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The three-dimensional instabilities of axisymmetric flow are investigated in a laterally
heated vertical cylinder by linear stability analysis. Heating is confined to a central
zone on the sidewall of the cylinder, while other parts of the sidewall are insulated and
both ends of the cylinder are cooled. The length of the heated zone equals the radius
of the cylinder. For three different aspect ratios, A= 1.92, 2, 2.1 (A= height/radius),
the dependence of the critical Rayleigh number on the Prandtl number (from 0.02 to
6.7) has been studied in detail. For such a kind of laterally heated convection, some
interesting stability results are obtained. A monotonous instability curve is obtained for
A= 1.92, while the instability curves for A= 2 and A= 2.1 are non-monotonous and
multivalued. In particular, an instability island has been found for A = 2. Moreover,
mechanisms corresponding to different instability results are obtained when the
Prandtl number changes. At small Prandtl number, the flow is oscillatory unstable,
which is dominated by hydrodynamic instability. At intermediate Prandtl number, the
interaction between buoyancy and shear in the base flow plays a more important role
than pure hydrodynamic instability. At even higher Prandtl number, Rayleigh–Bénard
instability becomes the dominant process and the flow loses stability through steady
bifurcation.

Key words: buoyancy-driven instability, convection, convection in cavities

1. Introduction
It is well known that crystal growth from bulk melts (Müller & Ostrogorsky 1994;

Jaluria 2001) can be greatly influenced by instability due to natural convection.
For instance, convective instabilities can result in oscillatory flows that cause
inhomogeneity during the crystal growth process (Hurle 1966; Müller 1993). Being
one of the most important crystal growth systems in vertical Bridgman growth and
vertical zone melting, convection induced in a heated vertical cylinder is usually
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studied. Three-dimensional instabilities of Rayleigh–Bénard convection were first
studied with a relatively simple model, where the fluid contained in vertical cylinders
is heated from below. It was shown that the primary instability corresponds to the
onset of convection (Charlson & Sani 1970, 1971; Stork & Müller 1975; Buell &
Catton 1983) and the secondary instability is connected to axisymmetry-breaking
bifurcation (Hardin et al. 1990; Neumann 1990; Wanschura, Kuhlmann & Rath 1996;
Touihri, Ben Hadid & Henry 1999; Borońska & Tuckerman 2006). The onset of
convection is independent of the Prandtl number but dependent on the aspect ratio;
however, the stability of axisymmetric flow depends on both the aspect ratio and the
Prandtl number. Very recently, Wang et al. (2012) performed detailed linear stability
analyses for intermediate values of aspect ratio and Prandtl number and concluded
that the interaction of the buoyancy mechanism and the inertial mechanism results in
complicated instability phenomena.

In practical applications, more realistic heating conditions must be considered for
convective flow. For instance, convection in a vertical cylinder that is partially heated
from the sidewall and cooled from both upper and lower walls is taken as a typical
model, which we also adopt in this study. Here, the length of the heating zone at
the mid-height of the cylindrical sidewall is equal to the radius of the cylinder and
other parts of the sidewall are insulated. This is especially designed to investigate
convection in the vertical zone melting configuration, which is usually employed in
industrial applications to carry out the crystal growth process (Selver, Kamotani &
Ostrach 1998). It is worth noting that the sidewall heated convection can be induced
when any non-zero temperature gradient exists, whereas Rayleigh–Bénard convection
is caused by instability of the fluid layer, which is also the essential difference
between the two.

Selver et al. (1998) experimentally studied convection in a cylinder with a partially
heated sidewall. They found that the types of oscillatory transition are strongly
dependent on the aspect ratio, including direct transitions or transitions through a
first steady bifurcation. Based on the experimental work of Selver et al. (1998),
Rubinov et al. (2004) carefully studied axisymmetric breaking instability of the flow
at a fixed Prandtl number Pr = 0.021 using two independent numerical approaches.
Three different leading modes (mode with the largest growth rate) were found,
which interchanged with each other as the aspect ratio was varied. Using the
same configuration and Prandtl number, Ma, Henry & BenHadid (2005) studied
instability mechanisms numerically at both small and large aspect ratios, and also
found hysteresis phenomena with a multiplicity of steady and oscillatory states at
intermediate values of the aspect ratio. Furthermore, Erenburg et al. (2003) obtained
complicated bifurcation diagrams and demonstrated the existence of multiple solutions
by studying a two-dimensional model.

