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Typical problems with solutions characterised by first-kind discontinuities occurring at inter-

faces of layered inhomogeneous media are considered with respect to second-order differential

equations in partial derivatives. Direct, inverse and mixed types of solution discontinuities are

considered. Presented are generalised formulations of problems under consideration, having

discontinuous solutions and allowing a uniform description of the processes of heat, mass

and charge transfer in multilayer media. Homogeneous difference schemes built on the basis

of generalised solutions, which are illustrated by test problems with analytical solutions, are

given.
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1 Introduction

Discontinuities of distributed characteristics of fields (temperature, concentration, electric

potential, pressure, etc.) in mathematical descriptions of different physical processes can

be caused by different factors. The most common version of a discontinuous solution

applies to the development of mathematical models of the transfer processes in layered

inhomogeneous media, having a thin (compared with characteristic geometrical sizes

of the media), low-permeable interlayer at contact boundary between the media. When

contact problems of this kind are solved numerically, including thin interlayers into the

region of solutions, it requires an unjustifiable mesh refinement. Therefore, a simplified

model of an interlayer is developed for such cases, as this model allows this interlayer to be

excluded from the region of solution of a differential problem. Conditions of conjunction

of a solution at interface between the layered inhomogeneous media, present in a classic

statement of the problems of heat, mass and charge transfer, require approximation of

normal components of vectors of the specific substance flows in the case of the numerical
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Figure 1. Schemes of discontinuity of solution at point (a) direct jump, (b) inverse jump and

(c) combined jump.

solution, which involves certain difficulties in construction and realisation of calculation

algorithms. From this standpoint, it is expedient to reformulate the classic statements of

the corresponding problems, so that the transfer processes can be uniformly described for

the entire multilayer system as a whole, and that the interface conditions as an attribute

of mathematical formulation of a problem can be excluded. This study is dedicated to the

development of these generalised models for characteristic problems of heat, mass and

charge transfer with a discontinuous solution.

2 Discontinuous solution models

The development of models of an interlayer is based, as a rule, on a quasi-unidimensional

character of the process of transfer of a substance through the interlayer. A characteristic

example of a model of the interlayer is a problem of a non-ideal heat contact of two

heat-conducting bodies [1] . The model of the interlayer of non-ideally contacting media

is developed on the basis of an assumption that heat transfer through this interlayer

occurs in a normal direction to the contact boundary, and that it is unidimensional and

stationary. With these hypotheses, a jump of temperature [T ]Γ (hereinafter the jump of

function f(x̄) at boundary Γ is designated as [f]Γ ) at interfaces between the interlayer

and the heat-conducting media it separates is proportional to projection of the heat flow

vector, �w = −λ�∇T , onto a direction of normal �n to boundary Γ , i.e.

[T ]Γ = −Rwn|Γ , (2.1)

where R = δp/λp stands for the surface heat resistance determined through thickness δp
and thermal conductivity λp of the interlayer. In condition (2.1), [T ]Γ means [T ]Γ =

T |Γ+
− T |Γ− , where Γ+ is the side of surface Γ looking in the direction of normal �n. The

validity of using of such type of effective boundary conditions was studied recently in [2],

where the generalised boundary condition of a kind of non-ideal thermal contact was

derived from the asymptotic theory.

Note that expression (2.1) is invariant for selection of the direction of normal �n.

Specific peculiarity of the model of a non-ideal contact of type consists in the fact that

sign [T ]Γ = sign(�∇T )n|Γ . Therefore, R > 0 in condition (2.1). We will call this type of

solution as discontinuity a direct jump (Figure 1(a)), in contrast to the inverse jump,

which will be considered below. In practical applications, the interlayer may have a

complex internal structure with heat-conducting properties, which are hard to identify. In

such cases, the heat resistance of the interlayer R is determined experimentally. Contact
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problems of thermal conductivity with such type of the interlayer model are not an

exception. Similar problems arise in subsurface hydrodynamics, which studies filtration

of subterranean waters through thin, low-permeability interlayers, in contact problems of

interaction of the electric fields in layered heterogeneous media and in other applications.

The other variant of discontinuity of the unknown function at an internal boundary of

the solution region is a case of the problem associated with calculation of scalar potential

ϕ of the electromagnetic field in the ‘anode–arc plasma’ system. A thin near-anode layer

exists at the interface between the metal anode and electric arc plasma. According to the

generalised Ohm’s law, the electric current in this layer can be directed opposite to the

vector of intensity of the electric field [3]. A simplified model of the near-anode layer is

suggested in [4]. According to this model, jump [ϕ]Γ of potential of the electric field in

this layer is in a non-linear dependence upon the value of component jn|Γ , normal to

the anode boundary, of the vector of electric current density, �j = −σ�∇ϕ, where σ is the

specific electrical conductivity, i.e.

