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Abstract

Objectives: Neuropsychological tests of episodic memory often include a measure of memory retention to facilitate the
diagnosis of memory disorders. However, the traditional percent retention (PR) score has limited interpretability when
smaller amounts of information are both initially learned and later recalled, creating a pseudo-ceiling effect. To improve
psychometrics of PR, we investigated a scoring procedure that incorporates levels of certainty into estimates of memory
retention based on learning level. Methods: Word-list recall data from adults with traumatic brain injury were modeled
using a uniform prior in the Bayesian framework. From the resultant posterior probability distributions, we derived a
measure referred to as retention probability (RPr), which distinguishes the retention of relatively good and poor learners.
PR and RPr scores were compared on their distributional properties and associations with theoretically related memory
measures. Results: Significant distributional differences between PR and RPr were observed. RPr removed the
conspicuous ceiling of PR, resulting in stronger correlational and predictive relationships with other memory measures.
Conclusion: A Bayesian procedure for quantifying memory retention has psychometric advantages and potentially
widespread applicability for measuring the change in behavioral features over time. Future directions are briefly
discussed. A sample RPr calculator is provided for interactive exploration of the method.

Keywords: Episodic memory, Memory consolidation, Neuropsychological assessment, Psychometrics, Traumatic brain
injury, Dementia

INTRODUCTION

Neurocognitive disorders often result in some form of memory
disturbance, making the assessment of episodic memory an
important component of clinical neuropsychological evalua-
tions. Memory retention, or the storage of learned material over
time, is of particular interest to clinicians and researchers given
that impaired storage/consolidation is the key differentiator
between amnestic and non-amnestic presentations (Squire,
2006) and a hallmark of medial temporal lobe (MTL) damage
(Squire,Genzel,Wixted,&Morris, 2015). Because only learned
material can be retained, it is important to distinguish between
“good learners” and “poor learners” when making inferences
about retention ability. However, these distinctions are not pos-
sible in the traditional method of estimating memory retention.

To illustrate, we consider a scenario where Person A
recalls a maximum of 4 words after multiple presentations

of a 10-word list (recall at learning, or initial recall), and suc-
cessfully recalls all 4 of these words after a 20-min delay
(delayed recall). Person B recalls all 10 words initially and
at the delay. Person C learns and recalls 7 words. To quantify
the retention ability of these individuals, clinical memory
tests typically prescribe the use of percent retention (PR)
score obtained from dividing delayed recall by initial recall
and multiplying by 100. Although A was a relatively poor
learner, B learned very well, and C was average, all of these
individuals would be assigned a PR score of 100.

A practical limitation of PR scores is that they induce a
pseudo-ceiling effect, where individuals demonstrating
markedly different levels of initial and delayed recalls are
assigned similarly high retention scores. This may hinder
or even prevent statistical analysis due to a lack of sufficient
variability at the ceiling. Their psychometric challenges are
likely why PR scores often show suboptimal sensitivity
and specificity for detecting memory impairment in aging
and are relatively understudied compared to recall and recog-
nition measures (Weissberger et al., 2017). Further, to
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facilitate interindividual comparisons, PR scores standardize
retention measurement across learning levels by proportion-
alization on initial recall; this may be inappropriate if memory
retention and learning are not independent, as some have
argued (Elliott, Isaac, & Muhlert, 2014; see Loftus, 1985,
for original argument). In this view, retention cannot be iso-
lated as a “pure” process within most standardized memory
paradigms.

The current article addresses the limitations of the PR
score by presenting a scoring procedure that incorporates
an index of certainty in retention estimates conditioned on
the learning level. We consider that our certainty in retention
scores is lower when these scores are based on fewer obser-
vations—as is the case for poor learners. For example, Person
A described above had less information to retain than Person
B, thereby reducing certainty in the “perfect” retention ability
suggested by their PR score. We use Bayesian statistics with
individual recall data to derive an alternate measure of reten-
tion, referred to here as retention probability (RPr). Comparing
psychometric properties between PR and RPr in a sample of
older adults with traumatic brain injury (TBI), we hypothesize
that RPr has amore statistically favorable frequency distribution
than PR, affording greater sensitivity to individual differences in
the upper tail (i.e., a reduction of the ceiling effect). It is also
anticipated that, compared with PR, the increased measurement
precision of RPr will result in stronger correlations with other
putative correlates of MTL integrity, namely, recognition
memory and independent measures of delayed recall.