Baumgartl et al. (1989) performed both a numerical and an experimental study
into sidewall heated convection in a configuration similar to the present one, and
considered both steady and time-dependent states. However, their work was limited
to A = 1, and the flow and temperature fields were not studied experimentally in
detail. Gelfgat, Bar-Yoseph & Solan (2000) studied stability of axisymmetric flow in
a vertical cylinder in which the temperature on the sidewall had a parabolic profile.
They presented stability curves for the dependence of critical Rayleigh number on
Prandtl numbers in the range 06 Pr6 0.05 and aspect ratios of 16 A6 5. Instability
mechanisms were also evaluated. Subsequently, Gemeny, Martin Witkowski & Walker
(2007) extended the linear stability analysis of Gelfgat et al. (2000) to the flux
condition and found that the two kinds of thermal boundary conditions gave radically
different results.
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Previous studies have demonstrated that the stability properties of convective flows
are strongly dependent on the geometry and the Prandtl number (Braunsfurth & Mullin
1996; Gelfgat, Bar-Yoseph & Yarin 1997, 1999). A strong dependence on variation
of the heating conditions can also be reasonably expected. As shown in Wang et al.
(2012) for cylindrical Rayleigh Bénard models, the stability properties of a given flow
cannot be completely understood without a detailed exploration in parametric space. In
particular, stability properties under moderate control parameters should be paid more
attention where interactions among several instability mechanisms occur.

In this paper, we address the stability of axisymmetric convection in a cylinder with
a partially heated sidewall. The dependence of the critical Rayleigh number on Prandtl
numbers in the range 0.02 6 Pr 6 6.7 and for aspect ratios of A = 1.92, 2, 2.1 are
mainly studied. Comparisons of the present results with those of Rayleigh–Bénard
convection in a cylinder are also made.

2. Governing equations and numerical methods
We consider an incompressible Newtonian fluid confined in a vertical cylindrical

cavity of aspect ratio A = H/R, where H is the height and R is the radius of the
cavity. The cylinder is partially heated from the central part of the sidewall with a
uniformly distributed high temperature Th, and both ends of the cylinder are cooled
with a uniformly distributed low temperature Tc, whereas the region above and below
the heated zone at the sidewall is adiabatic. In cylindrical coordinates, the domain has
a size of (r, ϕ, z) ∈ [0, 1] × [0, 2π] × [0, A]. For the current geometry, the meridional
plane has the configuration shown in figure 1. The three-dimensional problem is
described by the Oberbeck–Boussinesq equations (Oberbeck 1879; Boussinesq 1903).
All the physical characteristics are taken as constant, apart from the density, which is
taken as a linear function of temperature in the buoyancy term, ρ= ρ0[1−α(T − T0)],
where α is the thermal expansion coefficient and T0 is the reference temperature
(T0 = Tc). The length, time, velocity and pressure are scaled by R, R2/κ , κ/R and
ρ (κ/R)2, respectively, where κ is the thermal diffusivity. The non-dimensional
temperature is defined by Θ = (T − Tc)/(Th − Tc). The final dimensionless governing
equations can be written as

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−∇p+ Pr∇2u+ PrRaΘ ẑ, (2.2)

∂Θ

∂t
+ u · ∇Θ =∇2Θ, (2.3)

where Pr= ν/κ is Prandtl number, ν is kinematic viscosity, Ra= gα(Th− Tc)R3/(κν)
is the Rayleigh number, g is the gravitational acceleration, and ẑ is a unit vector in
the z direction.

The boundary conditions for velocity and temperature are

u= 0 for r= 1 or z= 0, A, (2.4)
∂Θ

∂r
= 0 for r= 1, z<

A
2
− 1

2
or z>

A
2
+ 1

2
, (2.5)

Θ = 1 for
A
2
− 1

2
6 z6 A

2
+ 1

2
, (2.6)

Θ = 0 for z= 0 and z= A. (2.7)
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FIGURE 1. Geometry of the problem: the cylindrical wall is partially heated from the side.

