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Investigation of a drag reduction on
a circular cylinder in rotary oscillation
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Pasadena CA 91125, USA

(Received 28 October 1998 and in revised form 13 July 2000)

Drag reduction in two-dimensional flow over a circular cylinder, achieved using rotary
oscillation, was investigated with computational simulations. In the experiments of
Tokumaru & Dimotakis (1991), this mechanism was observed to yield up to 80% drag
reduction at Re = 15 000 for certain ranges of frequency and amplitude of sinusoidal
rotary oscillation. Simulations with a high-resolution viscous vortex method were
carried out over a range of Reynolds numbers (150–15 000) to explore the effects of
oscillatory rotational forcing. Significant drag reduction was observed for a rotational
forcing which had been very effective in the experiments. The impact of the forcing
is strongly Reynolds number dependent. The cylinder oscillation appears to trigger a
distinctive shedding pattern which is related to the Reynolds number dependence of
the drag reduction. It appears that the source of this unusual shedding pattern and
associated drag reduction is vortex dynamics in the boundary layer initiated by the
oscillatory cylinder rotation. The practical efficiency of the drag reduction procedure
is also discussed.

1. Introduction
Study of the flow over an oscillating circular cylinder has primarily focused on

linear oscillations (i.e. inline or transverse), as for example evidenced in the review
paper of Griffin & Hall (1991). Among the few studies into flow over a cylinder
undergoing rotary oscillation, Tokumaru & Dimotakis (1991) found significant drag
reduction could be achieved with such a control mechanism. For Reynolds number
Re = 15 000 flow, the cylinder was subjected to a sinusoidal rotation (cf. figure 1)

Ω∗(t∗) =
θ̇R

U∞
= Ω∗1 sin (πSft

∗) (1)

where

t∗ =
tU∞
R

, (2)

and the forcing Strouhal number is given by

Sf =
2fR

U∞
. (3)

For Ω∗1 = 2, a drag reduction was measured from an unforced drag coefficient cD ≈ 1.4
to 0.2 when Sf = 1, where

cD =
Drag

1
2
ρU2∞D

. (4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

31
3X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200000313X


298 D. Shiels and A. Leonard

y

x
R

U∞

X(t)

h

Figure 1. The flow under consideration.

Flow visualization indicated that the vortex shedding ‘locked-on’ to the forcing
frequency, leading to smaller shed vortices and a narrowing of the width of the wake.
It was also noted that a similar though less pronounced behaviour was evident at
Re = 3300.

The results raise interesting questions concerning the vortex dynamics underlying
the wake development. For example, the vortices are shed at a time in the rotational
cycle that is counter-intuitive. A vortex structure appears and separates from the cylin-
der on the side where the body motion follows the free-stream direction, whereas one
might expect separation on the side where the body motion opposes the free stream.
In general the detailed mechanism behind this shedding process and the subsequent
drag reduction is unknown. Other studies using rotational forcing, including Okajima,
Takata & Asanuma (1975), Wu, Mo & Vakili (1989), Ou (1991), Filler, Marston &
Mih (1991), El-Refaee (1995), Zakharenkov (1996), Chou (1997), and Baek & Sung
(1998), consider different issues at lower Reynolds numbers and for less vigorous
rotations. Taneda (1978) presents curious flow visualizations suggesting that complete
suppression of separation for much lower Reynolds numbers can be achieved with a
large-amplitude rotational forcing, although there has been no subsequent validation
of these results.

The motivation behind the present computational study is to investigate the phe-
nomenon underlying the observations in Tokumaru & Dimotakis (1991). The accuracy
of the drag measurements obtained from wake surveys in the experiments can also
be assessed. Although the simulations presented below are for two-dimensional flow,
and flow past a fixed cylinder at Re = 15 000 is three-dimensional, the forcing could
impose strong two-dimensionality on the near wake. In any case, the two-dimensional
simulations should reveal the critical physics in the boundary layers and in the near
wake of the more complex three-dimensional flow.

