
TPLP 20 (2): 294–309, 2020. c© Cambridge University Press 2019

doi:10.1017/S1471068419000450 First published online 20 December 2019

294

ASP-Core-2 Input Language Format

FRANCESCO CALIMERI
DeMaCS, Università della Calabria, Rende, Italy

(e-mail: calimeri@mat.unical.it)

WOLFGANG FABER and MARTIN GEBSER
Institut für Angewandte Informatik, Alpen-Adria-Universität, Klagenfurt, Austria

(e-mails: Wolfgang.Faber@aau.at, Martin.Gebser@aau.at)

GIOVAMBATTISTA IANNI
DeMaCS, Università della Calabria, Rende, Italy

(e-mail: ianni@mat.unical.it)

ROLAND KAMINSKI
Institute of Computer Science, University of Potsdam, Potsdam, Germany

(e-mail: kaminski@cs.uni-potsdam.de)

THOMAS KRENNWALLNER
XIMES GmbH, Vienna, Austria
(e-mail: tk@postsubmeta.net)

NICOLA LEONE
DeMaCS, Università della Calabria, Rende, Italy

(e-mail: leone@mat.unical.it)

MARCO MARATEA
DIBRIS, University of Genova, Genova, Italy

(e-mail: marco@dibris.unige.it)

FRANCESCO RICCA
DeMaCS, Università della Calabria, Rende, Italy

(e-mail: ricca@mat.unical.it)

TORSTEN SCHAUB
Institute of Computer Science, University of Potsdam, Potsdam, Germany

(e-mail: schaub@cs.uni-potsdam.de)

submitted 24 January 2019; revised 13 November 2019; accepted 15 November 2019

Abstract

Standardization of solver input languages has been a main driver for the growth of several
areas within knowledge representation and reasoning, fostering the exploitation in actual appli-
cations. In this document, we present the ASP-Core-2 standard input language for Answer Set
Programming, which has been adopted in ASP Competition events since 2013.

KEYWORDS: Answer Set Programming, standard language, knowledge representation and rea-
soning, standardization

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450
https://orcid.org/0000-0002-0866-0834
mailto:calimeri@mat.unical.it
https://orcid.org/0000-0002-8010-4752
mailto:Wolfgang.Faber@aau.at
mailto:Martin.Gebser@aau.at
mailto:ianni@mat.unical.it
https://orcid.org/0000-0002-1361-6045
mailto:kaminski@cs.uni-potsdam.de
mailto:tk@postsubmeta.net
mailto:leone@mat.unical.it
mailto:marco@dibris.unige.it
https://orcid.org/0000-0001-8218-3178
mailto:ricca@mat.unical.it
https://orcid.org/0000-0002-7456-041X
mailto:schaub@cs.uni-potsdam.de
https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 295

1 Introduction

The process of standardizing the input languages of solvers for knowledge representation

and reasoning research areas has been of utmost importance for the growth of the related

research communities: this has been the case for, for example, the CNF-DIMACS for-

mat for SAT, then extended to describe input formats for Max-SAT and QBF problems,

the OPB format for pseudo-Boolean problems, somehow at the intersection between the

CNF-DIMACS format and the LP format for integer linear programming, the XCSP3

format for CP solving, SMT-LIB format for SMT solving, and the STRIPS/PDDL lan-

guage for automatic planning. The availability of such common input languages has led

to the development of efficient solvers in different KR communities, through a series of

solver competitions that have pushed the adoption of these standards. The availability

of efficient solvers, together with a presence of a common interface language, has helped

the exploitation of these methodologies in applications.

The same has happened for answer set programming (ASP) (Brewka et al. 2011), a

well-known approach to knowledge representation and reasoning with roots in the areas

of logic programming and nonmonotonic reasoning (Gelfond and Lifschitz 1991), through

the development of the ASP-Core language (Calimeri et al. 2011b). The first ASP-Core

version was a rule-based language whose syntax stems from plain Datalog and Prolog

and was a conservative extension to the nonground case of the Core language adopted in

the First ASP Competition held in 2002 during the Dagstuhl Seminar “Nonmonotonic

Reasoning, Answer Set Programming and Constraints.”1 It featured a restricted set of

constructs, that is disjunction in the rule heads, both strong and negation-as-failure

negation in rule bodies, as well as nonground rules.

In this document, we present the latest evolution of ASP-Core, namely, ASP-Core-2,

which currently constitutes the standard input language of ASP solvers adopted in the

ASP Competition series since 2013 (Calimeri et al. 2014; Calimeri et al. 2016; Gebser

et al. 2017b; Gebser et al. 2017a). ASP-Core-2 substantially extends its predecessor by

incorporating many language extensions that became mature and widely adopted over the

years in the ASP community, such as aggregates, weak constraints, and function symbols.

The ASP Competition series pushed its adoption and significantly contributed both to

the availability of efficient solvers for ASP (Lierler et al. 2016; Gebser et al. 2018a) and

to the exploitation of the ASP methodology in academic and in industrial applications

(Erdem et al. 2016; Leone and Ricca 2015; Gebser et al. 2018b). In the following, we

first present syntax and semantics for the basic building blocks of the language and

then introduce more expressive constructs such as choice rules and aggregates, which

helps with obtaining compact problem formulations. Eventually, we present syntactic

restrictions for the use of ASP-Core-2 in practice.

