they continue to be aligned up to the end of the region marked by the
isosurface. At this point, a slight bulge in the pressure isosurface marks the start
of the breakdown, and the vortex lines begin to spread. Eventually, little sign of
the original vortex remains in the tangle of vortex lines. The rapid spreading of an
initially compact group of vortex lines is clearly indicative of a vortex breakdown.

Vortex breakdown is also characterized by a sudden decrease of the axial velocity
through the vortex. To examine the evolution of the velocity through the hanging
vortex, we selected one of the streamlines from figure 7 and computed the velocity
along it. In figure 9, we plot projections of the streamline onto the (x, y)- and (x, z)-
planes and compare to a plot of the velocity along the streamline. The evolution
of the hanging vortex becomes clear as we examine the development of the axial
velocity. We first see an initial region in which the vortex develops and axial velocity
increases. Then, the magnitude of the velocity decreases gradually, indicating a slow
expansion of the vortex core. At x ≈ 1.2 we observe a sudden drop in velocity which
marks the vortex breakdown. This decrease is accompanied by marked changes in
the path of the streamline. In figure 7 also notice that the streamlines turn sharply
toward the centreplane at x ≈ 1.2. After the breakdown, the vortex loses coherence,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

33
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098003346


86 L. L. Yuan, R. L. Street and J. H. Ferziger

1.0

0.5

1.0

–0.5

–1.0

(a)

0 0.5 1.0 1.5 2.0
x

y

2.5

2.0

1.5

1.0

0.5

(b)

0 0.5 1.0 1.5 2.0
x

z

0

3

2

1

(c)

0 0.5 1.0 1.5 2.0
x

A
xi

al
 v

el
oc

it
y

0

Figure 9. Evolution of axial velocity through the hanging vortex. (a) Projection of streamline onto
the (x, y)-plane. (b) Projection of streamline onto the (x, z)-plane. (c) Instantaneous axial velocity
along streamline. (NB: Here, and in all subsequent plots, all distances are non-dimensionalized by
the jet diameter, D; plotted quantities are non-dimensional as well (see §2).

and the streamlines no longer indicate the path of the hanging vortex. Instead, the
streamlines follow the local small-scale turbulence field, which in this case, moves
fluid toward the centreplane.

The fluid found in a hanging vortex on one side of the jet originates only from the
shear layer on the same side of the jet, so the direction of the fluid rotation is of a
single sign, ωx > 0 and ωz > 0 on the left-hand side of the jet and ωx < 0 and ωz < 0
on the right (looking upstream). We can best see the left–right dependence of the sign
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Figure 10. Isosurfaces of vertical vorticity, back view. Light grey surface value: +20, dark grey
surface value: −20. Direction of crossflow is out of the page.

of the vorticity by examining the isosurfaces of vertical vorticity plotted in figure 10.
At the bottom of the jet, notice that the left-hand side is dominated exclusively by
ωz > 0 and the right-hand side dominated by ωz < 0. Contrast this distribution of
vorticity with locations higher in the jet trajectory, where a clear distinction does not
exist, and positive and negative vorticity can be found on both sides of the jet. After
the vortex breakdown, the left–right dependence of the sign of vorticity is retained,
and a weak CVP is formed. Once the breakdown occurs, the velocities within the
hanging vortex are low enough that they can be turned by a small pressure gradient
and aligned with the trajectory of the jet.

Hence, the CVP apparently originates from quasi-steady vortices that form in the
skewed mixing layers on each lateral edge of the jet. These vortices encounter adverse
pressure gradients on the lee side of the jet and break down into a pair of weak
counter-rotating vortices that are aligned with the jet trajectory.

5.1.2. Spanwise rollers

Near the centreplane on the upstream and downstream edges of the jet, spanwise
and streamwise velocities in the crossflow are relatively small, and the K–H instability
produces the well-known roller structures. The nature of the K–H instability changes
as we move azimuthally around the jet and horizontal velocities increase (as noted in
§5.1.1). Thus, we do not observe the formation of vortex rings around the periphery
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Figure 11. Instantaneous contours of ωy showing jet shear layer vortices. Contour interval:
ωy ≈ 10.0. Location of intrusion of crossflow fluid indicated by arrows. Dotted contours indi-
cate negative values.

of the jet. Instead, we only find regular formation of spanwise rollers on the upstream
and downstream edges.