The solutions of the governing equations (2.1)–(2.3) and boundary conditions
(2.4)–(2.7) are obtained by using a second-order fractional-step algorithm in
cylindrical coordinates (Verzicco & Orlandi 1996) which has been employed in
our previous studies (Ma et al. 2005; Ma, Sun & Yin 2006; Wang et al. 2012).

The linear stability analysis is performed in two steps: first, a steady solution is
obtained by solving the Navier–Stokes equations using the Jacobian-free Newton–
Krylov (JFNK) (Knoll & Keyes 2004) method, then the eigenmodes of the Navier–
Stokes equations linearized about this base flow are computed using the Arnoldi
algorithm from the ARPACK library (Tuckerman & Barkley 2000). The linearized
Navier–Stokes equations are

∂tu′ = (Nu + L)u′. (2.8)

The correspondingeigenequations are (Nu + L)u′ = λu′, where J = (Nu + L) is the
Jacobian matrix. If its eigenvalues λj and corresponding eigenvectors φj are found, the
stability of the steady solution u is determined by the three-dimensional global modes
φj(x, y, z) exp(λjt), j= 1, . . . , n. The temporal growth rate is given by the real part
λj,r and the frequency by the imaginary part λj,i.

The implicitly restarted Arnoldi method (Lehoucq, Sorensen & Yang 1998) using
the ARPACK routines is implemented to calculate the leading eigenvalues. By
time-stepping the linearized equations, we are able to construct a small matrix which
represents the action of the Jacobian J on the subspace of leading eigenvectors.
Diagonalization of this matrix gives the leading eigenvalues and eigenvectors.
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Our code has been successfully tested by comparison with the results of Buell &
Catton (1983), Touihri et al. (1999) and Borońska & Tuckerman (2006) for instability
analysis of Rayleigh–Bénard convection in a cylinder (Ma et al. 2006; Wang et al.
2012). In addition, our code has also been verified by comparison with the results of
Selver et al. (1998), Gelfgat et al. (2000) and Rubinov et al. (2004) for convection
in a sidewall heated cylinder (Ma et al. 2005). The simulations in the present
research have been performed using a 60 × 60 × 140 grid in the radial, azimuthal
and vertical directions, respectively. A non-uniform mesh is utilized in the radial and
axial directions, with mesh points clustered toward the boundaries.

3. Results
3.1. Stability results

Before performing linear stability analysis, the steady solution should first be obtained.
Currently, for all base flows, the heated fluid rises along, and close to the sidewall
it and then descends along the cylinder axis. The toroidal roll occupies almost the
whole cylinder. In the lower part of the cylinder the fluid is stably stratified, while the
fluid is unstably stratified in the upper part. It is shown that the two stratifications in
the sidewall heated cylinder play an important role in flow instability and may lead
to a multiplicity of flow patterns (Selver et al. 1998; Gelfgat et al. 2000; Rubinov
et al. 2004). On increasing the Rayleigh number beyond a critical value Racr(Pr),
the base flow undergoes an axisymmetry breaking bifurcation and becomes a three-
dimensional flow. Depending on Pr, the base flow may undergo either oscillatory or
steady bifurcation. Stabilities have been explored comprehensively for 0.026Pr6 6.7
when the aspect ratio equals 1.92, 2 and 2.1, respectively.