2 ASP-Core-2 language syntax

For the sake of readability, the language specification is herein given in the traditional

mathematical notation. A lexical matching table from the following notation to the actual

raw input format is provided in Section 6.

1 https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=02381.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=02381
https://doi.org/10.1017/S1471068419000450

296 F. Calimeri et al.

Terms. Terms are either constants, variables, arithmetic terms, or functional terms.

Constants can be either symbolic constants (strings starting with some lowercase letter),

string constants (quoted strings), or integers. Variables are denoted by strings starting

with some uppercase letter. An arithmetic term has form −(t) or (t � u) for terms t and

u with � ∈ {“+”, “−”, “∗”, “/”}; parentheses can optionally be omitted in which case

standard operator precedences apply. Given a functor f (the function name) and terms

t1, . . . , tn, the expression f(t1, . . . , tn) is a functional term if n > 0, whereas f() is a

synonym for the symbolic constant f .

Atoms and Naf-Literals. A predicate atom has form p(t1, . . . , tn), where p is a pred-

icate name, t1, . . . , tn are the terms, and n ≥ 0 is the arity of the predicate atom; a

predicate atom p() of arity 0 is likewise represented by its predicate name p without

parentheses. Given a predicate atom q, q and ¬q are classical atoms. A built-in atom has

form t ≺ u for terms t and u with ≺ ∈ {“<”, “≤”, “=”, “�=”, “>”, “≥”}. Built-in atoms a

as well as the expressions a and not a for a classical atom a are naf-literals.

Aggregate Literals. An aggregate element has form

t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are the terms and l1, . . . , ln are the naf-literals for m ≥ 0 and n ≥ 0.

An aggregate atom has form

#aggr E ≺ u

where #aggr ∈ {“#count”, “#sum”, “#max”, “#min”} is an aggregate function name,

≺ ∈ {“<”, “≤”, “=”, “�=”, “>”, “≥”} is an aggregate relation, u is a term, and E is a

(possibly infinite) collection of aggregate elements, which are syntactically separated by

“;”. Given an aggregate atom a, the expressions a and not a are aggregate literals. In

the following, we write atom (respectively, literal) without further qualification to refer

to some classical, built-in, or aggregate atom (respectively, naf- or aggregate literal).

We here allow for infinite collections of aggregate elements because the semantics in

Section 3 is based on ground instantiation, which may map some nonground aggregate

element to infinitely many ground instances. The semantics of Abstract Gringo (Gebser

et al. 2015) handles such cases by means of infinitary propositional formulas, while the

Abstract Gringo language avoids infinite collections of aggregate elements in the input. As

shown in Harrison and Lifschitz (2018), the semantics by ground instantiation or infini-

tary propositional formulas, respectively, is equivalent on the common subset of Abstract

Gringo and ASP-Core-2. Moreover, we note that the restrictions to ASP-Core-2 programs

claimed in Section 5 require the existence of a finite equivalent ground instantiation for

each input, so that infinite collections of aggregate elements do not show up in practice.

Rules. A rule has form

h1 | . . . | hm ← b1, . . . , bn.

where h1, . . . , hm are the classical atoms and b1, . . . , bn are the literals for m ≥ 0 and

n ≥ 0. When n = 0, the rule is called a fact. When m = 0, the rule is referred to as a

constraint.

Weak Constraints. A weak constraint has form

:∼ b1, . . . , bn. [w@l, t1, . . . , tm]

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 297

where t1, . . . , tm are the terms and b1, . . . , bn are the literals for m ≥ 0 and n ≥ 0; w and

l are the terms standing for a weight and a level. Writing the part “@l” can optionally

be omitted if l = 0; that is, a weak constraint has level 0 unless specified otherwise.

Queries. A query Q has form a?, where a is a classical atom.

Programs. An ASP-Core-2 program is a set of rules and weak constraints, possibly

accompanied by a (single) query.2 A program (rule, weak constraint, query, literal, ag-

gregate element, etc.) is ground if it contains no variables.

3 Semantics

We herein give the full model-theoretic semantics of ASP-Core-2. As for nonground pro-

grams, the semantics extends the traditional notion of Herbrand interpretation, taking

care of the fact that all integers are part of the Herbrand universe. The semantics of

propositional programs is based on Gelfond and Lifschitz (1991), extended to aggregates

according to Faber et al. (2004), Faber et al. (2011). Choice atoms (Simons et al. 2002)

are treated in terms of the reduction given in Section 4.

We restrict the given semantics to programs containing nonrecursive aggregates (see

Section 5 for this and further restrictions to the family of admissible programs), for

which the general semantics presented herein is in substantial agreement with a variety

of proposals for adding aggregates to ASP (Kemp and Stuckey 1991; Van Gelder 1992;

Osorio and Jayaraman 1999; Ross and Sagiv 1997; Denecker et al. 2001; Gelfond 2002;

Simons et al. 2002; Dell’Armi et al. 2003; Pelov and Truszczyński 2004; Pelov et al. 2004;

Ferraris 2005; Pelov et al. 2007).

Herbrand Interpretation. Given a program P , the Herbrand universe of P , denoted

by UP , consists of all integers and (ground) terms constructible from constants and

functors appearing in P . The Herbrand base of P , denoted by BP , is the set of all

(ground) classical atoms that can be built by combining predicate names appearing in P

with terms from UP as arguments. A (Herbrand) interpretation I for P is a subset of BP .