These rollers are best seen in instantaneous contours of spanwise vorticity (ωy)
near the jet on the centreplane (figure 11). Vortices form in the upstream shear layer
earlier and more regularly than in the downstream layer, where the vortex roll-up
is irregular and can be delayed until z ≈ 1.5. This difference may be caused by the
different pressure gradients found on the upstream and downstream edges of the jet.
On the upstream edge, an adverse vertical pressure gradient forms as a result of the
velocity gradient in the crossflow boundary layer: the lower streamwise velocities near
the wall produce a lower stagnation pressure than velocities in the free stream. As a
result of this adverse pressure gradient, the upstream shear layer becomes unstable
soon after emerging into the flow and rolls up into vortices. The downstream shear
layer issues into the low-pressure lee side of the jet and sees a favourable pressure
gradient, which enhances its stability and delays vortex roll-up.

At z ≈ 2.0, the rollers formed from the upstream and downstream shear layers,
which have opposite signs, interact in an unpredictable manner, creating gaps in the
jet flow on the order of one jet diameter. One such gap can be seen in figure 11
centred around x ≈ 0.5 and z ≈ 2.7. The gaps produced by these vortex interactions
on the upstream edge of the jet prove to be an important mechanism for entrainment
of crossflow fluid by the jet.

The spanwise rollers are strong, energetic structures which penetrate deeply into
the crossflow, defining the upper boundary of the jet. Jet fluid carried by the hanging
vortex rapidly acquires horizontal momentum and follows a lower trajectory. This
fluid initially fills the lower portions of the jet cross-section and defines the bottom
of the jet body. At stations close to the jet exit, the spanwise rollers occasionally
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Figure 12. Plan view of vorticity contours. (a) ωy , (b) ωz . Dotted contours indicate negative
values. z = 0.35.

rise fast enough to create a gap of nearly irrotational fluid in the middle of the jet
cross-section.

The stability of the initial jet shear layers may explain the strong ReD dependence
we observed in the vertical profiles of §4. The onset of instability and the subsequent
vortical roll-up occurs later in the trajectory of the lower-ReD jet. The rollers produced
by the lower-ReD jet then penetrate more deeply into the crossflow. Thus, the vertical
location of the velocity maximum is higher at low ReD. Downstream, the spanwise
vorticity found in the rollers is tilted into other directions and dispersed; so, by x ≈ 4,
these structures have largely disappeared.

5.1.3. Vertical streaks

In addition to the spanwise rollers, the other feature we find in the main jet body
is streaks of vertical vorticity. These streaks form when irregularities, or kinks, within
each spanwise roller are stretched vertically by the local strain field, in a manner
similar to the formation of ribs observed in plane mixing layers (Moser & Rogers
1993). We observe this phenomenon in a plan view of spanwise and vertical vorticity
contours through a single roller (figure 12 a, b). The majority of the production of
vertical streaks occurs in the upstream rollers. In figure 12(a), contours of ωy appear
in several distinct structures, and in the gaps between these structures (marked by
arrows) we find ωz structures (figure 12 b). On the negative-y half of the plane, −ωy is
tilted into +ωz , while on the positive-y half of the plane +ωy is tilted into +ωz . These
patterns are consistent with a mechanism in which a small perturbation deflects the
upstream roller into the interior of the jet. So, in the vicinity of the perturbation a
small amount of spanwise-oriented vorticity (ωy) is changed to streamwise vorticity
(ωx). This streamwise vorticity is then tilted by gradients in the mean vertical velocity
(∂W/∂x) to form a streak of vertical vorticity (ωz). Because the horizontal gradients
of vertical velocity are very high, any slight perturbation in the spanwise rollers can
produce a vertical streak.

These vertical streaks appear consistently in the near field of the jet and persist
until the jet bends into the crossflow direction. In the bending region, the vertical
structures are tilted into the streamwise direction by the mean strain field created by
the curved flow field, and dispersed further by the local turbulence field. Eventually,
they simply contribute to the turbulent mix of vorticity in the far field.
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Figure 13. (a) Instantaneous streamwise vorticity; (b) has been low-pass filtered. x = 2.5.
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Figure 14. One-dimensional power spectra of ωx on a spanwise line located at x = 2.5 and
z = 3.0. Dotted line: unfiltered vorticity. Solid line: filtered vorticity.