Stability curves indicating the dependence of the critical Rayleigh number on the
Prandtl number for three fixed values of aspect ratio are shown in figure 2. Qualitative
and quantitative differences are observed in certain ranges of Prandtl number. For
clarity, the range of Prandtl number is divided into three regions. The first region of
Prandtl numbers is from Pr= 0.02 to approximately 0.1. The stability properties are
very similar for all three aspect ratios in this interval. The modes with the largest
growth rate are all oscillatory with azimuthal wavenumber m=2. The critical Rayleigh
number increases quickly with increasing Pr, with values close to each other for the
three aspect ratios. The second region is from approximately Pr = 0.1 to 2.5. The
axisymmetric base flow loses stability and becomes a steady m= 4 flow at Rayleigh
numbers greater than 104 for A = 1.92, as shown in figure 2(a). A similar result is
found for A= 2, as shown in figure 2(b), where the instability mode is a steady m= 3
flow for intermediate values of the Prandtl number. Besides, the axisymmetric base
flow loses stability to a steady m= 1 flow at lower Rayleigh numbers of 2550<Ra<
4050. The critical points corresponding to m= 1 modes form a closed curve, which
presents an instability island. The stability curve for A= 2.1 behaves quite differently
from the previous two cases. The values of critical Rayleigh number have dropped
below 2000 for intermediate values of the Prandtl number (0.276Pr60.84), as shown
in figure 2(c). The mode with the highest growth rate is a steady m= 1 mode. The
stability diagrams in the Prandtl number ranges 0.1< Pr < 0.27 and 0.84< Pr < 2.5
show ‘S’ and anti-‘S’ shapes, respectively. The third region is from approximately
Pr = 2.5 to 6.7. Much simpler critical curves are obtained in this Prandtl number
interval. The critical Rayleigh number increases with increasing Prandtl number and
the critical modes are all steady. The azimuthal wavenumber for the mode with the
largest growth rate is m= 5 for A= 1.92 and m= 4 for A= 2 and 2.1.
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FIGURE 2. Stability curves for three-dimensional instability of axisymmetric basic flow:
(a) A=1.92, (b) A=2, (c) A=2.1. The range of Prandtl numbers is 0.026Pr66.7. Solid
curves with hollow symbols represent steady transitions and filled symbols oscillatory
transitions. Up triangles (4) indicate m = 1 modes at the transition, circles (◦) m = 2
modes, squares (�) m= 3 modes, diamonds (♦) m= 4 modes, down triangles (O) m= 5
modes and filled circles (•) m= 2 modes. AS in the figures indicates regions in which
the axisymmetric flow is stable, while AU indicates there is no stable axisymmetric base
flow in the region.

Figure 2 demonstrates the variation of the stability curves with aspect ratio and has
some general features. The critical Rayleigh number decreases as the aspect ratio is
increased. In the region of moderate Prandtl number and low Rayleigh number, an
instability island gradually appears with increasing aspect ratio. The instability region
grows larger with a further increase in aspect ratio, until the upper boundary of the
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Pr
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FIGURE 3. Critical frequency ωcr versus the Prandtl number. Filled circles (•) indicate
m= 2 modes at the transition.

region encounters the stability curve at high Rayleigh number and a concave curve
is obtained. When the aspect ratio is larger than A = 2.1, a monotonous stability
curve with relatively low critical Rayleigh number is expected. As observed in other
cylindrical thermal convection configurations (Gelfgat et al. 2000; Wang et al. 2012),
the existence of a multivalued stability curve depends strongly on the aspect ratio and
Prandtl number.

Figure 3 presents the dependence of the critical angular frequency on the Prandtl
number. It is observed that the frequencies increase as Pr increases for A = 1.92.
However, for A = 2 and A = 2.1, the frequencies increase at first to a maximum
value and then decrease with increasing Pr. The frequencies for cylinders with smaller
aspect ratios are a little higher than those for cylinders with larger aspect ratios.

The dependence of the critical Rayleigh number on the aspect ratio for the fixed
Prandtl number Pr = 0.6 is shown in figure 4. The modes with the largest growth
rate are all steady. The axisymmetric flow loses stability to m= 3 or m= 4 flow at
relatively high Rayleigh number, to m= 2 flow at intermediate Rayleigh number and
to m= 1 flow at low Rayleigh number. The stability curve exhibits an anti-‘S’ shape.
There are three critical Rayleigh numbers for a fixed aspect ratio in the narrow interval
1.98<A<2.07. The stability diagram of the variation of critical Rayleigh number with
Prandtl number for a fixed aspect ratio in this interval may contain closed instability
curves. Figure 4 shows that flow instability in a partially heated sidewall cylindrical
convection is very sensitive to variations in the aspect ratio – a reduction of 0.1 in
the aspect ratio leads to a reduction of the critical Rayleigh number by approximately
104. Multivalued stability curves can be observed only for a certain range of aspect
ratio.