Ground Instantiation. A substitution σ is a mapping from a set V of variables to the

Herbrand universe UP of a given program P . For some object O (rule, weak constraint,

query, literal, aggregate element, etc.), we denote by Oσ the object obtained by replacing

each occurrence of a variable v ∈ V by σ(v) in O.

A variable is global in a rule, weak constraint or query r if it appears outside of

aggregate elements in r. A substitution from the set of global variables in r is a global

substitution for r; a substitution from the set of variables in an aggregate element e is a

(local) substitution for e. A global substitution σ for r (or substitution σ for e) is well

formed if the arithmetic evaluation, performed in the standard way, of any arithmetic

subterm (−(t) or (t � u) with � ∈ {“+”, “−”, “∗”, “/”}) appearing outside of aggregate

elements in rσ (or appearing in eσ) is well defined.

2 Unions of conjunctive queries (and more) can be expressed by including appropriate rules in a program.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

298 F. Calimeri et al.

Given a collection E of aggregate elements, the instantiation of E is the following set

of aggregate elements:

inst(E) =
⋃

e∈E{eσ | σ is a well-formed substitution for e}
A ground instance of a rule, weak constraint or query r is obtained in two steps: (1)

a well-formed global substitution σ for r is applied to r; (2) for every aggregate atom

#aggr E ≺ u appearing in rσ, E is replaced by inst(E).

The arithmetic evaluation of a ground instance r of some rule, weak constraint or

query is obtained by replacing any maximal arithmetic subterm appearing in r by its

integer value, which is calculated in the standard way.3 The ground instantiation of a

program P , denoted by grnd(P), is the set of arithmetically evaluated ground instances

of rules and weak constraints in P .

Term Ordering and Satisfaction of naf-Literals. A classical atom a ∈ BP is true

with respect to a interpretation I ⊆ BP if a ∈ I. A naf-literal of the form not a, where

a is a classical atom, is true with respect to I if a /∈ I, and it is false otherwise.

To determine whether a built-in atom t ≺ u (with ≺ ∈ {“<”, “≤”, “=”, “�=”,

“>”, “≥”}) holds, we rely on a total order � on terms in UP defined as follows:

• t � u for integers t and u if t ≤ u;

• t � u for any integer t and any symbolic constant u;

• t � u for symbolic constants t and u if t is lexicographically smaller than or equal

to u;

• t � u for any symbolic constant t and any string constant u;

• t � u for string constants t and u if t is lexicographically smaller than or equal

to u;

• t � u for any string constant t and any functional term u;

• t � u for functional terms t = f(t1, . . . , tm) and u = g(u1, . . . , un) if

— m < n (the arity of t is smaller than the arity of u),

— m ≤ n and g � f (the functor of t is smaller than the one of u, while arities

coincide) or

— m ≤ n, f � g and, for any 1 ≤ j ≤ m such that tj � uj , there is some

1 ≤ i < j such that ui � ti (the tuple of arguments of t is smaller than or

equal to the arguments of u).

Then, t ≺ u is true with respect to I if t � u for ≺ = “≤”; u � t for ≺ = “≥”; t � u and

u � t for ≺ = “<”; u � t and t � u for ≺ = “>”; t � u and u � t for ≺ = “=”; t � u

or u � t for ≺ = “�= .” A positive naf-literal a is true with respect to I if a is a classical

or built-in atom that is true with respect to I; otherwise, a is false with respect to I. A

negative naf-literal not a is true (or false) with respect to I if a is false (or true) with

respect to I.

Satisfaction of Aggregate Literals. An aggregate function is a mapping from sets of

tuples of terms to terms, +∞ or −∞. The aggregate functions associated with aggregate

3 Note that the outcomes of arithmetic evaluation are well defined relative to well-formed substitutions.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 299

function names introduced in Section 2 map a set T of tuples of terms to a term, +∞ or

−∞ as follows:4

• #count(T) =

{|T | if T is finite

+∞ if T is infinite;

• #sum(T) =

⎧⎪⎪⎨
⎪⎪⎩

∑
(t1, . . . , tm) ∈ T , t1 is an integer t1 if {(t1, . . . , tm) ∈ T | t1

is a nonzero integer} is finite
0 if {(t1, . . . , tm) ∈ T | t1

is a nonzero integer} is infinite;

• #max(T) =

⎧⎨
⎩
max{t1 | (t1, . . . , tm) ∈ T} if T �= ∅ is finite
+∞ if T is infinite

−∞ if T = ∅;

• #min(T) =

⎧⎨
⎩
min{t1 | (t1, . . . , tm) ∈ T} if T �= ∅ is finite
−∞ if T is infinite

+∞ if T = ∅.
The terms selected by #max(T) and #min(T) for finite sets T �= ∅ are determined rela-

tive to the total order � on terms in UP . In the special cases that #aggr(T) = +∞
or #aggr(T) = −∞, we adopt the convention that −∞ � u and u � +∞ for

every term u ∈ UP . An expression #aggr(T) ≺ u is true (or false) for #aggr ∈
{“#count”, “#sum”, “#max”, “#min”}, an aggregate relation ≺ ∈ {“<”, “≤”, “=”, “�=”,

“>”, “≥”}, and a term u if #aggr(T) ≺ u is true (or false) according to the corresponding

definition for built-in atoms, given previously, extended to the values +∞ and −∞ for

#aggr(T).