5.2. Counter-rotating vortex pair

We have presented a mechanism by which the vorticity carried by the hanging vortex
provides the circulation necessary to create the CVP. However, the hanging vortex
only accounts for a fraction of the total circulation flux carried by the jet. The
remaining jet vorticity can be found in the spanwise rollers and vertical streaks which
follow a higher trajectory in the flow field. As these structures bend in the crossflow,
they break down into a very intense turbulent field, and the weak circulation provided
by the CVP is a background rotation for this turbulent field. If this interpretation is
accurate, one should be able to extract the background circulation from instantaneous
realizations of the flow field.

We extract the instantaneous signature of the CVP by low-pass filtering the in-
stantaneous streamwise vorticity on transverse planes. The filter used is a standard
low-pass Butterworth filter (Krauss, Shure & Little 1994) with a cutoff wavenumber
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Figure 15. Spatial evolution of low-pass filtered ωx. (a) x = 4.5, (b) x = 5.0, (c) x = 5.5,
and (d) x = 6.0. Contour intervals as marked. Dotted contours indicate negative values.

determined by the local width of the jet. To demonstrate the effect of this filter,
we present streamwise vorticity on a transverse plane at a single instant in time
(figure 13). In (a) we plot the full streamwise vorticity field and in (b) the filtered
streamwise vorticity field. The CVP is evident in the filtered vorticity field and has a
maximum vorticity magnitude approximately an order of magnitude lower than those
found in the unfiltered vorticity. Notice that at this location, near the jet exit, the
CVP is located in the lower half of the jet cross-section.

One can see the effects of the filter more clearly by examining the spanwise one-
dimensional power spectrum of the streamwise vorticity plotted in figure 14. It was
computed at the same instant and streamwise location as figure 13 on the line z = 3.0.
The unfiltered spectrum shows several distinct peaks up to k ≈ 30. In the filtered
spectrum, all of these peaks except the first have been suppressed. This first peak is
the signature of the CVP. Spectra recorded at other locations and times show similar
characteristics.
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Figure 16. Instantaneous streamlines showing the horseshoe vortex.

Several features of this instantaneous CVP should be noted. Firstly, the CVP
observed in the filtered vorticity field changes position and strength with time and
streamwise location. In figure 15, we plot low-pass filtered ωx contours at four
transverse locations, each separated by 0.5D, at a single instant in time. The slight
changes in position are apparently due to the behaviour of the hanging vortices
from which the CVP originates. Small fluctuations in the relative strength of the two
vortices would produce the transverse motions we observe.

Secondly, the magnitude of the vorticity in the CVP decays at a much slower rate
than the fluctuating vorticity in the rest of the flow field. Figure 15 shows that the
sizes and strengths of the vortical regions barely decrease over the streamwise distance
covered. Over this same length, maximum vorticity observed in the unfiltered velocity
field decays by approximately 20%. This behaviour is expected, as turbulent motions
at higher wavenumbers are damped more quickly by viscous dissipation. Farther
downstream, as small-scale motions decay further, the CVP becomes the dominant
motion observed.

Finally, for lower-ReD flows, one would expect that a larger fraction of jet fluid
would be rolled into the hanging vortices and advected downstream in the CVP. At
extremely low ReD, all the jet fluid may be carried by the hanging vortices on either
side of the jet, and the spanwise rollers would not form. In such cases, the body
of the jet downstream is clearly divided into the two distinct vortices of the CVP.
Huq & Dhanak (1996) observed this phenomenon in their experiments with very low
ReD (<210) jets.