The structures of the modes with the largest growth rates can be used to gain
some additional understanding as to how the instability sets in. The three-dimensional
flow patterns beyond the axisymmetric break bifurcation are characterized by the
mode with the largest growth rate, which are defined by the eigenvectors of the
linearized stability problem. Some of the perturbation distributions in the cylinder
corresponding to different control parameters and equal azimuthal wavenumber are
similar, but most of them are not. Figure 5 shows four characteristic patterns of the
temperature perturbations obtained in the present study. Two perturbation patterns
corresponding to the transition from axisymmetric to periodic three-dimensional
flow due to the Hopf bifurcation are shown in figures 5(a) and 5(b). The critical
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FIGURE 4. Critical Rayleigh number Racr as a function of aspect ratio A for Pr = 0.6.
Solid curves with hollow symbols represent steady transitions. Up triangles (4) indicate
m = 1 modes at the transition, circles (◦) m = 2 modes, squares (�) m = 3 modes and
diamonds (♦) m= 4 modes. AS in the figure indicates regions in which the axisymmetric
flow is stable, while AU indicates there is no stable axisymmetric base flow in the region.

(a) (b) (c) (d)

FIGURE 5. (Colour online) Isosurfaces of the temperature perturbations for (a) (Pr,Ra)=
(0.02, 1900), (b) (Pr, Ra) = (0.08, 10 800), (c) (Pr, Ra) = (0.7, 3600), (d) (Pr, Ra) =
(0.7, 10 800). The two isovalues plotted in each figure are the half-maximum (green) and
the half-minimum (yellow) of the temperature perturbation.

angular frequencies are 1.31 and 3.41, respectively. Large amplitude oscillations are
distributed in most parts of the cylinder. The stronger oscillations are located in
the higher part of the cylinder for (Pr, Ra) = (0.02, 1900) and in the lower part of
the cylinder for (Pr, Ra) = (0.08, 10 800). The oscillatory instability is dominated
by hydrodynamics and may be associated with instability of the circulating flow.
Two perturbation patterns corresponding to the transition from axisymmetric to
steady three-dimensional flow at large values of the Prandtl number due to steady
bifurcations are shown in figures 5(c) and 5(d). The critical wavenumbers are m= 1
and m = 3, respectively. The strongest perturbations are located inside the unstably
stratified fluid layer for (Pr,Ra)= (0.7, 10 800) (see figure 5d). This steady instability
is related to Rayleigh–Bénard instability of the unstably stratified layer. The strongest
perturbations are located in the upper half of the cylinder for (Pr, Ra)= (0.7, 3600)
(see figure 5c), where interaction of the unstably stratified layer with the heated flow
region is expected.
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3.2. Energy analysis
In order to get some physical insight into the transition to three-dimensional flow,
energy analyses are usually performed (Wanschura et al. 1996; Ma et al. 2005; Wang
et al. 2012). The perturbation kinetic energy is defined by integrating over the volume
Ω occupied by the fluid:

K =
∫
Ω

1
2 u′u′dΩ. (3.1)

Close to the threshold, a Reynolds–Orr equation can then be written for the rate of
change of the total perturbationkinetic energy:

dK
dt
=Kv +Kd +Kb (3.2)

where

Kv =
∫
Ω

(
u′ru
′
r
∂ur

∂r
+ u′ru

′
z
∂ur

∂z
+ u′zu

′
r
∂uz

∂r
+ u′zu

′
z
∂uz

∂z
+ u′ϕu′ϕur

r

)
dΩ

= Kv1 +Kv2 +Kv3 +Kv4 +Kv5 (3.3)

Kd = −Pr
∫
Ω

(∇× u′)2dΩ (3.4)

Kb = PrRa
∫
Ω

u′zΘ
′dΩ (3.5)

Kv represents the production of perturbation energy by shear of the base flow, while
Kd and Kb represent the viscous dissipation of the perturbation kinetic energy and
buoyancy forces, respectively. The calculation of these terms enables us to evaluate
which term contributes more to the perturbation energy growth. Terms on the right-
hand side of (3.2) with a positive (negative) sign denote destabilization (stabilization)
of the base flow. The sign and magnitude of Kv depends sensitively on both the critical
mode and the basic state – both effects of stabilization and destabilization are included.
As Kd is negative, it is stabilizing and |Kd| is used for normalization.