[ϕ]Γ = G(jn|Γ ). (2.2)

It is assumed in this case that jn|Γ remains continuous at boundary Γ of contact of the

anode with plasma. Unlike model (2.1) of a non-ideal contact, model of the anode layer

(2.2) does not only make the problem of calculation of potential ϕ non-linear but also leads

to the other type of the solution jump, i.e. the so-called inverse jump, the unidimensional

variant of which is schematically shown in Figure 1(b). In this case, the following

relationship is met between the signs of [ϕ]Γ and (�∇ϕ)n|Γ : sign [ϕ]Γ = −sign(�∇ϕ)n|Γ , and

it is this relationship that justifies the ‘inverse jump’ term.

The problem of distributive diffusion gives another example of the solution jump. This

problem arises in the description of segregation of solute impurities in the processes of

solidification of alloys. Within the frames of the so-called modified Stephan’s problem [5],

the condition of conjunction of solutions at interface Γ between the phases has the

following form:

CS |Γ− = χCL|Γ+
, (2.3)

where CS and CL are the concentrations of an impurity in the solid and liquid phases,

respectively, and χ is the distribution coefficient (segregation coefficient), which meets

condition 0 < χ < 1 for the majority of alloys. If the lines on a phase diagram of a binary

alloy are straight, then χ = const, otherwise χ = χ(C) and the problem becomes non-

liner. In what follows, we will consider χ = const, which corresponds to a linearised phase

diagram. Condition (2.3) can be re-written to have the following form: [C]Γ = (1−χ)CL|Γ+
,

i.e. at interface Γ , the jump of the concentrations is proportional to the concentration of

the impurity in one of the phases. We will call this jump as a combined jump, meaning

that it is direct with respect to the direction of the concentration gradient in the solid

phase, and inverse with respect to the gradient in the liquid phases (see Figure 1(c)).

3 Generalised formulations of problems with discontinuous solutions

Let Rn be the n-dimensional Euclidean space, x̄ = {x1, x2, . . . , xn} – the Cartesian coordin-

ates, Ω ⊂ Rn – the region of solution of a problem, which is assumed to be two-layer to

https://doi.org/10.1017/S095679251100012X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251100012X


368 V. F. Demchenko et al.

simplify the writing: Ω = Ω1 ∪ Ω2, and Γ – interface between sub-regions Ω1 and Ω2.

Identify variables relating to sub-regions Ω1 and Ω2 by indices 1 and 2, respectively. Des-

ignate the unknown solution of the problem as u(x̄), and the specific flow of a substance

as �q(x̄). Consider function u(x̄) to be sufficiently smooth everywhere in Ω, except maybe

for interface Γ , where it experiences jump [u(x̄)]Γ . The jump [u(x̄)]Γ is assumed to be

a continuous function of coordinates of interface Γ . Define the specific flow in each of

the sub-regions Ω1 and Ω2 as follows: �qm = −km�∇um, m = 1, 2, assuming that operator
�∇ is determined in classic interpretation as a function of point x̄ ∈ Ω1, Ω2. Assume also

that coefficients km(x̄), m = 1, 2 are sufficiently smooth such that they meet the condition

km(x̄) � C > 0. Assume that functions um(x̄) (e.g. temperature, potential of the electric

field) in each of the sub-regions Ωm meet the following equations:

∇(km�∇um) = fm(x̄), x̄ ∈ Ωm, m = 1, 2. (3.1)

Assume that the specific flow vector component normal to Γ is continuous, i.e.

q1n|Γ+
= q2n|Γ− . (3.2)

For the non-ideal contact model (2.1), the second condition of conjunction of solutions

at interface Γ can be written in the following form:

[u]Γ = −R(�x)qn|Γ , �x ∈ Γ . (3.3a)

In a linear statement of the problem for calculation of potential of the electric field, in

contrast to (2.2), assume that the difference of potentials [u]Γ is set at interface Γ as a

function of coordinates of interface Γ :

[u]Γ = g(�x), �x ∈ Γ . (3.3b)

Assume that certain boundary conditions, the specific form of which is of no importance

for further description, are met at external boundary ∂Ω of region Ω, and suppose that

there is also a unique solution of the problem in the classic statement. Define functions

u(x̄), �q(x̄), ∂u
∂xi
, k(x̄) in Ω, which exist everywhere in Ω as functions of a point, except for

interface Γ , in the following form: ψ(x̄) = ψm(x̄), x̄ ∈ Ωm, where ψ(x̄) is one of the above

functions. The generalised partial derivatives D
Dxi

of function u(x̄) in region Ω are defined

as follows:

Du

Dxi
=

∂u

∂xi
+ [u](i)Γ γiδ(Γ ), x̄ ∈ Γ , (3.4)

where [u](i)Γ is the solution jump reached by function u(x̄) in a direction of axis 0xi (assume

further on that [u](i)Γ = [u]Γ , i = 1, n), γi = cos(�n, �xi) are the direction cosines of normal

to Γ , δ(Γ ) is the Dirac’s delta-function concentrated on hypersurface Γ of the (n − 1)th

measure. Using (3.4), introduce a generalised gradient GRAD− of discontinuous function

u(x̄) in Ω:

GRAD−u = �∇u+�n [u]Γ δ(Γ ). (3.5)
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As −k�∇u =�q(x̄), it follows from (3.5) that

GRAD−u = −ρ�q +�n [u]Γ δ(Γ ), (3.6)

where ρ(x̄) = k−1(x̄) is the specific resistance of a medium.

3.1 Non-ideal heat contact (direct jump)

Eliminate [u]Γ from (3.6) using the contact model (3.3a). Thus, we will have: −GRAD−u =

ρ�q+�nRqnδ(Γ ). Vector�nqn can be described as follows:�nqn = P�q, where P is the second-

rank tensor, components pi,j of which can be expressed in terms of the direction cosines

of normal �n as follows: pi,j = γiγj . Finally, it holds that

−GRAD−u = Ξ�q, (3.7)

where Ξ = Eρ+Rδ(Γ )P , and E is the unit tensor. Relationship (3.7) can be interpreted as

a generalised phenomenological law (Fourier’s, Fick’s, Darcy’s or Ohm’s law) formulated

for discontinuous potential u(x̄). As follows from (3.7), the non-ideal contact of con-

ducting media induces local anisotropy of conducting properties of a medium at contact

boundary Γ (orthotropy, if Γ is a plane parallel to coordinate axes, or if the direction

of normal to Γ coincides with the direction of the specific flow vector). Note that the

phenomenological law in a classic statement permits two equivalent forms of writing down

of the specific flow: in terms of specific conductivity (�q = −k�∇u), or in terms of specific

resistance (ρ�q = −�∇u) of a medium. Using the first of them in the conservation law,

−∇ ·�q = f, yields as a rule the second-order equation of the type (3.1). The generalised

phenomenological law (3.7) permits only one form, as the function inverse to the delta

function has no mathematical meaning [6]. In this connection, the generalised statement

of the problem for the calculation of the discontinuous potential should be based on a

mathematical description of the transfer process, which is absolutely natural from the

physical standpoint, in the form of a system of the first-order equations, one of which

(scalar) is a generalised law of conservation of a substance, and the second (vector) is a

generalised phenomenological law:

{
−DIV+�q = f,

−GRAD−u = Ξ�q,
(3.8)

where DIV+ is the divergence operator determined for the class of vector-functions

�q(x̄) ∈ �W 1
2 (Ω). Use of a generalised divergence operator in (3.8) is required because

components qi(x̄) of vector�q(x̄) at interface Γ are the discontinuous functions. Therefore,

the generalised solution of the problem of a non-ideal contact implies a pair of functions,

i.e. vector �q(x̄) and scalar u(x̄), which meet equation (3.8) and corresponding boundary

conditions in terms of the theory of generalised functions (we deliberately omit here the

required mathematical formalism, trying to maintain a physical clarity of the formulations

suggested). The generalised formulation of the non-stationary problem of a non-ideal heat

contact of two media can naturally result from (3.8), provided that the non-stationary
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term cp
∂u
∂t

, where cp is the specific heat and t is the time, is taken into account in the law

of conservation of energy.

Equation (3.8) also has a useful result for consideration of the problem with boundary

conditions of the third kind. Let a heat exchange (heat transfer) condition be set at

boundary ∂Ω following the Newton–Richman law:

−λ∂u

∂n
|∂Ω = α(u|∂Ω − uC ), (3.9)

where uC is the temperature of an external medium, where the heat exchange process

takes place. Condition (3.9) can be interpreted as a non-ideal heat contact of a body

with the external medium, and contact heat resistance R = α−1 can be allowed for in the

generalised Fourier’s law (3.7) by replacing here the boundary condition of the third kind

(3.9) by the boundary condition of the first kind, u|∂Ω = uC .