5.3. Wake vortices

We observe two vortical structures in the wake of the jet: streamwise vortices which
lie close to the wall and vertically oriented (upright) vortices extending down from the
jet body to the wall. These structures are closely connected to the horseshoe vortex
which forms upstream of the jet. The horseshoe vortex, which is similar to those found
upstream of bluff bodies, forms as the crossflow deflects laterally around the jet and
stretches spanwise vorticity present in the flat-plate boundary layer. The instantaneous
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Figure 17. Instantaneous contours of ωx showing wake wall vortices. Transverse slice at x = 3.6.
Dotted contours indicate negative values.
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Figure 18. Instantaneous contours of ωx showing wake wall vortices. Plan view at z = 0.2. Dotted
contours indicate negative values. Dashed line indicates approximate location of the transverse slice
in figure 17.

streamlines plotted in figure 16 clearly show this vortex forming upstream of the jet.
The legs of the vortex extend around the jet, and on one side, the leg is entrained
into the jet and reoriented into the vertical direction while on the other side, the leg
simply extends downstream in the wake. Thus, the vortical structures found in the
wake of the jet appear to originate from the legs of the horseshoe vortex.

To visualize the streamwise vortices near the wall, we plot contours of streamwise
vorticity on a transverse plane in figure 17. The vortical structures of the main jet
body are evident at the top of the plot, but we focus our attention on the near-
wall region. The vortex on the left is negative in sign, indicating clockwise rotation
(looking upstream). This direction of rotation is what we would expect for the leg
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Figure 19. Plan view of contours of ωz at z = 1.9 showing wake vortices. Contour interval
ωz ≈ 0.4. Dotted contours indicate negative values.
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Figure 20. Perspective view of vortex lines in the wake. Contours of ωx on two transverse planes
also shown.

of the horseshoe vortex which wraps around the left side of the jet. The vortex on
the right is positive, as would be expected also. The wall wake vortices are usually
unequal in strength and vary greatly in transverse location.

To better understand the streamwise development of the wall vortex, we look at
a plan view at z = 0.2 for the same instant in time (figure 18). The vortices are
elongated in the streamwise direction, typically ranging in length from 1D to 2D.
The strong left-side vortex we observed in the transverse slice is actually quite short
in streamwise extent, extending only 1D downstream. The vortices become more
sporadic with increasing downstream location, and the transverse area in which they
appear widens. For the most part, negatively signed vortices appear only on the
negative-y half of the domain, and positively signed vortices appear on the other
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half. The small regions of vorticity of the ‘wrong’ sign are secondary vortex structures
which are induced by the action of the primary vortex.

Vertically oriented vortices connecting the jet body to the wall have been observed
in numerous experiments, most recently by Fric & Roshko (1994) and Kelso et al.
(1996). From the simulation data, we can best visualize these structures by looking
at a plan view of vertical vorticity (ωz) downstream of the jet, as shown in figure 19.
Here, we see a progression of structures, reminiscent of a Kármán vortex street
behind solid cylinder. However, the wake vortices do not strictly alternate in sign;
two vortices with negative rotations are adjacent to each other in the centre of
the plot. Also, as pointed out by Fric & Roshko (1994), the vorticity found in a
Kármán vortex street originates from the solid boundary of the cylinder. In the jet in
crossflow, no comparable solid boundary exists, so the generation mechanism must
be different.

The upright vortices arise directly from an interaction between the horseshoe
vortices and the vertical jet flow. We observed this phenomenon in figure 16 where
an upright vortex forms as a leg of the horseshoe vortex is entrained and lifted by
the jet. However, streamlines do not necessarily show the true behaviour of vortical
structures. We can more clearly understand the physics of the flow by looking at
instantaneous vortex lines through the vortices located near the wall (figure 20).
Contours of streamwise vorticity on two transverse planes are also shown to aid in
visualizing the streamwise vortices at the wall.

We first discuss the downstream set of vortex lines drawn in red. They begin on
the edge of the domain, oriented in the spanwise direction, as would be expected for
vorticity associated with the flat-wall boundary layer. As they approach the centre of
the domain, they turn upstream and pass through the core of the near-wall vortex.
The vortex lines follow the vortex core upstream for a distance of approximately
1.5D and through a sharp turn into the vertical direction. These vortex lines provide
compelling evidence that the upright vortices are vertical extensions of wall structures,
and the vorticity in the upright vortices originates from the flat-wall boundary layer
(in agreement with the findings of Fric & Roshko 1994). The reorientation of wall
vortices seems to occur directly behind the jet. We hypothesize that the upstream end
of a wall vortex is entrained into the underside of the jet by the roll-up that produces
the hanging vortices. In figure 20 we see the latter stages of this process in the set of
vortex lines near the jet exit.