2. Computational method
Simulations were performed with a viscous vortex method capable of achieving

high resolution. A continuous vorticity field can be represented by a collection of
Gaussian distributions of vorticity referred to as vortex particles,

ω(x, t) =

N∑
i=1

1

2πσi(t)2
Γi(t) exp

[
−1

2

( |x− xi(t)|
σi(t)

)2
]
. (5)

The two-dimensional vortex method tracks the evolution of a vorticity field, governed
by

Dω

Dt
= ν∇2ω, (6)
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by creating vortex particles at the viscous cylinder boundary in order to satisfy the
velocity boundary conditions and convecting those elements according to

u(x, t) = − 1

2π

∫∫
(x− x′)× ωẑ
|x− x′|2 dx′ + ∇Φ. (7)

The potential function Φ includes the irrotational free stream.
Two different approaches were used in this study to include viscous effects. The

first, used to achieve the highest resolution, is the particle strength exchange technique
(cf. Degond & Mas Gallic (1989)), in which the Laplacian is approximated by an
integral operator

∇2ω(x) ≈ 4

πε4

∫∫
(ω(x′)− ω(x)) exp

(
−|x− x

′|2
ε2

)
dx′, (8)

where ε2 = O(ν∆t). This relationship is used to update the particle strengths Γi to
accurately simulate diffusion. The particle core sizes are kept uniform both spatially
and temporally:

σi(t) = constant. (9)

The second approach is based on the core expansion technique proposed by Leonard
(1980), where diffusion is simulated by allowing the core sizes to evolve according to
an exact solution to the heat equation

dσ2

dt
= 2ν. (10)

Particle splitting and merging, similar to that proposed by Rossi (1996, 1997), is used
to alleviate the convergence concerns raised by Greengard (1985) and yield reasonable
computational efficiency. The core expansion method provides better efficiency than
the particle strength exchange technique (with constant core sizes) while maintaining
a high level of accuracy.

The no-slip condition on tangential velocity at the boundary,

(u · θ̂)boundary = Ω(t)R, (11)

is satisfied by introducing a vortex sheet on the cylinder surface to supplement the
field of vortex particles. This vortex sheet is diffused into the flow field as described
in Koumoutsakos, Leonard & Pepin (1994) and thus transferred to the particle field.
By satisfying the no-slip condition, the no-through flow condition

(u · r̂)boundary = 0 (12)

is automatically met (cf. Spalart 1982).
The particle strength exchange vortex method has been well-validated for flow

over a fixed circular cylinder by Koumoutsakos & Leonard (1995), for a rotationally
oscillating cylinder by Shiels, Leonard & Stagg (1995), and for flow normal to a flat
plate by Koumoutsakos & Shiels (1996). A more thorough exposition of the vortex
methods utilized in this study is provided in Shiels (1998).

3. Results and discussion
Accurate computation at Re = 15 000 is extremely challenging owing to the fine

scales of relevance. Thus, two sets of simulations were run in this study. The first
used the particle strength exchange technique, which provided a very high level of
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Figure 2. The vorticity field for Re = 15 000 flow, Ω∗ = 2 sin (πt∗), contours at ω∗ = ±1, ±10,
∆x∗ ≈ 0.0015, ∆t∗ = 0.004. Positive vorticity is shown with solid lines, negative with dashed lines.
(a) t∗ = 3.15, (b) 3.6, (c) 4.0, (d) 4.3, (e) 4.6, (f) 5.0.

resolution but involved excessive computation after the initial stages of the flow. The
second used the core expansion method, which permitted variable spatial resolution
and thus facilitated simulation to later stages of the flows. The results obtained with
the core expansion technique are validated against the particle strength exchange
simulations to verify that sufficient resolution is obtained.

3.1. High-resolution, short-time simulations of Re = 15 000 flow, Ω∗1 = 2, Sf = 1

The first set of simulations utilized the particle strength exchange (PSE) method
discussed above. Owing to the fine scales in the boundary layer and the need to
maintain uniform resolution with the PSE approach, it was not feasible to extend
simulations beyond 2.5 diameters of downstream motion from an impulsive start,
despite the use of a 256 processor Cray T3D. Still, the dominant features of the flow
appeared to establish themselves rapidly and thus were apparent in these simulations.
The only scenario tested with the PSE vortex method was Re = 15 000 flow with
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(a)

(b)

Figure 3 (a, b). For caption see page 303.

the cylinder oscillation given by Ω∗ = 2 sin (πt∗). For this case, Tokumaru (1991)
measured a drag coefficient of cD ≈ 0.2 (whereas cD ≈ 1.4 was found in the unforced
case). A ‘narrowing’ of the transverse extent of the wake was also observed in the
experiments, suggesting that an effective delay in mean separation (i.e. separation at
smaller |θ|) coincided with the drag reduction.