The instability mechanism at low values of of the Prandtl number (Pr= 0.021) for
sidewall heated natural convection has been investigated by Gelfgat et al. (2000) and
Rubinov et al. (2004) through eigenperturbation analysis, and by Ma et al. (2005)
through perturbation kinetic energy analysis. They concluded that the oscillatory
axisymmetric instability is mainly caused by an inertial mechanism, but that it is
affected by the Rayleigh–Bénard mechanism as well. Instability at high values of
Prandtl number (Pr> 1) is obviously dominated by the Rayleigh–Bénard mechanism.
Here, we focus on studying instability mechanisms at intermediate values of Prandtl
number, where the stability curve is multivalued.

The kinetic perturbation energy transfer budget has been performed for Pr = 0.7
and A= 2, where there are three critical Rayleigh numbers (Racr1= 2553, Racr2= 4005
and Racr3 = 10 670). Figure 6(a) shows the result given by the energy analysis for
2000 < Ra < 4800. The rate of change of kinetic perturbation energy is positive
for 2553 < Ra < 4005, at first increasing with increasing Rayleigh number, then
decreasing as the Rayleigh number further increases. This corresponds to processes
of destabilization and stabilization of the axisymmetric flow, respectively. As can be
seen from the figure, the buoyancy term Kb and inertial terms Kv1,Kv3,Kv4,Kv5 are all
destabilizing and their values are all increasing for a Rayleigh number around 2553,
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FIGURE 6. Perturbation kinetic energy contributions at a fixed Prandtl number Pr = 0.7
for (a) A= 2, 20006 Ra6 4800 and (b) A= 2, 10 2006 Ra6 11 200.

being responsible for the instability. The term Kv2 is very small (close to zero), thus
it is not plotted in the figure. The value of the viscous term Kd is always negative
and it is not plotted either. As the inertial terms Kv1 and Kv4 increase with Rayleigh
number, whereas Kv3 and Kv5 change only slightly, the decrease of the buoyancy term
Kb leads to stabilization of the base flow. Here, Kv1 measures the amplification of
the radial velocity disturbance (u′r) by radial gradients of the basic radial flow (∂rur)
and Kv4 describes the amplification of the axial velocity disturbance (u′z) by axial
gradients of the basic axial flow (∂zuz). Increasing the Rayleigh number intensifies the
horizontal temperature gradient, which would lead to an increase in Kv1, consequently,
Kv4 would be increased due to the continuity requirement. The reduction of vertical
unstable stratification would induce a stabilization effect. Figure 6(b) shows the
energy analysis for 10 200 < Ra < 11 200. It can be seen in the figure that the flow
bifurcation is caused by the buoyancy effect. The destabilizing terms (Kv1, Kv3, Kv4)
at low Rayleigh number play a stabilizing role.

Here, we compare the present result with that of cylindrical Rayleigh–Bénard
convection (Wang et al. 2012). In the Rayleigh–Bénard configuration, multivalued
stability curves have also been found in a moderate parameter region, including a
closed curve encircling an area for stable axisymmetric flow. Combination of the
buoyancy term and the inertial term (Kv2 and Kv3) would promote energy growth.
The instability mechanism for laterally heated convection under moderate control
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parameters shown in figure 6 is also due to the combined action of buoyancy and
inertial mechanisms. However, the major contribution to inertial terms is replaced by
Kv1 and Kv4 as a result of a lateral temperature gradient.

The competition between buoyancy and shear may lead to complex phenomena.
One typical example is pattern formation in inclined layer convection (Daniels, Plapp
& Bodenschatz 2003; Daniels et al. 2008), where the phase space is divided into
several regions of characteristic behaviour which is caused by different degrees of
combination of the two mechanisms. In addition, competition between centrifugal
and shear instability may lead to similar results, as has been found in spiral Couette
flow (Meseguer & Marques 2000), spiral Poiseuille flow (Meseguer & Marques
2002), spiral Couette flow with a Bingham-plastic fluid (Peng & Zhu 2004) and
Taylor–Couette flow with a radial temperature gradient (Chen et al. 2006). These
studies provide a common result that an instability island can be found in their
marginal stability curves. Consequently, it is believed such a kind of instability
property is universal in the flow under the conditions of competition between two
instability mechanisms.