In the current set of simulations, wall vortex reorientation occurs in an unpre-
dictable manner, producing vortices without a discernible pattern. Some vortices
remain close to the wall and do not produce vertical extensions. The blue vortex line
in figure 20 marks one such vortex, as it remains close to the wall throughout its
path.

In these simulations we find that vorticity in the wake structures (that is, the
streamwise vortices near the wall and the upright vortices extending from the wall to
the jet body) originates entirely from the flat-wall boundary layer. This finding agrees
with the observations of Smith & Mungal (1998). They report that no jet fluid is
found in the wake structures for R < 10. In cases in which R > 10, they do observe
that as the streamwise wall vortices are stretched by the vertical jet, they develop
a strong enough axial flow to transport jet fluid into the wake. However, at lower
velocity ratios, the jet bends over into the cross-stream too rapidly for this process to
occur. Not surprisingly then, at the values of R used in our simulations, we find no
jet fluid in the wake structures. Thus, it does not appear that jet vorticity is entrained
into the wake structures for the flow parameters considered in this study.
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Figure 21. Mean streamwise velocity (U) contours at the centreplane. Case 3II. Contour intervals
as marked. Heavy dashed line indicates location of mean streamline beginning from the origin.

6. Flow statistics

6.1. Mean flow

In the interest of conciseness we present only statistics from Case 3II, as the other cases
are qualitatively similar. Also, we confine much of our presentation to centreplane
statistics although many interesting phenomenon occur off the centreplane. For more
complete results, please refer to Yuan (1997). In the following sections, the resolved
velocity, ui, has been decomposed into mean and fluctuating quantities according to the
following expressions: Ui = 〈ui〉 and u′′i = ui−Ui, where again 〈 〉 represents a long time
average. Also, (U,V ,W ) represent the mean velocities in the streamwise, spanwise,
and vertical directions, respectively, and will be used interchangeably with Ui.

In figure 21 the heavy dashed line indicates the location of the mean streamline
which begins at the origin. We include this line in all subsequent centreplane contour
plots, as it places the mean trajectory of the jet and facilitates comparison between
different plots. Near the flat plate, the crossflow slows and stagnates as it approaches
the jet exit. Higher up, as the crossflow deflects over the bending jet, it accelerates to a
maximum value of approximately 1.5 times its free-stream value. In the region where
the jet flow is strongly curved (x ≈ 1.0), the location of maximum streamwise velocities
lies on the mean jet trajectory, indicating that accelerated crossflow fluid is entrained
into the front edge of the jet and incorporated into the main jet body. Further
downstream, maximum streamwise velocities lie above the trajectory, indicating that
this fluid is pushed upward by the flow created by the CVP.

Directly behind the jet exit, crossflow fluid enters the low-pressure wake and
generates an upstream flow with a maximum velocity of about 80% of the free-
stream velocity. This upstream flow creates the compressive stresses on the back of
the jet which slow the axial velocity through the hanging vortices and trigger the
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Figure 22. Mean vertical velocity (W ) contours at the centreplane. Case 3II. Contour intervals as
marked.

formation of the CVP. Further downstream near the wall, the contours lines begin to
lie parallel to the x-axis, indicating a recovery to a flat-plate boundary layer.

In the contours of mean vertical velocity (figure 22) we see two regions of strong
upward motion. The upper region, which begins directly over the jet exit, closely
coincides with the mean trajectory, and is due to the vertical momentum of the jet.
The magnitude of this vertical momentum decays as jet fluid is dispersed away from
the centreplane.

The lower region of vertical velocity forms behind the jet and has a maximum
magnitude of about 1.4U∞. This branch of vertical velocity is due to fluid advected
downstream through the hanging vortices. After these vortices break down on the
back side of the jet, their diameters increase dramatically, and the vortices induce a
vertical velocity at the centreplane. The combined effect of the two vortices produces
the lower region of vertical velocity.