METHODS

Participants included 110 middle age-older adult individuals
with chronic TBI (sustained at least 1 year ago) enrolled in a
bi-center study on aging with TBI. Participants must have
sustained a TBI of at least moderate severity as evidenced
by at least one of the following: Glasgow Coma Scale score
<13 (not due to intoxication/sedation) on admission to emer-
gency care, documented loss of consciousness of at least 1 h,
documented post-traumatic amnesia of at least 24 h, or acute
neuroimaging abnormality. Individuals were excluded if they
had a history of TBI separate from the index injury, other neu-
rological disorder, or serious psychiatric illness such as
schizophrenia or bipolar disorder. Three participants were
removed due to incomplete memory recall data. The remain-
ing 107 participants had a mean age of 64.7 ± 8.2, 13.6 ± 2.6
years of education, and were 9.9 ± 6.6 years post-injury.
Thirty participants were female. Study procedures were
approved by the institutional review boards of Moss
Rehabilitation Research Institute (Elkins Park, PA, USA)
and Pennsylvania State University (University Park, PA,
USA), and were in accordance with the Helsinki Declaration.

Participants were administered a neuropsychological test
battery as part of a larger study on the long-term health effects
of TBI. The battery included the Hopkins Verbal Learning
Test-Revised (HVLT-R; Benedict, Schretlen, Groninger, &
Brandt, 1998) and portions of the Repeatable Battery for

the Assessment of Neuropsychological Status (RBANS;
Randolph, Tierney, Mohr, & Chase, 1998). The HVLT-R
assesses verbal episodic memory and consists of a 12-word
list presented 3 times, after each of which the examinee freely
recalls as many words as possible (learning/immediate recall
trials). Following a 20- to 25-min delay, participants freely
recall the word list one time (delayed recall trial). A yes/no
recognition trial is subsequently administered consisting of
12 target words and 12 foils. In addition to recall and recog-
nition scores, a PR score is calculated from dividing delayed
recall by the number of words initially recalled and multiply-
ing by 100. Note that “initial recall” here refers to the best
performance on learning trials 2 or 3 (Benedict et al.,
1998), and not recall on the first learning trial. When delayed
recall exceeded initial recall (n= 5), the latter was set to the
delayed recall score under the assumption that recalled words
at delay must have been learned (maximum attainable PR
score = 100%). This scoring scheme was also used for the
calculation of RPr (described below).

The RPr score was calculated using the Bayesian frame-
work. Briefly, the Bayesian method characterizes uncertainty
in quantities by modeling them as random variables with
associated probability distributions (Gelman, Carlin, Stern,
& Rubin, 2003). A distribution based on previous theoretical
or empirical information (the prior) is “updated” with new
data to provide a new probability distribution (the posterior).

We consider retention as a random variable in probability
space, where it is assumed that recall responses follow a
Bernoulli distribution (i.e., successful or failed delayed recall
of an initially recalled word) with probability q representing
an individual’s overall retention ability. The choice of the
prior is a key consideration in Bayesian analysis, and selec-
tionsmay vary based on clinical goals or data availability. For
example, normative test data or meta-analytic studies may
provide guidance on “expected” performance (van de
Schoot et al., 2014). To provide a proof-of-principle demon-
stration of the Bayesian approach in the current study, we
implement a uniform prior using the beta distribution
(Bayes–Laplace prior; see Tuyl, Gerlach, & Mengersen,
2009), where all possible retention probabilities, .00 to
1.00, are equally likely. The beta prior is typically used for
data expressed in proportions (Lynch, 2007), and reflects a
conjugate prior, in that both the prior and the resulting pos-
terior follow beta distributions. Note also that the beta prior
reflects a distribution over probabilities. To update this prior
for each individual, we use Bayes’ theorem with initial and
delayed recall data to obtain an individual-specific posterior
probability distribution of q, or P(q):

P qð Þ ¼ qð��1Þ 1� qð Þ ��1ð Þ=B �; �ð Þ (1)

where α= 1þ delayed recall; β= 1þ initial recall –

delayed recall; and the beta function, B(α,β)= (α – 1)!
(β – 1)!/(αþ β – 1)!. The distribution over retention probabil-
ities P(q) describes an individual’s probabilistic retention
level based on their recall behavior; the greater a given indi-
vidual’s initial recall and the more extreme their delayed
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recall in relation to that initial recall, the greater the certainty
in the retention estimate (i.e., the sharper the probability den-
sity function of q). This approach is intuitive, reflecting high
certainty that retention is low in the case of an individual who
learns perfectly and recalls nothing at the delay, and equally
high certainty that retention is high when an individual learns
perfectly and also recalls perfectly at the delay. From
Equation 1 we derive the mean E(q) (Equation 2) and stan-
dard deviation σ(q) (Equation 3) of the posterior probability
distribution, where the magnitude of the standard deviation is
inversely related to initial recall:

E q½ � ¼ �= �þ �ð Þ (2)

� q½ � ¼ p
��= �þ �ð Þ2 �þ � þ 1ð Þ½ �f g (3)

Dividing E(q) by σ(q) gives a summary metric. To facili-
tate direct comparison with PR scores, this quantity was
rescaled by dividing by the maximum possible value for
E[q] on the HVLT-R (i.e., when initial recall and delayed
recall both equal 12) and multiplying by 100, yielding the
RPr score that was used in subsequent analyses. Thus, while
ultimately derived from the posterior probability distribution,
the RPr score is not an individual’s probability of recalling
words from the list. Rather, it is interpreted as the proportion
of words maintained over a delay (similar to PR) with an
adjustment for each individual’s starting point (learning level,
which is not captured in PR). It is important to note that this
latter feature can alter the rank ordering of individuals when
comparing them on RPr versus PR. For example, Person X
who recalls 8/12 words initially learned has a slightly lower
PR score (67) than Person Y who recalls 5/7 words (71).
However, Person X’s RPr score (37) indicates a slightly bet-
ter performance than Person Y (32), reflecting the former’s
higher learning level.

Psychometric properties of PR and RPr scores were com-
pared using frequentist statistics, due to their interpretability
and standard usage in psychological research. Paired
differences in retention scores were evaluated using the
Wilcoxon signed-rank test. The distributional properties of
the two measures were characterized quantitatively and vis-
ually. Coefficients of variation (CoV) were computed as indi-
ces of dispersion. Relationships of PR and RPr with
demographic variables were assessed with Spearman rank-
order correlations. To evaluate the extent to which PR and
RPr are related to theoretically convergent memory perfor-
mances, we quantified their relationships to these other
memory measures with Spearman rank-order correlations
and tested differences in correlation strength using
Steiger’s Z tests (Myers & Sirois, 2004). Convergent memory
measures were available for most participants (N= 102) and
included the Recognition Discrimination Index from the
HVLT-R recognition trial as well as scores from RBANS
subtests: Story Recall and Figure Recall, which assess narra-
tive verbal memory and visual memory, respectively.
Convergent memory performances were age-corrected based
on normative data from their respective test manuals. To

characterize the extent to which RPr may have greater predic-
tive validity than PR in the upper end of the PR distribution,
the full sample was median-split based on PR scores; in the
top and bottom 50% separately (n’s= 51), we performed
multivariate regressions with PR or RPr as predictors and
convergent measures as dependents. All analyses evaluated
significance at α= .05. Z-test statistics were obtained from
Lee and Preacher (2013). All other analyses were performed
in jamovi version 1.0.7.0 (The jamovi project, 2019).

RESULTS

As visualized in Figure 1, both PR and RPr deviated signifi-
cantly from normality but were generally mesokurtic.
Expectedly, PR scores were markedly left-skewed and exhib-
ited a clear ceiling effect, with half of the sample recording
greater than 80% retention. In contrast, RPr scores were
right-skewed but maintained appreciable variability near
the floor. Standardized dispersion as measured by CoV
was greater for RPr than PR. Figure 1 also demonstrates that
even in PR scores further away from the ceiling (e.g., at 50%),
RPr provided greater discrimination between individuals.

Descriptive and inferential statistics for PR and RPr are
provided in Table 1. PR scores were significantly greater
overall than RPr scores within individuals. As expected,
PR and RPr showed a strong monotonic relationship
(ρ= .97, p< .001). Neither measure was related to age
(PR: ρ= -.13, p= .19; RPr: ρ= -.13, p= .17) or years of edu-
cation (PR: ρ= .10, p= .30; RPr: ρ= .15, p= .12). Both PR
andRPr correlated significantly with performance on all theo-
retically convergent measures (word list recognition, story
recall, and figure recall). However, these bivariate relation-
ships were significantly stronger with RPr than PR
(Table 1, lower half).

In individuals scoring in the upper half of the PR score dis-
tribution (>78 PR), PR did not significantly predict conver-
gent memory performances (F[3,47]= .81, p= .49, Wilks’
Λ= .95). In contrast, RPr demonstrated significant predictive
validity in this subsample (F[3,47]= 6.43, p< .001, Wilks’
Λ= .71) for all convergent measures (univariate p’s: list rec-
ognition, <.001; story recall, .002; figure recall, .04).
Therefore, proximal to the PR ceiling, RPr accounted for
meaningful variance in theoretically related test perfor-
mances that could not be detected with PR. In the lower half
of the PR distribution (<78 PR), both measures significantly
predicted convergent performances, with RPr recording a
numerically larger effect size (η2= .58 vs. .45). See
Appendix A for full regression results.