An interpretation I ⊆ BP maps a collection E of aggregate elements to the following

set of tuples of terms:

eval(E, I) = {(t1, . . . , tm) | t1, . . . , tm : l1, . . . , ln occurs in E and l1, . . . , ln are true

with respect to I}
A positive aggregate literal a = #aggr E ≺ u is true (or false) with respect to I if

#aggr(eval(E, I)) ≺ u is true (or false) with respect to I; not a is true (or false) with

respect to I if a is false (or true) with respect to I.

Answer Sets. Given a program P and a (consistent) interpretation I ⊆ BP , a

rule h1 | . . . | hm ← b1, . . . , bn in grnd(P) is satisfied with respect to I if some

h ∈ {h1, . . . , hm} is true with respect to I when b1, . . . , bn is true with respect to

I; I is a model of P if every rule in grnd(P) is satisfied with respect to I. The reduct of

P with respect to I, denoted by P I , consists of the rules h1 | . . . | hm ← b1, . . . , bn in

grnd(P) such that b1, . . . , bn are true with respect to I; I is an answer set of P if I is a

⊆-minimal model of P I . In other words, an answer set I of P is a model of P such that

no proper subset of I is a model of P I .

The semantics of P is given by the collection of its answer sets, denoted by AS (P).

4 The special cases in which #aggr(T) = +∞, #aggr(T) = −∞ or #sum(T) = 0 for an infinite set
{(t1, . . . , tm) ∈ T | t1 is a nonzero integer} are adopted from Abstract Gringo (Gebser et al. 2015).

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

300 F. Calimeri et al.

Optimal Answer Sets. To select optimal members of AS (P), we map an interpreta-

tion I for P to a set of tuples as follows:

weak(P, I) = {(w@l, t1, . . . , tm) |
:∼ b1, . . . , bn. [w@l, t1, . . . , tm] occurs in grnd(P) and b1, . . . , bn are true

with respect to I}
For any integer l, let

P I
l =

⎧⎪⎪⎨
⎪⎪⎩

∑
(w@l, t1, . . . , tm) ∈ weak(P, I), w is an integerw if {(w@l, t1, . . . , tm) ∈ weak(P, I) | w

is a nonzero integer} is finite
0 if {(w@l, t1, . . . , tm) ∈ weak(P, I) | w

is a nonzero integer} is infinite
denote the sum of integers w over tuples with w@l in weak(P, I). Then, an answer

set I ∈ AS (P) is dominated by I ′ ∈ AS (P) if there is some integer l such that P I′
l < P I

l

and P I′
l′ = P I

l′ for all integers l′ > l. An answer set I ∈ AS (P) is optimal if there is no

I ′ ∈ AS (P) such that I is dominated by I ′. Note that P has some (and possibly more

than one) optimal answer sets if AS (P) �= ∅.

Queries. Given a ground query Q = q? of a program P , Q is true if q ∈ I for all

I ∈ AS (P). Otherwise, Q is false. Note that, if AS (P) = ∅, all queries are true. In the

presence of variables, one is interested in substitutions that make the query true. Given

the nonground query Q = q(t1, . . . , tn)? of a program P , let Ans(Q,P) be the set of

all substitutions σ for Q such that Qσ is true. The set Ans(Q,P) constitutes the set of

answers to Q. Note that, if AS (P) = ∅, Ans(Q,P) contains all possible substitutions

for Q.

Note that query answering, according to the definitions above, corresponds to cautious

(skeptical) reasoning as defined in, for example, Abiteboul et al. (1995).

4 Syntactic shortcuts

This section specifies additional constructs by reduction to the language introduced in

Section 2.

Anonymous Variables. An anonymous variable in a rule, weak constraint or query is

denoted by “ ” (character underscore). Each occurrence of “ ” stands for a fresh variable

in the respective context (i.e., different occurrences of anonymous variables represent

distinct variables).

Choice Rules. A choice element has form

a : l1, . . . , lk

where a is a classical atom and l1, . . . , lk are the naf-literals for k ≥ 0.

A choice atom has form

C ≺ u

where C is a collection of choice elements, which are syntactically separated by “;”, ≺ is

an aggregate relation (see Section 2) and u is a term. The part “≺ u” can optionally be

omitted if ≺ is “≥” and u = 0.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 301

A choice rule has form

C ≺ u← b1, . . . , bn.

where C ≺ u is a choice atom and b1, . . . , bn are the literals for n ≥ 0.

Intuitively, a choice rule means that, if the body of the rule is true, an arbitrary subset

of the classical atoms a such that l1, . . . , lk are true can be chosen as true in order to

comply with the aggregate relation ≺ between C and u. In the following, this intuition

is captured by means of a proper mapping of choice rules to rules without choice atoms

(in the head).

For any predicate atom q = p(t1, . . . , tn), let q̂ = p̂(1, t1, . . . , tn) and ¬̂q =

p̂(0, t1, . . . , tn), where p̂ �= p is an (arbitrary) predicate and function name that is uniquely

associated with p, and the first argument (which can be 1 or 0) indicates the “polarity”

q or ¬q, respectively.5
Then, a choice rule stands for the rules

a | â← b1, . . . , bn, l1, . . . , lk.

for each choice element a : l1, . . . , lk in C along with the constraint

← b1, . . . , bn,not #count{ â : a, l1, . . . , lk | (a : l1, . . . , lk) ∈ C} ≺ u.