3.2 Charge transfer in ‘anode–arc plasma’ system (inverse jump)

In the case of an inverse solution jump, which, for example, forms an anode layer at the

arc plasma and metal anode interface, the generalised equations in a linear statement,

which describe distribution of potential of the electric field in such a two-layer medium,

can be written down, using expression (3.6) as a generalised Ohm’s law, as follows:

{
−DIV+�q = f,

−GRAD−u = ρ�q −�n[u]Γ δ(Γ ).
(3.10)

It is implied in (3.10) that the potential jump [u]Γ at the boundary Γ is set as a function

of the boundary coordinates of Γ , in accordance with (3.3b).

The generalised solution of the system of equations (3.10), in analogy with (3.8),

implies the vector of current density, �q(x̄), and scalar potential of the electromagnetic

field, u(x̄), which meet equations (3.10) in terms of the theory of generalised functions,

as well as boundary conditions set at ∂Ω. It is assumed in (3.10) that [u]Γ , being a

function of coordinates of interface Γ , is continuous at Γ . When solving real problems of

charge transfer in the ‘anode–arc plasma’ system, it is necessary to allow for non-linear

dependence (2.2) of the jump of potential on the current density. The iterative process

because of the non-linearity implies solving of linear equations of the type (3.10) at each

iteration.

3.3 Segregation of impurity at interface between phases (inverse and combined jump)

A characteristic example of the problem with a jump, the type of which depends upon

the time, is a non-stationary problem of segregation of an impurity during solidification.

Consider the generalised formulation of such a problem, first in the one-dimensional

statement. Let CS (x, t) and CL(x, t) be the concentrations of a solute impurity in the solid

and liquid phases, respectively, and x = ξ(t) is interface between the phases, the law of

motion of which is assumed to be known. Assume that transfer of substance in each of
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the co-existing phases occurs by the diffusion mechanism

∂CS
∂t

= DS
∂2CS

∂x2
, 0 < x < ξ(t);

∂CL
∂t

= DL
∂2CL

∂x2
, ξ(t) < x < l, (3.11)

where DS and DL are the diffusion coefficients. The following interface conditions for the

concentration fields in the solid and liquid phases are met at the interface between the

phases, x = ξ(t):⎧⎪⎨
⎪⎩

CS (ξ − 0, t) = χCL(ξ + 0, t),

DS
∂CS
∂x

∣∣∣∣
x=ξ(t)−0

− DL
∂CL
∂x

∣∣∣∣
x=ξ(t)+0

=
dξ

dt
[CL(ξ + 0, t) − CS (ξ − 0, t)] ,

(3.12)

where χ = const is the distribution coefficient. The first of them corresponds to condition
(2.3), and the second corresponds to a local law of conservation of mass at the interface

between the phases. In contrast to the cases considered above, not only the unknown

function, but also the specific mass flow is discontinuous in the problem of segregation

of an impurity at the interface between the media, discontinuity of the flow being

proportional to discontinuity of the solution. The discontinuity of the solution in the

case under consideration is removable. For this, add new unknown function u(x, t), i.e.

potential of mass transfer

u(x, t) =

{
uS (x, t), 0 < x < ξ(t),

uL(x, t), ξ(t) < x < l,

and re-write equations (3.11) and (3.12) allowing for function u(x, t)

∂uS
∂t

=
∂

∂x

(
DS

∂uS
∂x

)
, 0 < x < ξ(t);

1

χ

∂uL
∂t

=
∂

∂x

(
DL

χ

∂uL
∂x

)
, ξ(t) < x < l, (3.13)

uS (ξ − 0, t) = uL(ξ + 0, t); DS
∂uS
∂x

∣∣∣∣
x=ξ(t)−0

− DL

χ

∂uL
∂x

∣∣∣∣
x=ξ(t)+0

=
dξ

dt

1 − χ

χ
u(ξ, t). (3.14)

Set functions ζ(x, t) and DSL(x, t) in interval (0, l) as follows:

ζ(x, t) =

⎧⎪⎨
⎪⎩

1, 0 < x < ξ(t)

1

χ
, ξ(t) < x < l

; DSL(x, t) =

⎧⎪⎨
⎪⎩
DS , 0 < x < ξ(t)

DL

χ
, ξ(t) < x < l

.

Function ζ(x, t) can be interpreted as a relative solubility of the co-existing phases.