6.2. Turbulent kinetic energy

In figure 23, we plot contours of resolved turbulent kinetic energy (TKE) on the
centreplane, q2 = u′′i u′′i /2, scaled by the square of the initial jet velocity. Because the
velocities, u′′i , were non-dimensionalized by the crossflow velocity, this scaling requires
dividing q2 by the square of the velocity ratio (R2). We present plots for Case 3II
only and discuss differences we observe between the different runs. Several features
are worth noting. First, the maximum values of 〈q2〉 for all cases (2I, 3I, 3II) are
comparable, so scaling with the jet velocity seems appropriate. Secondly, the location
of the maximum 〈q2〉 is close to the top of the jet, where the rollers emanating from
the downstream and upstream edges collide. This location shifts slightly downstream
in the lower-R cases, but remains in the same position relative to the jet exit. Third,
the magnitude of 〈q2〉 is quite high along the upstream edges in all cases and decays
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Figure 23. Contours of turbulent kinetic energy (〈q2〉/R2) at the centreplane. Case 3II. Contour
values as marked.

toward the jet interior. All cases also show a local maximum near the wall, due to
the velocity fluctuations generated by the wake vortices.

The vertical location of maximum turbulence intensity relative to the mean trajec-
tory shifts with downstream location. Near the jet exit, turbulence is most energetic at
the upstream edge of the jet and above the mean trajectory. Downstream, the location
of peak turbulence shifts towards the interior of the jet. For example, the downstream
edge of the 0.01 contour level lies substantially below the mean trajectory. This shift
is due to a change in the main mechanism of turbulence production. At this point,
turbulence production by the spanwise rollers is overshadowed by production by the
shear between the jet and the crossflow and by the intermittency of the CVP.

We look now at transverse slices of TKE to examine the evolution of turbulence
over the entire cross-section as the jet advects downstream (figure 24). On each plot,
a single contour of mean streamwise vorticity is drawn to indicate the mean location
of the CVP. At the first downstream location (x = 1.0), the peak 〈q2〉 values appear
in a broad region spanning the middle of the jet cross-section. This region of high
〈q2〉 results directly from the spanwise rollers. Below this local maximum, TKE levels
have two distinct lobes, each corresponding to a vortex of the CVP. At this location,
maximum TKE intensities are found in the upper half of the cross-section, while the
CVP is found in the lower half.

At the next station downstream (x = 2.4), the maximum 〈q2〉 region has divided
into two discrete lobes. The local minimum at the centre has decreased greatly in
size. Although this local minimum diminishes in size, its presence is maintained by
the CVP, which advects less turbulent crossflow fluid into the bottom of the jet.
At the wall, two local maxima are the results of fluctuations produced by the wall
wake vortices. Again, the decay of TKE is very rapid; at this location, only 1.4D
downstream from the previous slice, maximum TKE levels are less than half their
magnitude at the previous station.
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Figure 24. Contours of turbulent kinetic energy on transverse planes (〈q2〉/R2). (a) x = 1.0, (b)
x = 2.4, (c) x = 5.5. Case 3II. Contour values as marked. Single contour of 〈ωx〉 drawn as a heavy
dotted line on each plot to indicate the location of the CVP.

The decay of turbulence levels at the top (and upstream edge) of the jet appears
to be more rapid than in the rest of the jet. This elevated decay is manifested by
the downward movement of the points of maximum 〈q2〉 within the cross-section. At
x = 1.0 the maximum 〈q2〉 contour is located at the top of the cross-section, and by
x = 5.5 the local maxima have moved to locations approximately in the middle of
the section and into the CVP.

6.3. Reynolds stress

In these simulations, the traditional Reynolds stresses (Rij) which appear in the
well-known Reynolds-averaged Navier–Stokes equations, consist of resolved and
unresolved subgrid-scale contributions as follows:

Rij = 〈u′′i u′′j 〉+ 〈τij〉. (6.1)

We have monitored the magnitude of the subgrid-scale stresses and have found that
at their maximum levels they still contribute less than 5 % to Rij , so we present only
the resolved turbulent stresses.
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Figure 25 (a, b). For caption see facing page.

Because this flow is inhomogeneous in all three directions, the Reynolds stress tensor
contains six independent components. For conciseness, we look only at statistics on
the centreplane, where symmetry considerations prescribe that two components, 〈u′′v′′〉
and 〈v′′w′′〉, are zero. The remaining four independent elements of the Reynolds stress
are plotted in figure 25.