A simulation was taken to t∗ = 5 (2.5 diameters of downstream motion), which
required 40 hours of use of all 256 processors and resulted in a field with 1.7 million
computational particles during the final stage of the simulations. The flow was resolved
to ∆x∗ ≈ 0.0015 (where x∗ = x/R) and ∆t∗ = 0.004. A higher-resolution simulation
presented below indicates that although some relevant scales exist at finer resolution,
the dominant behaviour seems to be captured in these less-intensive computations.

Vorticity fields presented in figures 2 and 3 reveal flow phenomena that could
explain the findings in Tokumaru’s (1991) experiment. It appears that during each
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(c)

(d )

Figure 3 (c, d). For caption see opposite.

half forcing cycle (every ∆t∗ = 1) a multipole vorticity structure is generated on
alternating sides of the cylinder that is rapidly ejected from the boundary layer and
quickly convects downstream. In figure 2(a), two structures in opposite halves of the
flow are characterized by significant levels of both signs of vorticity. The structure
in the upper half has already entered the wake while the lower structure lies just off
the body surface. At this time, the body is rotating clockwise in accordance with its
prescribed motion. Thus the boundary at y∗ = 1 is moving in the same direction as
the free stream, which classically suggests that boundary layer separation would be
delayed in this region. Conversely, boundary layer separation would be expected to
be encouraged on the lower half (y∗ = 1) because the body is moving in opposition
to the free stream.
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(e)

( f )

Figure 3. Colour vorticity plots at (a) t∗ = 3.15, (b) 3.6, (c) 4.0, (d) 4.3, (e) 4.6, (f) 5.0.

Thus, the behaviour apparent in figure 2(b) is somewhat surprising. While the body
has rotated clockwise, a good deal of vorticity is seen lifting off the body on the
upper-half, where suppression of separation was expected. Meanwhile, the boundary
layer region appears quiescent on the lower half where separation enhancement might
be expected. Note also that the original multipole vortex structure on the upper half
continues to move downstream and the multipole structure on the lower half has
risen sharply off the body and downstream. The boundary layer dynamics in these
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Figure 4. Drag for Re = 15 000 simulation, Ω∗ = 2 sin (πt∗), ∆x∗ ≈ 0.0015, ∆t∗ = 0.004.
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Figure 5. Pressure distribution on the cylinder surface for Re = 15 000 flow, Ω∗ = 2 sin (πt∗), at
t∗ = 5. The reference value p∗(θ = 180◦) = 0.5 is chosen, which would be the upstream stagnation
point in the potential flow over a fixed cylinder.

multipole formation regions are examined in some detail below. It is apparent that
the oscillation produces opposing layers of vorticity above the wall. The layers have
increasing strength in the steamwise direction, leading to a bursting event, which can
trigger multipole generation.

When the body has completed its clockwise rotation, in figure 2(c), the original
structures have clearly shed from the immediate vicinity of the body and entered
the wake and two new multipole vortex structures have risen during this half-cycle
from the boundary layer on the upper half of the body. In figures 2(d), 2(e), and
2(f), the same cycle repeats itself, but on the opposite half of the cylinder, with
counter-clockwise rotation of the body. In these plots, note the new vortex structures
formed during the cycle of motion and their subsequent detachment from the body
and convection into the near wake. They are considerably more complex than the
original two structures apparent in figure 2(a).