Introduce the generalised partial derivatives D
Dx
, D

Dt
of the function that experiences

discontinuities of the first kind by spatial variable x and time t. The discontinuity of the

flows of the mass transfer potential in condition (3.14) can be interpreted as a mass source

concentrated at boundary x = ξ(t). Therefore, the generalised equation of mass transfer

in the entire two-phase system can be written down in the following form:

ζ
∂u

∂t
=

D

Dx

(
DSL

∂u

∂x

)
− dξ

dt

1 − χ

χ
u(ξ, t)δ(x− ξ(t)), 0 < x < l. (3.15)

Here δ(x− ξ(t)) is the δ-function concentrated at point x = ξ(t).
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Express ζ(x, t) as ζ(x, t) = 1 + 1−χ
χ
θ(x − ξ(t)), where θ(x − ξ(t)) is the unit Heaviside

function. As Dθ
Dt

= dξ
dt
δ(x − ξ(t)), Dζ

Dt
= dξ

dt
1−χ
χ
δ(x − χ(t)). Hence, allowing for the fact that

u(ξ, t)δ(x − ξ(t)) = u(x, t)δ(x − ξ(t)), the generalised equation of mass transfer can be

written down in the interval (0, l) in a unified form by excluding the interface conditions

(3.14) as an element of the mathematical statement of the problem

D

Dt
(ζu) =

D

Dx

(
DSL

∂u

∂x

)
, 0 < x < l. (3.16)

In a general case of distribution diffusion in the M-phase system, the equation of mass

transfer will be maintained in form (3.16) if the relative solubility is determined in a

form of ζm =
[∏m

i=0 χi
]−1

, m = 0,M, χ0 = 1, and if the unknown function is replaced

by um = χmCm, ξm−1 < x < ξm. For the multi-dimensional modified Stephan problem, set

configuration of the solidification front and its movement speed. In this case, the form of

writing down of the equation of mass transfer remains identical to (3.16)

D

Dt
(ζu) = DIV− (DSLGRAD+u) .

Here DIV− is the extension in continuity of the ∇ operator to a class of piecewise

continuous (piecewise differentiable) vector functions, and GRAD+ is the gradient operator

determined in a class of functions u(x̄) ∈ W 1
2 (Ω).

4 Homogeneous difference schemes based on generalised equations

In this section, we will limit ourselves to the development of difference schemes for

sufficiently simple one-dimensional test problems. However, the main approaches to the

development of methods for finding numerical solutions will also be extended to a case of

the more complex multi-dimensional problems. In order to estimate the actual accuracy

of such schemes, consider three characteristic test problems having an exact solution.

4.1 Non-ideal contact

Formulate the one-dimensional stationary problem of a non-ideal contact as a first model

example. Consider the following problem for interval [0, 1] according to the generalised

statement (3.8)

−dq

dx
= f(x), −Du

Dx
= ρ̃(x)q(x), 0 < x < 1;

u(0) = u(1) = 0.

(4.1)

Here ρ̃(x) = ρ(x) + Rδ(x − ξ), where ρ(x) ∈ L∞(0, 1), ρ(x) � C > 0; ξ ∈ (0, 1) is the

coordinate of the boundary of a non-ideal contact, and R > 0 is the contact resistance.

Use mesh ωh = {xi = ih, i = 0, N, Nh = 1} in region [0, 1]. Integrating the first of

equations (4.1) in region [xi − 0.5h, xi + 0.5h] yields a mesh analog of the conservation

law in the following form:

−q(xi + 0.5h) − q(xi − 0.5h)

h
=

1

h

∫ xi+0.5h

xi−0.5h

f(x)dx. (4.2)
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Approximate equalities follow from the second equation of (4.1)

q(xi + 0.5h) ≈ −ai+ 1
2

u(xi+1) − u(xi)

h
, q(xi − 0.5h) ≈ −ai− 1

2

u(xi) − u(xi−1)

h
, (4.3)

where ai+ 1
2

=
[

1
h

∫ xi+1

xi
ρ(x)dx + R

h
βi

]−1
, βi = 1, ξ ∈ (xi, xi+1), βi = 0, ξ � (xi, xi+1). Derive

the following difference scheme from (4.2) and (4.3) and from the boundary conditions:

1

h

[
ai+ 1

2

yi+1 − yi

h
− ai− 1

2

yi − yi−1

h

]
= ϕi, i = 1, N − 1; y0 = 0, yN = 0, (4.4)

where the solution of the difference problem is expressed in terms of yi, and ϕi =
1
h

∫ xi+0.5h

xi−0.5h
f(x)dx. The resulting difference scheme is absolutely identical in the form of

writing down to the difference scheme for a smooth solution, the non-ideal contact being

allowed for in coefficients ai+ 1
2

of the mesh equation, which can be readily imparted

a physical meaning if we take into account that the integral in square brackets is the

resistance of a mesh cell, which corresponds to a series connection of conductors. Let

u
(h)
i = 1

h

∫ xi+1

xi
u(x)dx be the projection of a solution of the differential problem onto the

mesh, and zi = yi−u(h)
i – the error of the numerical solution. It can be shown that inequality