We compare the fluctuations in each of the coordinate directions by looking at
figures 25(a), 25(b), and 25(c). The maximum of the TKE above the jet exit observed
in figure 23 is composed primarily of u′′ and w′′ components. The v′′ contribution at
this point is only half that of the other two components, reinforcing the hypothesis
that the turbulence over the jet is generated mainly by spanwise vortical structures.
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Figure 25. Contours of (a) 〈u′′2〉, (b) 〈v′′2〉, (c) 〈w′′2〉 and (d) 〈u′′w′′〉 at the centreplane. Contour
values as marked. Dotted contours indicate negative values.

Fluctuations in the vertical direction, 〈w′′2〉, are concentrated where the spanwise
rollers are found (figure 25 c). The upstream roller produces stronger fluctuations
because it rolls up earlier and more regularly. After the rollers meet, fluctuations are
biased toward the upstream edge of the jet. Downstream, we observe two distinct
branches in the 〈w′′2〉 contours, which are most evident in the 0.1 and 0.2 contour
lines. The upper branch is the downstream continuation of the fluctuations produced
by the spanwise rollers. The lower branch is just below the mean trajectory and is
produced by shear between the jet and the crossflow and by the intermittency of the
CVP.
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Fluctuations in the streamwise direction are small in the pipe flow beneath the flat
plate, so we see little sign of 〈u′′2〉 until z ≈ 0.5D. Here, the roll-up of the jet shear
layers begins to produce streamwise fluctuations. The location of the 〈u′′2〉 maximum
lies about 0.5D below the 〈w′′2〉 maximum, and the maximum 〈u′′2〉 magnitude is
approximately 60 % that of 〈w′′2〉. The lower values of 〈u′′2〉 are expected as the initial
momentum supplied by the jet is only in the vertical direction.

Regions of high 〈v′′2〉 (figure 25 b) are located predominantly in the region directly
behind the jet, and are due to wake vortices. Above the jet, the magnitude of 〈v′′2〉
is not as high as the other two components, but is still significant. These regions of
〈v′′2〉 are the signatures of the vertical streaks which form from the spanwise rollers.

The contour plot of 〈u′′w′′〉 (figure 25 d) again shows the dominant role played by
the spanwise rollers in the near field. 〈u′′w′′〉 is strongly negative in the upstream layer
and positive in the downstream one where strong horizontal gradients of the vertical
velocity are located. These shear stresses arise from u′′ fluctuations and large values
of ∂W/∂x in the upstream and downstream rollers. Similar to the behaviour of 〈w′′2〉,
the mechanisms by which 〈u′′w′′〉 is produced shifts as the jet turns into the crossflow.
Here, gradients in the vertical velocity become small, and a new source of 〈u′′w′′〉,
emerges, resulting in the third region of elevated values in the contour plot. Here, in
contrast to the roller regions, w′′ fluctuations act across a strong ∂U/∂z gradient to
produce shear stress.

7. Conclusions
The present simulations of a jet in crossflow have reproduced experimental mea-

surements. The discrepancies between simulation and experiment can be attributed
to differences in ReD and jet inflow conditions. We have found that slight changes
in the upstream condition of the pipe flow in experimental investigations can have
significant effects upon the mean flow.

We have identified several new structures in the near field of the JICF. The
spanwise rollers on the upstream and downstream edges of the jet are created by a
K–H instability. These rollers carry intense velocity fluctuations and account for most
of the TKE production in the near field. They also penetrate far into the crossflow
and define the upper boundary of the jet. Vertical streaks form as small perturbations
in the spanwise rollers are stretched by strong gradients in the vertical velocity.

On the lateral edges of the jet, high streamwise velocities in the crossflow combine
with the vertical velocity in the jet to create skewed mixing layers. Quasi-stable
hanging vortices form in these layers and extend upwards and downstream behind
the jet. Axial velocity through the hanging vortices transports vortical fluid from the
near-wall boundary layer of the incoming pipe flow to the back side of the jet. There,
the hanging vortices encounter a strong compressive stress and break down, leading
to the formation of a weak CVP. We find evidence of the CVP in instantaneous
realizations of the flow by low-pass filtering the streamwise vorticity.

In the wake of the jet we find streamwise-oriented vortical structures which are
closely related to the horseshoe vortices found upstream of the jet. We also find
upright vortices which connect the jet body to the wall. These upright vortices form
when streamwise vortices near the wall are reoriented by the strain field directly
behind the jet.
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