The simulation was stopped at t∗ = 5 as the computational expense, which increases
with the wake growth, was becoming excessive. However, trends can clearly be seen
developing by this time. The drag coefficient, given in figure 4, is at lower values
than the experimental measurements for a non-rotating cylinder of cD ≈ 1.4. The
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0

–1 0 1 2 3

Figure 6. Streamlines for Re = 15 000 flow, Ω∗ = 2 sin (πt∗), at t∗ = 5.
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0

0.5

1.0

Figure 7. Vorticity field for Re = 15 000 flow, Ω∗ = 2 sin (πt∗), t∗ = 3.15,
contours at ω∗ = ±1, ±10, ∆x∗ ≈ 0.001 and ∆t∗ = 0.0025.

sharp unsteadiness observed in the drag coefficient appears to be related to the
growth period of the multipole vorticity structures near the body. The distribution
of pressure around the body at t∗ = 5 is shown in figure 5. Pressure is obtained by
relating the tangential pressure gradient on the body surface to the normal gradient
of the vorticity field with the momentum equation. A relative measure of the pressure
can thus be obtained. The precise value in relation to a reference quantity (such as the
pressure in the undisturbed free stream) is not determined in this approach. For more
details, see Shiels (1998). The pressure distribution clearly indicates a strong recovery,
consistent with the reduced level of drag. The shape of the distribution is far from
the classical time-averaged shape for a bluff body, namely a flat, low-pressure region
after mean separation. The streamlines at t∗ = 5 are also plotted in figure 6.

In order to perform a convergence test on the results above, the same flow was
simulated but with the higher resolution ∆x∗ ≈ 0.001 and ∆t∗ = 0.0025. To reach
t∗ = 3.15, this computation required almost 60 hours of use of 256 processors on
the Cray T3D and entailed over 2 million computational particles. The vorticity
field which evolved in this computation can be viewed in figure 7 and the resultant
drag coefficient in figure 8. Similarities to the previous simulation (∆x∗ ≈ 0.0015
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Figure 8. Drag for Re = 15 000 simulation, Ω∗ = 2 sin (πt∗), ∆x∗ ≈ 0.001 and ∆t∗ = 0.0025.

U∞

Rotation, t*=2–3

Figure 9. Velocity fields in figure 10 are measured over the shaded region.

and ∆t∗ = 0.004) can be seen in both the generally reduced magnitude of the drag
coefficient and the generation of the large vortex structures in the vorticity field.
However, some smaller scale discrepancies exist between the two vorticity fields, and
the drag coefficient in figure 8 does not exhibit the same level of unsteadiness as in
figure 4. The results strongly suggest that the computations have converged to the
large-scale dynamics which characterize this flow but have not fully resolved smaller
scale features. In an attempt to illuminate the dynamics behind the growth of the
multipole vorticity structures, the velocity field inside the boundary layer is examined
in figure 10. These fields are discussed below.

3.2. Analysis of highest-resolution results

The simulations presented above shed light on the somewhat unusual phenomena
which appear to dominate the dynamics of this reduced-drag flow. The observation
of multipole vortex structures which erupt from the boundary layer each half-cycle of
forcing on alternating sides of the body agrees with the shedding patterns observed
in Tokumaru’s (1991) work. The existence of both signs of vorticity in each structure
and the orientation of the structure induces a local velocity field that draws the
structure away from the body in much the same way that a vortex dipole propels
itself. The structures thus enter the free stream and convect away quickly rather
than agglomerating in the cylinder wake and establishing large-scale separation. Such
observations are tempered by the relatively short duration of these computations, but
they do agree qualitatively with the experimental results and there is clearly a trend
toward periodic behaviour, as exhibited in the comparison of figures 2(b) and 2(e),
and of figures 2(c) and 2(f).
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Figure 10. Velocity vectors in the boundary layer at (a) t∗ = 2.05, (b) 2.15, (c) 2.3, (d) 2.6.
The grey line approximates an ω∗ = 0 contour.