‖z‖C � Mh, where M = const, takes place in the above class of coefficients. Therefore,

difference scheme (4.4) is uniformly reduced to the generalised solution of problem (4.1)

and has the first order of accuracy. In order to prove this inequality, the approximation

error is estimated in a weak summatory metric [7], the involvement of which is related to

the fact that the local approximation error in the vicinity of discontinuity of the solution

is O
(

1
h

)
. Allowing for the fact that the number of the mesh points with an abnormal

approximation error remains finite at h → 0, it results in the above estimate of accuracy

of the difference scheme. Note that difference scheme (4.4) is accurate at f(x) ≡ 0. In a

general case, where ρ̃(x) ∈ W−1
2 (0, 1), f(x) ∈ L2(0, 1), u(x) ∈ L2(0, 1), q(x) ∈ W 1

2 (0, 1), it

is possible to prove only the convergence of the difference scheme (without establishing

the order of accuracy).

Now formulate the one-dimensional non-stationary problem of thermal conductivity

with a discontinuous solution by the type of a non-ideal heat contact as follows:

c1
∂u1

∂t
= k1

∂2u1

∂x2
, u1(x, 0) = 1, x > 0;

c2
∂u2

∂t
= k2

∂2u2

∂x2
, u2(x, 0) = 0, x < 0;

k1
∂u1

∂x

∣∣∣∣
x=0

= k2
∂u2

∂x

∣∣∣∣
x=0

; k1
∂u1

∂x

∣∣∣∣
x=0

= α[u]x=0; lim
x→∞

u1(x, t) = 1; lim
x→−∞

u2(x, t) = 0,

assuming that k1, k2, c1, c2 and α are constants. The problem formulated has an exact

solution [1]. Write down, in analogy with (4.4), an implicit difference equation for the

non-stationary problem of thermal conductivity with a non-ideal contact

ci
y

(j+1)
i − y

(j)
i

τ
=

1

h

[
ai+ 1

2

y
(j+1)
i+1 − y

(j+1)
i

h
− ai− 1

2

y
(j+1)
i − y

(j+1)
i−1

h

]
, (4.5)
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Table 1. Exact (u) and numerical (y) solution of problem of non-ideal contact

t = 10 s t = 20 s t = 100 s

x u y u y u y

−1 0.1070 0.1038 0.1825 0.1797 0.3374 0.3369

−7/8 0.1279 0.1240 0.2035 0.2005 0.3503 0.3498

−3/4 0.1515 0.1469 0.2258 0.2228 0.3634 0.3629

−5/8 0.1778 0.1727 0.2494 0.2464 0.3766 0.3762

−1/2 0.2066 0.2013 0.2742 0.2713 0.3900 0.3896

−3/8 0.2381 0.2327 0.3002 0.2975 0.4035 0.4031

−1/4 0.2719 0.2668 0.3272 0.3248 0.4171 0.4168

−1/8 0.3079 0.3032 0.3551 0.3530 0.4308 0.4305

0 0.6544 0.6505 0.6162 0.6148 0.5554 0.5552

1/8 0.6922 0.6876 0.6449 0.6433 0.5692 0.5689

1/4 0.7281 0.7230 0.6728 0.6710 0.5829 0.5826

3/8 0.7619 0.7563 0.6998 0.6978 0.5965 0.5962

1/2 0.7934 0.7873 0.7258 0.7236 0.6100 0.6097

5/8 0.8222 0.8159 0.7506 0.7482 0.6234 0.6231

3/4 0.8485 0.8419 0.7742 0.7716 0.6366 0.6363

7/8 0.8721 0.8653 0.7965 0.7937 0.6497 0.6493

1 0.8930 0.8861 0.8175 0.8145 0.6626 0.6622

where τ is the time step. Assume for numeric calculations that c1 = c2 = 1.0; k1 = k2 =

0.1; h = 1
8
; τ = 1.0, and place the non-ideal contact boundary x = 0 at a mesh point.

Boundary conditions for equation (4.5) were set at a sufficiently large distance on both

sides of the non-ideal contact boundary. As follows from Table 1, which gives the exact

and calculated values of the unknown functions for different time moments, on quite

coarse time and space meshes, the numerical solution coincides with the solution of a

differential problem with a good accuracy.