DISCUSSION

In clinical episodic memory paradigms, traditional PR scores
lack utility when learning is suboptimal, resulting in pseudo-
ceiling effects that have statistical and conceptual limitations.
The present findings demonstrate that a Bayesian normaliza-
tion method applied to initial and delayed recall scores
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removes this ceiling effect and permits statistical analyses at
the group level. The increased variability in retention scores
afforded by our approach appears to be clinically meaningful.

In addition to large magnitude differences between PR and
RPr within individuals, distributions of the two scores were vis-
ually differentiable, with a conspicuous ceiling effect in PR that
was absent in RPr. Our prediction that RPr would increase vari-
ability in retention scores was supported by greater score
dispersion inRPr thanPR and stronger association ofRPr versus
PR to theoretically related memory measures. This has impor-
tant measurement and interpretive implications.

As described earlier, the PR score artificially equates
differences in learning levels across participants. We showed
that this conventional approach removes potentially meaningful
variance in retention ability when compared against a measure
that accommodates the learning level. Across the entire sample,
memory measures theoretically related to retention were more

strongly associated with RPr than PR. Further, in participants
with >78 PR (representing half of the sample), PR scores did
not predict convergent memory performances while RPr contin-
ued to have significant predictive value. These results indicate
that incorporating information about learning into retention esti-
mates may have psychometric advantages that could offer a
more robust approach to measuring vulnerabilities in learning
and memory compared to the traditional method.

There are limitations to thiswork that reveal opportunities for
future research. Our sample was comprised of older individuals
with TBI, and extension to other clinical disorders is needed.
Limited variability in age, education, and diagnosis hampered
our ability to examine relationships between retention scores
and clinical/demographic characteristics. Nonetheless, as noted
earlier, memory retention ability is typically of special interest in
older adult populations and a cornerstone of the differential
diagnosis of dementia. Therefore, our patient group represents

Table 1. Descriptive and inferential statistics for Percent Retention (PR) and Retention Probability (RPr) scores. SD= standard deviation.
CoV= coefficient of variation. HVLT-R RDI=Hopkins Verbal Learning Test-Revised Recognition Discrimination Index.
RBANS=Repeatable Battery for the Assessment of Neuropsychological Status

N= 107 PR RPr Hypothesis tests

Mean (SD) 70.7 (26.7) 41.0 (22.0) W= 5745, p< .001, Cohen’s d= 2.15
Median (range) 80.0 (100) 37.2 (91.5)
Skew –.88 .74
Kurtosis –.05 .09
Normality1 p< .001 p< .001
CoV .38 .54
N= 102 Spearman ρ

HVLT-R RDI .414*** .531*** Z= –5.51, p< .001
RBANS story recall .390*** .500*** Z= –5.05, p< .001
RBANS figure recall .323*** .402*** Z= –3.42, p< .001

1 Reflects results from the Shapiro–Wilk test. ***p< .001.

Fig. 1. Frequency distributions for retention measures. Shown are (A) Percent Retention (PR) and (B) Retention Probability (RPr) score
distributions. Data popouts: PR and RPr scores with respective initial and delayed recall data for the same five participants (Pt.), showing
equivalence in PR and score separation in RPr (N= 107).
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a population where RPr is particularly applicable, although we
recommendvalidation in larger andmore clinically diverse sam-
ples. In particular, future studies evaluating classification accu-
racy against diagnostic criteria in clinical groups with distinct
memory presentations (e.g., neurodegenerative dementias)
would be informative (Weissberger et al., 2017). Because
RPr captures both learning levels and differences between initial
and delayed recall, it may havemore immediate utility as a sum-
mary measure of memory in research studies, potentially obvi-
ating the need for separate learning and delayed recall
parameters and sparing a valuable degree of freedom in patient
studies.

Although beyond the scope of the current article, a similar
approach using Bayesian tools may be appropriate for other
applications in the social and behavioral sciences. The
method would be most relevant for describing change in
behavior where initial and follow-up measurements cannot
be assumed independent and effects of random error limit
interpretation of change scores (i.e., regression to the mean;
Barnett et al., 2005). For example, it could be used to calibrate
changes in individual post-treatment cognitive or physiologi-
cal responses by pre-treatment functioning.

We provide a user-friendly calculator as an interactive
guide to the RPr method (see Appendix B). Readers can enter
their own data and compare results with the traditional PR
approach. The accessibility of the RPr method has the poten-
tial to stimulate retrospective analyses of a variety of exper-
imental data and guide future research and practice.
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