The first group of rules expresses that the classical atom a in a choice element a : l1, . . . , lk
can be chosen as true (or false) if b1, . . . , bn and l1, . . . , lk are true. This “generates” all

subsets of the atoms in choice elements. On the other hand, the second rule, which is an

integrity constraint, requires the condition C ≺ u to hold if b1, . . . , bn are true.6

For illustration, consider the choice rule

{p(a) : q(2);¬p(a) : q(3)} ≤ 1← q(1).

Using the fresh predicate and function name p̂, the choice rule is mapped to three rules

as follows:

p(a) | p̂(1, a)← q(1), q(2).

¬p(a) | p̂(0, a)← q(1), q(3).

← q(1),not #count{p̂(1, a) : p(a), q(2); p̂(0, a) : ¬p(a), q(3)} ≤ 1.

Note that the three rules are satisfied with respect to an interpretation I such that {q(1),
q(2), q(3), p̂(1, a), p̂(0, a)} ⊆ I, and {p(a),¬p(a)} ∩ I = ∅. In fact, when q(1), q(2), and

q(3) are true, the choice of none or one of the atoms p(a) and ¬p(a) complies with the

aggregate relation “≤” to 1.

Aggregate Relations. An aggregate or choice atom

#aggr E ≺ u or C ≺ u

5 It is assumed that fresh predicate and function names are outside of possible program signatures and
cannot be referred to within user input.

6 In disjunctive heads of rules of the first form, an occurrence of â denotes an (auxiliary) atom that is
linked to the original atom a. Given the relationship between a and â, the latter is reused as a term
in the body of a rule of the second form. That is, we overload the notation â by letting it stand both
for an atom (in disjunctive heads) and a term (in #count aggregates).

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

302 F. Calimeri et al.

may be written as

u ≺−1 #aggr E or u ≺−1 C

where “<”−1 = “>”; “≤”−1 = “≥”; “=”−1 = “=”; “�=”−1 = “�=”; “>”−1 = “<”;

“≥”−1 = “≤”.
The left and right notations of aggregate relations may be combined in expressions as

follows:

u1 ≺1 #aggr E ≺2 u2 or u1 ≺1 C ≺2 u2

Such expressions are mapped to available constructs according to the following transfor-

mations:

� u1 ≺1 C ≺2 u2 ← b1, . . . , bn stands for

u1 ≺1 C ← b1, . . . , bn.

C ≺2 u2 ← b1, . . . , bn.

� h1 | . . . | hk ← b1, . . . , bi−1, u1 ≺1 #aggr E ≺2 u2, bi+1, . . . , bn stands for

h1 | . . . | hk ← b1, . . . , bi−1, u1 ≺1 #aggr E,#aggr E ≺2 u2, bi+1, . . . , bn.

� h1 | . . . | hk ← b1, . . . , bi−1,not u1 ≺1 #aggr E ≺2 u2, bi+1, . . . , bn stands for

h1 | . . . | hk ← b1, . . . , bi−1,not u1 ≺1 #aggr E, bi+1, . . . , bn.

h1 | . . . | hk ← b1, . . . , bi−1,not #aggr E ≺2 u2, bi+1, . . . , bn.

� :∼ b1, . . . , bi−1, u1 ≺1 #aggr E ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk] stands for

:∼ b1, . . . , bi−1, u1 ≺1 #aggr E,#aggr E ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk]

� :∼ b1, . . . , bi−1,not u1 ≺1 #aggr E ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk] stands for

:∼ b1, . . . , bi−1,not u1 ≺1 #aggr E, bi+1, . . . , bn. [w@l, t1, . . . , tk]

:∼ b1, . . . , bi−1,not #aggr E ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk]

5 Using ASP-Core-2 in practice – restrictions

To promote declarative programming as well as practical system implementation, ASP-

Core-2 programs are supposed to comply with the restrictions listed in this section. This

particularly applies to input programs starting from the System Track of the 4th ASP

Competition (Calimeri et al. 2014).

Safety. Any rule, weak constraint or query is required to be safe; to this end, for a set V

of variables and literals b1, . . . , bn, we inductively (starting from an empty set of bound

variables) define v ∈ V as bound by b1, . . . , bn if v occurs outside of arithmetic terms in

some bi for 1 ≤ i ≤ n such that bi is

• (i) a classical atom,

• (ii) a built-in atom t = u or u = t, and any member of V occurring in t is bound

by {b1, . . . , bn} \ bi or
• (iii) an aggregate atom #aggrE = u, and any member of V occurring in E is bound

by {b1, . . . , bn} \ bi.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 303

The entire set V of variables is bound by b1, . . . , bn if each v ∈ V is bound by b1, . . . , bn.

A rule, weak constraint or query r is safe if the set V of global variables in r is

bound by b1, . . . , bn (taking a query r to be of form b1?), and for each aggregate element

t1, . . . , tk : l1, . . . , lm in r with occurring variable set W , the set W \ V of local variables

is bound by l1, . . . , lm. For instance, the rule

p(X,Y)← q(X),#sum{S,X : r(T,X), S = (2 ∗ T)−X} = Y.

is safe because all variables are bound by q(X), r(T,X), while

p(X,Y)← q(X),#sum{S,X : r(T,X), S +X = 2 ∗ T} = Y

is not safe because the expression S + X = 2 ∗ T does not respect condition (ii)

above.