4.2 Segregation of impurity

Consider the problem of segregation of an impurity in the following model statement:

∂C1

∂t
= D1

∂2C1

∂x2
, −∞ < x < ξ(t);

∂C2

∂t
= D2

∂2C2

∂x2
, x > ξ(t), ξ(t) = νt;

D1
∂C1

∂x

∣∣∣∣
x=ξ(t)−0

− D2
∂C2

∂x

∣∣∣∣
x=ξ(t)+0

= ν[C]x=ξ; C1(ξ − 0, t) = χC2(ξ + 0, t); (4.6)

lim
x→−∞

C1(x, t) = C0
1 ; lim

x→∞
C2(x, t) = C0

2 ;

C1(x, 0) = C0
1 x < ξ(0); C2(x, 0) = C0

2 , x > ξ(0).
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Figure 2. Distribution of sulphur in solidification of iron–carbon steel at the initial stage of

solidification (solid line shows exact solution, and open circles ◦ show the numerical solution).

This problem also has an analytical solution [8]. Write down an implicit difference

equation for the generalised equation of mass transfer (3.16)

ζ
(j+1)
i y

(j+1)
i − ζ

(j)
i y

(j)
i

τ
=

1

h

[
ai+ 1

2

y
(j+1)
i+1 − y

(j+1)
i

h
− ai− 1

2

y
(j+1)
i − y

(j+1)
i−1

h

]
, (4.7)

where ζ(j+1)
i = 1

h

∫ xi+0.5h

xi−0.5h
ζ(x, tj+1)dx, ai+ 1

2
=

[
1
h

∫ xi+1

xi

dx
DSL(x,tj+1)

]−1
. With the numerical solu-

tion, the mesh problem was solved for a region of a limited length, which was selected so

that the effect of limitation of the region was negligible. Numerical parameters of the model

were set for conditions of segregation of sulphur during solidification of an iron–carbon

steel: D1 = 10−11 m2 s−1, D2 = 10−9 m2 s−1, χ = 0.05, C0
1 = C0

2 = 0.04 %, ν = 10−4 m s−1;

and the selected numerical parameters were as follows: h = 10−7 m, τ = 10−3 s.

Figure 2 shows comparison of the exact and numerical solutions of problem (4.6) at

the initial stage of the solidification process (t = 0.04 s), when the jump of the solution

is inverse. With the numerical solution of the problem, it was assumed that boundary

x = ξ(t) was at a mesh point and moved by one time step exactly to one point on the

spatial coordinate. As seen from the calculation results, difference scheme (4.7) provides a

sufficiently high accuracy of the numerical solution.

Figure 3 shows numerical solution of problem (4.6) at the final stage of solidification,

where a combined solution jump is formed.

4.3 Current transfer in ‘anode–arc plasma’ system

Consider a one-dimensional variant of generalised formulation (3.10) of the problem of

distribution of potential and electric field in the ‘anode–arc plasma’ system

−dq

dx
= 0;

Du

Dx
= −ρq + [u]ξδ(x− ξ), 0 < x < l; u(0) = 0, u(l) = u0, (4.8)
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Figure 3. Distribution of sulphur in solidification of iron–carbon steel at the final stage of

solidification.

where q is the current density, u is the potential of the electric field, ρ = ρ(x) is the

specific electrical resistance of medium, ξ ∈ (0, l) is the position of the metal-plasma

interface and [u]ξ is the potential jump at this interface (anode barrier). In a case where

ρ(x) = ρ1 = const, 0 < x < ξ and ρ(x) = ρ2 = const, ξ < x < l, problem (4.8) has a

simple analytical solution:

u(x) =

{
−qρ1x, 0 < x < ξ,

−q(ρ1ξ + ρ2(x− ξ)) + [u]ξ, ξ < x < l,
(4.9)

where q =
[u]ξ−u0

ρ1ξ+ρ2(l−ξ) . It is just enough to modify a bit the computations of (4.2) and (4.3)

to obtain a difference analog of problem (4.8) on the mesh ωh:

1

h

[
ai+ 1

2

yi+1 − yi

h
− ai− 1

2

yi − yi−1

h

]
= ϕi, i = 1, N − 1; y0 = 0, yN = u0, (4.10)

where ai+ 1
2

=
[

1
h

∫ xi+1

xi
ρ(x)dx

]−1
. Let xm < ξ < xm+1, then the right part of mesh equation

(4.10) can be calculated as follows: ϕi = 0, i�m, m+ 1; ϕm = φm, ϕm+1 = −φm, where

φm = am+ 1
2

[u]ξ
h2 .