4. Conclusion
In this paper, we have studied the stability of steady axisymmetric convection in a

vertical cylinder with a partially heated sidewall. The temperature distribution of the
base flow results in an unstable stratified layer, a stable stratified layer and a laterally
stratified layer. The stability analysis shows that the critical Rayleigh number, as well
as the critical frequency of oscillation and the critical azimuthal wavenumber, depends
strongly on the Prandtl number and aspect ratio. At low values of Prandtl number,
the basic state loses its stability due to hydrodynamic instability combining with the
buoyancy effect. At high values of Prandtl number, the flow instability is mainly
induced by buoyancy. At moderate Prandtl number, the combination of the buoyancy
mechanism and the inertial mechanism lead to a multivalued stability curve, and the
dominant inertial terms contributed are the radial gradient of the radial velocity (Kv1)
and the axial gradient of the axial velocity (Kv4). This is attributed to a horizontal
temperature gradient, which is different from the multivalued instability found in
cylindrical Rayleigh–Bénard convection (Wang et al. 2012). The flow stability also
depends strongly on boundary conditions (Barwölff, König & Seifert 1997; Gemeny
et al. 2007). Therefore, the boundary conditions and values of the control parameters
should be as precise as possible in order to determine the critical values. In particular,
in practical applications, the mathematical models employed are usually insufficient
to describe the flow process precisely; hence, a detailed parametric study is of great
significance for a full understanding of flow instability.
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BOROŃSKA, K. & TUCKERMAN, L. S. 2006 Standing and travelling waves in cylindrical Rayleigh–
Bénard convection. J. Fluid Mech. 559, 279–298.

BOUSSINESQ, J. 1903 Théorie Analytique de la Chaleur, vol. 2. Gauthier–Villars.
BRAUNSFURTH, M. G. & MULLIN, T. 1996 An experimental study of oscillatory convection in

liquid gallium. J. Fluid Mech. 327, 199–219.
BUELL, J. C. & CATTON, I. 1983 The effect of wall conduction on the stability of a fluid in a

right circular cylinder heated from below. Trans. ASME J. Heat Transfer 105, 255–260.
CHARLSON, G. S. & SANI, R. L. 1970 Thermoconvective instability in a bounded cylindrical fluid

layer. Intl J. Heat Mass Transfer 13, 1479–1496.
CHARLSON, G. S. & SANI, R. L. 1971 On thermoconvective instability in a bounded cylindrical

fluid layer. Intl J. Heat Mass Transfer 14, 2157–2160.
CHEN, J. G., CHEN, H. X., ZHANG, G. H. & FU, S. 2006 Stability of flow between rotating

cylinders with axial buoyancy effect. Sci. China Phys. Mech. Astron. 49, 564–575.
DANIELS, K. E., BRAUSCH, O., PESCH, W. & BODENSCHATZ, E. 2008 Competition and bistability

of ordered undulations and undulation chaos in inclined layer convection. J. Fluid Mech. 597,
261–282.

DANIELS, K. E., PLAPP, B. B. & BODENSCHATZ, E. 2003 Pattern formation in inclined layer
convection. Phys. Rev. Lett. 84, 5320–5323.

ERENBURG, V., GELFGAT, A. YU., KIT, E., BAR-YOSEPH, P. Z. & SOLAN, A. 2003 Multiple states,
stability and bifurcations of natural convection in a rectangular cavity with partially heated
vertical walls. J. Fluid Mech. 492, 63–89.

GELFGAT, A. YU., BAR-YOSEPH, P. Z. & SOLAN, A. 2000 Axisymmetry breaking instabilities
of natural convection in a vertical Bridgman growth configuration. J. Cryst. Growth 220,
316–325.

GELFGAT, A. YU., BAR-YOSEPH, P. Z. & YARIN, A. L. 1997 On oscillatory instability of convective
flows at low Prandtl number. Trans. ASME J. Fluids Engng. 119, 823–830.

GELFGAT, A. YU., BAR-YOSEPH, P. Z. & YARIN, A. L. 1999 Stability of multiple steady states of
convection in laterally heated cavities. J. Fluid Mech. 388, 315–334.

GEMENY, L. E., MARTIN WITKOWSKI, L. & WALKER, J. S. 2007 Buoyant instability in a laterally
heated vertical cylinder. Intl J. Heat Mass Transfer 50, 1010–1017.

HARDIN, G. R., SANI, R. L., HENRY, D. & ROUX, B. 1990 Buoyancy-driven instability in a vertical
cylinder: Binary fluids with Soret effect. Part 1. General-theory and stationary stability results.
Intl J. Numer. Meth. Fluids 10 (1), 79–117.