Finiteness. Pragmatically, ASP programs solving real problems have a finite number

of answer sets of finite size. As an example, a program including p(X + 1) ← p(X) or

p(f(X)) ← p(X) along with a fact like p(0) is not an admissible input in ASP Compe-

titions. There are pragmatic conditions that can be checked to ensure that a program

admits finitely many answer sets (e.g., Calimeri et al. 2011a); in alternative, finiteness

can be witnessed by providing a known maximum integer and maximum function nesting

level per problem instance, which correctly limits the absolute values of integers as well

as the depths of functional terms occurring as arguments in the atoms of answer sets.

The last option is the one adopted in ASP Competitions since 2011.

Aggregates. For the sake of an uncontroversial semantics, we require aggregates to be

nonrecursive. To make this precise, for any predicate atom q = p(t1, . . . , tn), let q
v = p/n

and ¬qv = ¬p/n. We further define the directed predicate dependency graph DP = (V,E)

for a program P by

• the set V of vertices av for all classical atoms a appearing in P and

• the set E of edges (hv
i , h

v
1), . . . , (h

v
i , h

v
m) and (hv

1, a
v), . . . , (hv

m, av) for all rules

h1 | . . . | hm ← b1, . . . , bn. in P , 1 ≤ i ≤ m and classical atoms a appearing

in b1, . . . , bn.

The aggregates in P are nonrecursive if, for any classical atom a appearing within ag-

gregate elements in a rule h1 | . . . | hm ← b1, . . . , bn in P , there is no path from av to

hv
i in DP for 1 ≤ i ≤ m.

Predicate Arities. The arity of atoms sharing some predicate name is not assumed to

be fixed. However, system implementers are encouraged to issue proper warning messages

if an input program includes classical atoms with the same predicate name but different

arities.

Undefined Arithmetics. The semantics of ASP-Core-2 requires that substitutions that

lead to undefined arithmetic subterms (and are thus not well formed) are excluded by

ground instantiation as specified in Section 3. In practice, this condition is not easy to

meet and implement for a number of technical reasons; thus, it might cause problems to

existing implementations, or even give rise to unexpected behaviors.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

304 F. Calimeri et al.

In order to avoid such complications, we require that a program P shall be invariant

under undefined arithmetics; that is, grnd(P) is supposed to be equivalent to any ground

program P ′ obtainable from P by freely replacing arithmetic subterms with undefined

outcomes by arbitrary terms from UP . Intuitively, rules have to be written in such a way

that the semantics of a program does not change, no matter the handling of substitutions

that are not well formed.

For instance, the program

a(0).

p← a(X),not q(X/X).

has the (single) answer set {a(0)}. This program, however, is not invariant under unde-

fined arithmetics. Indeed, a vanilla grounder that skips arithmetic evaluation (in view

of no rule with atoms of predicate q in the head) might produce the (simplified) ground

rule p← a(0), and this would result in the wrong answer set {a(0), p}.
In contrast to the previous program,

a(0).

p← a(X),not q(X/X), X �= 0

is invariant under undefined arithmetics, since substitutions that are not well formed

cannot yield applicable ground rules. Hence, a vanilla grounder as considered above may

skip the arithmetic evaluation of ground terms obtained fromX/X without risking wrong

answer sets.

6 EBNF grammar and lexical table

<program> ::= [<statements>] [<query>]

<statements> ::= [<statements>] <statement>

<query> ::= <classical_literal> QUERY_MARK

<statement> ::= CONS [<body>] DOT

| <head> [CONS [<body>]] DOT

| WCONS [<body>] DOT

SQUARE_OPEN <weight_at_level> SQUARE_CLOSE

<head> ::= <disjunction> | <choice>

<body> ::= [<body> COMMA]

(<naf_literal> | [NAF] <aggregate>)

<disjunction> ::= [<disjunction> OR] <classical_literal>

<choice> ::= [<term> <binop>]

CURLY_OPEN [<choice_elements>]

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 305

CURLY_CLOSE [<binop> <term>]

<choice_elements> ::= [<choice_elements> SEMICOLON]

<choice_element>

<choice_element> ::= <classical_literal> [COLON [<naf_literals>]]

<aggregate> ::= [<term> <binop>] <aggregate function>

CURLY_OPEN [<aggregate_elements>]

CURLY_CLOSE [<binop> <term>]

<aggregate_elements> ::= [<aggregate_elements> SEMICOLON]

<aggregate_element>

<aggregate_element> ::= [<basic_terms>] [COLON [<naf_literals>]]

<aggregate_function> ::= AGGREGATE_COUNT

| AGGREGATE_MAX

| AGGREGATE_MIN

| AGGREGATE_SUM

<weight_at_level> ::= <term> [AT <term>] [COMMA <terms>]

<naf_literals> ::= [<naf_literals> COMMA] <naf_literal>

<naf_literal> ::= [NAF] <classical_literal> | <builtin_atom>

<classical_literal> ::= [MINUS] ID [PAREN_OPEN [<terms>] PAREN_CLOSE]

<builtin_atom> ::= <term> <binop> <term>

<binop> ::= EQUAL

| UNEQUAL

| LESS

| GREATER

| LESS_OR_EQ

| GREATER_OR_EQ

<terms> ::= [<terms> COMMA] <term>

<term> ::= ID [PAREN_OPEN [<terms>] PAREN_CLOSE]

| NUMBER

| STRING

| VARIABLE

| ANONYMOUS_VARIABLE

| PAREN_OPEN <term> PAREN_CLOSE

| MINUS <term>

| <term> <arithop> term>

<basic_terms> ::= [<basic_terms> COMMA] <basic_term>

<basic_term> ::= <ground_term> |

<variable_term>

<ground_term> ::= SYMBOLIC_CONSTANT |

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

306 F. Calimeri et al.

STRING | [MINUS] NUMBER

<variable_term> ::= VARIABLE |

ANONYMOUS_VARIABLE

<arithop> ::= PLUS

| MINUS

| TIMES

| DIV

Mathematical notation Lexical format
Token name used within this document (exemplified) (Flex notation)