Figure 4 shows the comparison between the analytical solution and the numerical

solution of one-dimensional problem (4.8) at a set, fixed value of jump of the electric

potential at the metal-plasma interface equal to [u]ξ = 2 V and at the following values

of problem parameters: ρ1 = 2.5 × 10−5 Ωm, ρ2 = 3.33 × 10−4 Ωm, u0 = −5 V, l =

0.01m and ξ = 0.005m. Note here that, like in the case of scheme (4.4), difference scheme

(4.10) is accurate in a class of piecewise constant coefficients. Figure 4 also shows the

numerical solution of problem allowing for non-linear dependence (2.2) of the potential

jump upon electric current density q, the functional form of which is given in [4], and the

numerical values used are shown in Figure 5. Solution of the non-linear mesh problem

was obtained by the iteration method, linear problem (4.10) being solved at each step of

the iteration process.
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Figure 4. Distribution of potential in the ‘anode–arc plasma’ system (solid line shows an exact

solution of the linear problem, open circles ◦ show the numerical solution of the linear problem,

and solid circles • show the numerical solution of the non-linear problem).

Figure 5. Anode potential drop versus electric current density, used for the solution of a

non-linear problem (4.8).

In numerical modelling of physical processes occurring, for example, under conditions

of arc welding of metals, the problem of distribution of the potential in the ‘anode–

arc plasma’ system becomes multi-dimensional and requires allowance for a complex

geometry of the interface between the conducting media. In particular, modeling of the

current transfer process in the ‘electrode wire–electric arc plasma’ system in gas metal arc

welding can be done on the basis of equations (3.10), which in the case of axial symmetry

of the problem can be written down in the cylindrical coordinate system shown as in

Figure 6 (it is taken into account in writing down equation (3.10) that f ≡ 0). This Figure

also shows the boundary conditions used.

Results of numerical solution of the two-dimensional problem of distribution of the

potential in the system under consideration, allowing for the non-linear dependence of

the anode potential drop upon the current density at the anode (see Figure 5), are shown

in Figure 7 in the form of isolines of the electric field potential.
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Figure 6. Schematic representation of ‘electrode wire–droplet–electric arc plasma’ system in gas

metal arc welding.

Figure 7. Field of potential in ‘electrode wire–droplet–electric arc plasma’ system in gas metal arc

welding.

5 Conclusions and tasks for further investigations

The generalised problems of heat, mass and charge transfer in layered heterogeneous

media with a discontinuous solution, which are suggested in this paper, are based on a

physical natural description of the processes of transfer of a substance using a system of the
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first-order equations, one of which (scalar) is a law of conservation of substance, and the

other (vector) is a generalised phenomenological law (Fick’s, Fourier’s, Darcy’s or Ohm’s

law). The phenomenological law written down for the discontinuous potential in terms of

specific resistances allows for the presence of the concentrated factors (e.g. concentrated

resistance) at the interface between the media. It is this description that makes it possible

to substantially widen the class of permissible input data for the problems of heat, mass

and charge transfer, and, accordingly, the class of permissible solutions. For this purpose,

space functions W−1
2 (Ω) with a negative metric can be regarded as elements of tensor

Ξ in (3.8). By an initiative of the authors of this paper, Nomirovskii [9] considered the

possibility of this generalisation and proved that at the said extention of the class of the

coefficients of equations (3.8) there is also a unique solution to the problem in L2(Ω).

Extention of the class of permissible solutions is not only of a theoretical interest but

is also important from the point of view of different physical applications. The transfer

processes occurring in media with a finely dispersed and multiphase structure (e.g. in

steels and alloys) and also in the anode sheath, where a metal contacts with plasma, are

the objects that require such an extention. The generalised statement of the problem of

charge transfer in form (3.10) is still to be proved to have unambiguous solvability in a

class of functions L2(Ω).

Distinctive feature of the suggested generalised statements is an end-to-end (homogen-

eous) description of the transfer processes in the entire multilayer system as a whole,

without the use of explicit interface conditions at the boundary of discontinuity of

a solution. This makes it possible to develop homogeneous calculation algorithms of

the numerical solution (by the finite difference or finite element method). The effi-

ciency and accuracy of difference schemes of the end-to-end computation developed

on this basis was verified in this work on characteristic test problems having an exact

solution.
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[6] Schwartz, L. (1950 et 1951) Théorie Des Distributions, T. 1 et 2, Paris, Hermann.

[7] Samarsky, A. A. (1977) Theory of Differential Schemes, Moscow, Nauka.

[8] Makhnenko, V. I. (1975) Calculation of diffusion in two-phase medium with moving phase

interface. Avtom. Svarka 12, 1–6.

[9] Nomirovskii, D. A. (2004) Generalized solvability of parabolic systems with nonhomogeneous

transmission conditions of nonideal contact type. Differ. Equ. (Differentsial’nye uravneniya)

40(10), 1390–1399.

https://doi.org/10.1017/S095679251100012X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251100012X