HURLE, D. T. J. 1966 Temperature oscillations in molten metals and their relationship to growth
striae in melt-grown crystals. Phil. Mag. 13, 305–310.

JALURIA, Y. 2001 Fluid flow phenomena in materials processing: the 2000 Freeman scholar lecture.
Trans. ASME J. Fluids Engng. 123, 173–210.

KNOLL, D. A. & KEYES, D. E. 2004 Jacobian-free Newton–Krylov methods: a survey of approaches
and applications. J. Comput. Phys. 193, 357–397.

LEHOUCQ, R. B., SORENSEN, D. C. & YANG, C. (Eds.) 1998 ARPACK Users Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.

MA, D. J., HENRY, D. & BENHADID, H. 2005 Three-dimensional numerical study of natural
convection in vertical cylinders partially heated from the side. Phys. Fluids 17, 124101.

MA, D. J., SUN, D. J. & YIN, X. Y. 2006 Multiplicity of steady states in cylindrical Rayleigh–Bénard
convection. Phys. Rev. E 74, 037302.

MESEGUER, A. & MARQUES, F. 2000 On the competition between centrifugal and shear instability
in spiral Couette flow. J. Fluid Mech. 402, 33–56.

MESEGUER, A. & MARQUES, F. 2002 On the competition between centrifugal and shear instability
in spiral Poiseuille flow. J. Fluid Mech. 455, 129–148.

MÜLLER, G. 1993 Convective instabilities in melt growth configurations. J. Cryst. Growth 128,
26–36.

MÜLLER, G. & OSTROGORSKY, A. 1994 Convection in melt growth. In Handbook of Crystal Growth
(ed. D. T. J. Hurle), vol. 2, pp. 711–781. North-Holland.

NEUMANN, G. 1990 Three-dimensional numerical simulation of buoyancy-driven convection in vertical
cylinders heated from below. J. Fluid Mech. 214, 559–578.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.180


Linear instability analysis of convection in a laterally heated cylinder 459

OBERBECK, A. 1879 Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen
infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271–292.

PENG, J. & ZHU, K. Q. 2004 Linear stability of Bingham fluids in spiral Couette flow. J. Fluid
Mech. 512, 21–45.

RUBINOV, A., ERENBURG, V., GELFGAT, A. YU., KIT, E., BAR-YOSEPH, P. Z. & SOLAN, A. 2004
Three-dimensional instabilities of natural convection flow in a vertical cylinder with partially
heated sidewall. Trans. ASME J. Heat Transfer 126, 586–599.

SELVER, R., KAMOTANI, Y. & OSTRACH, S. 1998 Natural convection of a liquid metal in vertical
cylinders heated locally from the side. Trans. ASME J. Heat Transfer 120, 108–114.

STORK, K. & MÜLLER, U. 1975 Convection in boxes: an experimental investigation in vertical
cylinders and annuli. J. Fluid Mech. 71, 231–240.

TOUIHRI, R., BEN HADID, H. & HENRY, D. 1999 On the onset of convective instabilities in
cylindrical cavities heated from below. I. Pure thermal case. Phys. Fluids 11, 2078–2088.

TUCKERMAN, L. S. & BARKLEY, D. 2000 Bifurcation analysis for time-steppers. In Numerical
Methods for Bifurcation Problems and Large-Scale Dynamical Systems (ed. E. Doedel &
L. S. Tuckerman), vol. 119, pp. 453–466. Springer.

VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for the three-dimensional
incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414.

WANG, B. F., MA, D. J., CHEN, C. & SUN, D. J. 2012 Linear stability analysis of cylindrical
Rayleigh–Bénard convection. J. Fluid Mech. 38, 27–39.

WANSCHURA, M., KUHLMANN, H. C. & RATH, H. J. 1996 Three-dimensional instability of
axisymmetric buoyant convection in cylinders heated from below. J. Fluid Mech. 326, 399–415.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.180

	Linear instability analysis of convection in a laterally heated cylinder
	Introduction
	Governing equations and numerical methods
	Results
	Stability results
	Energy analysis

	Conclusion
	Acknowledgements
	References