ID a, b, anna, . . . [a-z][A-Za-z0-9_]*

VARIABLE X,Y,Name, . . . [A-Z][A-Za-z0-9_]*

STRING “http://bit.ly/cw6lDS”, “Peter”, . . . \"([^\"]|\\\")*\"

NUMBER 1, 0, 100000, . . . "0"|[1-9][0-9]*

ANONYMOUS_VARIABLE "_"

DOT . "."

COMMA , ","

QUERY_MARK ? "?"

COLON : ":"

SEMICOLON ; ";"

OR | "|"

NAF not "not"

CONS ← ":-"

WCONS :∼ ":~"

PLUS + "+"

MINUS − or ¬ "-"

TIMES ∗ "*"

DIV / "/"

AT @ "@"

PAREN_OPEN ("("

PAREN_CLOSE) ")"

SQUARE_OPEN ["["

SQUARE_CLOSE] "]"

CURLY_OPEN { "{"

CURLY_CLOSE } "}"

EQUAL = "="

UNEQUAL �= "<>"|"!="

LESS < "<"

GREATER > ">"

LESS_OR_EQ ≤ "<="

GREATER_OR_EQ ≥ ">="

AGGREGATE_COUNT #count "#count"

AGGREGATE_MAX #max "#max"

AGGREGATE_MIN #min "#min"

AGGREGATE_SUM #sum "#sum"

COMMENT % this is a comment "%"([^*\n][^\n]*)?\n

MULTI_LINE_COMMENT %* this is a comment *% "%*"([^*]|*[^%])*"*%"

BLANK [\t\n]+

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

http://bit.ly/cw6lDS
https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 307

Lexical values are given in Flex7 syntax. The COMMENT, MULTI_LINE_COMMENT, and

BLANK tokens can be freely interspersed amidst other tokens and have no syntactic or

semantic meaning.

7 Conclusions

In this document, we have presented the ASP-Core-2 standard language that defines syn-

tax and semantics of a standard language to which ASP solvers have to adhere in order

to enter the ASP Competitions series, since 2013. The standardization committee is still

working on the evolution of the language in order to keep it aligned with the achieve-

ments of the ASP research community. Among the features that are currently under

consideration, we mention here a semantics for recursive aggregates, for which several

proposals are at the moment in place, for example, Pelov (2004), Faber et al. (2011),

Alviano et al . (2011), Gelfond and Zhang (2014), Alviano et al. (2015), and a standard

for intermediate (Gebser et al. 2016) and output (Brain et al. 2007; Krennwallner 2013)

formats for ASP solvers.

References

Abiteboul, S., Hull, R. and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Alviano, M., Calimeri, F., Faber, W., Leone, N. and Perri, S. 2011. Unfounded sets
and well-founded semantics of answer set programs with aggregates. Journal of Artificial
Intelligence Research 42, 487–527.

Alviano, M., Faber, W. and Gebser, M. 2015. Rewriting recursive aggregates in answer
set programming: Back to monotonicity. Theory and Practice of Logic Programming 15, 4–5,
559–573.

Brain, M., Faber, W., Maratea, M., Polleres, A., Schaub, T. and Schindlauer, R.

2007. What should an asp solver output? A multiple position paper. In Proceedings of the
First International SEA’07 Workshop. CEUR Workshop Proceedings, vol. 281.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Calimeri, F., Cozza, S., Ianni, G. and Leone, N. 2011a. Finitely recursive programs: De-
cidability and bottom-up computation. AI Communications 24, 4, 311–334.

Calimeri, F., Gebser, M., Maratea, M. and Ricca, F. 2016. Design and results of the Fifth
Answer Set Programming Competition. Artificial Intelligence 231, 151–181.

Calimeri, F., Ianni, G. and Ricca, F. 2014. The third open answer set programming com-
petition. TPLP 14, 1, 117–135.

Calimeri, F., Ianni, G., Ricca, F. and della Calabria Organizing Committee, T. U.

2011b. Third ASP Competition, File and language formats. URL: http://www.mat.unical.
it/aspcomp2011/files/LanguageSpecifications.pdf.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. 2003. Aggregate functions
in DLV. In Proceedings ASP03 - Answer Set Programming: Advances in Theory and Imple-
mentation, Messina, Italy, M. de Vos and A. Provetti, Eds, 274–288. URL: http://CEUR-WS.
org/Vol-78/.

7 http://flex.sourceforge.net/.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
http://CEUR-WS.org/Vol-78/
http://CEUR-WS.org/Vol-78/
http://flex.sourceforge.net/
https://doi.org/10.1017/S1471068419000450

308 F. Calimeri et al.

Denecker, M., Pelov, N. and Bruynooghe, M. 2001. Ultimate well-founded and stable
model semantics for logic programs with aggregates. In Proceedings of the 17th International
Conference on Logic Programming, P. Codognet, Ed. Springer Verlag, 212–226.

Erdem, E., Gelfond, M. and Leone, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

Faber, W., Leone, N. and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Proceedings of the 9th European Conference on Artificial
Intelligence (JELIA 2004), J. J. Alferes and J. Leite, Eds. Lecture Notes in AI (LNAI), vol.
3229. Springer Verlag, 200–212.

Faber, W., Leone, N. and Pfeifer, G. 2011. Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence 175, 1, 278–298. Special Issue: John
McCarthy’s Legacy.

Ferraris, P. 2005. Answer sets for propositional theories. In Logic Programming and Nonmono-
tonic Reasoning — 8th International Conference, LPNMR’05, Diamante, Italy, September
2005, Proceedings, C. Baral, G. Greco, N. Leone and G. Terracina, Eds. Lecture Notes in
Computer Science, vol. 3662. Springer Verlag, 119–131.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V. and Schaub, T. 2015. Abstract
Gringo. Theory and Practice of Logic Programming 15, 4–5, 449–463.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Wanko, P.

2016. Theory solving made easy with clingo 5. In Technical Communications of the 32nd Inter-
national Conference on Logic Programming (ICLP 2016 TCs), M. Carro, A. King, N. Saeedloei
and M. D. Vos, Eds. OASICS, vol. 52. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2:1–2:15.

Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F. and Schaub, T. 2018a. Eval-
uation techniques and systems for answer set programming: A survey. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018),
J. Lang, Ed. ijcai.org, 5450–5456.

Gebser, M., Maratea, M. and Ricca, F. 2017a. The design of the seventh answer set pro-
gramming competition. In Proceedings of the 14th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 2017), M. Balduccini and T. Janhunen,
Eds. Lecture Notes in Computer Science, vol. 10377. Springer, 3–9.

Gebser, M., Maratea, M. and Ricca, F. 2017b. The sixth answer set programming compe-
tition. Journal of Artificial Intelligence Research 60, 41–95.

Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M. and Runge, M. 2018b.
Routing driverless transport vehicles in car assembly with answer set programming.
TPLP 18, 3–4, 520–534.

Gelfond, M. 2002. Representing knowledge in A-Prolog. In Computational Logic. Logic Pro-
gramming and Beyond, A. C. Kakas and F. Sadri, Eds. LNCS, vol. 2408. Springer, 413–451.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385.

Gelfond, M. and Zhang, Y. 2014. Vicious circle principle and logic programs with aggregates.
Theory and Practice of Logic Programming 14, 4–5, 587–601.

Harrison, A. and Lifschitz, V. 2018. Relating two dialects of answer set programming. In
Proceedings of the 17th International Workshop on Non-monotonic Reasoning (NMR 2018),
E. Fermé and S. Villata, Eds, 99–108.

Kemp, D. B. and Stuckey, P. J. 1991. Semantics of logic programs with aggregates. In
Proceedings of the International Symposium on Logic Programming (ISLP’91), V. A. Saraswat
and K. Ueda, Eds. MIT Press, 387–401.

Krennwallner, T. 2013. ASP Competition, output format. URL: https://www.mat.unical.
it/aspcomp2013/files/aspoutput.txt.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://www.mat.unical.it/aspcomp2013/files/aspoutput.txt
https://www.mat.unical.it/aspcomp2013/files/aspoutput.txt
https://doi.org/10.1017/S1471068419000450

ASP-Core-2 Input Language Format 309

Leone, N. and Ricca, F. 2015. Answer set programming: A tour from the basics to advanced
development tools and industrial applications. In Web Logic Rules - 11th International Sum-
mer School on Reasoning Web, Tutorial Lectures, W. Faber and A. Paschke, Eds. Lecture
Notes in Computer Science, vol. 9203. Springer, 308–326.

Lierler, Y., Maratea, M. and Ricca, F. 2016. Systems, engineering environments, and
competitions. AI Magazine 37, 3, 45–52.

Osorio, M. and Jayaraman, B. 1999. Aggregation and negation-as-failure. New Generation
Computing 17, 3, 255–284.

Pelov, N. 2004. Semantics of Logic Programs with Aggregates. Ph.D. thesis, Katholieke Uni-
versiteit Leuven, Leuven, Belgium.

Pelov, N., Denecker, M. and Bruynooghe, M. 2004. Partial stable models for logic pro-
grams with aggregates. In Proceedings of the 7th International Conference on Logic Program-
ming and Non-Monotonic Reasoning (LPNMR-7). Lecture Notes in AI (LNAI), vol. 2923.
Springer, 207–219.

Pelov, N., Denecker, M. and Bruynooghe, M. 2007. Well-founded and stable semantics of
logic programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

Pelov, N. and Truszczyński, M. 2004. Semantics of disjunctive programs with monotone
aggregates - An operator-based approach. In Proceedings of the 10th International Workshop
on Non-monotonic Reasoning (NMR 2004), Whistler, BC, Canada, 327–334.

Ross, K. A. and Sagiv, Y. 1997. Monotonic aggregation in deductive databases. Journal of
Computer and System Sciences 54, 1, 79–97.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 181–234.

Van Gelder, A. 1992. The well-founded semantics of aggregation. In Proceedings of the
Eleventh Symposium on Principles of Database Systems (PODS’92). ACM Press, 127–138.

https://doi.org/10.1017/S1471068419000450 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000450

	Introduction
	ASP-Core-2 language syntax
	Semantics
	Syntactic shortcuts
	Using ASP-Core-2 in practice – restrictions
	EBNF grammar and lexical table
	Conclusions
	References