It is informative to examine the origins of the multipole vortex structures through
boundary layer velocity profiles, measured in the region shown in figure 9. In figure
10(a), the boundary layer from the clockwise rotation of t∗ = 1–2 can be seen drifting
off the surface of the body as the counter-clockwise rotation begins at t∗ = 2. The
grey line in the figures tracks approximately the line ω = 0 and hence the migration of
this vortex layer as the counter-clockwise rotation of the t∗ = 2–3 cycle frees it from
the restrictions of the solid boundary. It appears from the evolution of the grey lines
in figure 10 that a compact vortex forms in this location. As seen in figure 10(a), the
flow leading up to this bursting event has the ingredients for unsteady boundary layer
separation – significant negative velocity gradient in the stream direction along the line
ω = 0. See, for example, Cowley, Van Dommelen & Lam (1990). The separation thus
triggers rapid growth of the observed multipole vortex structure, which quickly pulls
itself outside the boundary layer. All of this is made possible because of the transient
effects of the rotational oscillations combined with advection effects, providing the
simultaneous existence of opposite-signal vortex layers with variable strength near
the wall.

These vorticity dynamics provide a plausible explanation of the observations in
Tokumaru’s (1991) experiment. The vortex multipole draws a great deal of vorticity
far enough from the body to permit it to shed downstream rather than get caught in
a recirculation region. By drawing this vorticity out of the boundary layer, sufficient
vorticity never remains in the near wake to establish a large-scale recirculation.
Presumably the interaction of opposite signs of vorticity in the multipole creation
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Figure 11. Vorticity field for Re = 15 000, Ω∗ = 2 sin (πt∗), t∗ = 3.15, contours at ω∗ = ±1, ±10.
Implementation of the core expansion technique with ∆t∗ = 0.005 (highest resolution).

also leads to a good deal of cancellation. Thus separation is delayed in an overall sense,
leading to pressure profiles such as in figure 5, although the creation of the vortex
multipoles can be viewed as short-term separation enhancement. Further evidence
that separation is being delayed in a time-averaged sense is provided by the tongues
of vorticity near the wake centreline in figure 2(f), representing the shear layers that
would normally have separated from the cylinder much earlier.

Another view of how the flow dynamics observed in the above simulations supports
drag reduction is given by considering drag expressed from the vorticity perspective,

Drag = −ρ d

dt

(∫∫
A

yωdA

)
(13)

where the area A represents the entire flow field. The vortex structures which are
shed from the body contain significant components of both signs of vorticity. With
comparable vortices of opposing sign at relatively the same location, (13) would thus
predict less drag than for the unforced case where structures of one sign of vorticity
are more prevalent.

As noted above, the simulations on which this analysis is based are not fully
converged. However, the dominant dynamics of the ejection of multipole vorticity
structures appear to exist on scales that are properly resolved.

3.3. Long-time simulations with varied Re and oscillation parameters

3.3.1. Application of the core expansion method

In order to attempt longer-duration simulations of flow at Re = 15 000, a vortex
method with the core expansion technique for diffusion is used. The goal of these
computations is to simply capture the dominant behaviour observed in the PSE
simulations while relaxing the level of resolution to an extent that allows simulation
of the flow to a well-developed state. In order to identify appropriate choices for the
computational parameters of the core expansion simulations, test cases are run on the
Re = 15 000, Ω∗ = 2 sin (πt∗) flow. The resultant vorticity fields and drag coefficients
are compared to the benchmarks results shown in figures 7 and 8 respectively.

Three sets of parameters were tested to assess the accuracy of the core expansion
method for the flow. The highest-resolution case provides confidence that the method
will converge towards the PSE results at the relevant scales. This simulation used ∆t∗ =
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Figure 12. Drag for Re = 15 000 flow, Ω∗ = 2 sin (πt∗). Implementation of the core expansion
technique with ∆t∗ = 0.005 (highest resolution).
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Figure 13. Vorticity field for Re = 15 000, Ω∗ = 2 sin (πt∗), t∗ = 3.15, contours at ω∗ = ±1, ±10.
Implementation of the core expansion technique with ∆t∗ = 0.01 (medium resolution).

0.005, spatial adaptivity from dx∗ ≈ 0.0018 in the boundary layer to dx∗ ≈ 0.005r∗
(where r gives the radial distance from the centre of the cylinder), and required
13 hours on a single processor of a Cray J90 (which is approximately equivalent
to 26 hours on a 200 MHz Pentium Pro for the code used). Comparison between
vector and parallel computers can be difficult to quantify, but an hour on a single J90
processor could be considered substantially less ‘costly’ than an hour of use of 256
processors of a Cray T3D. By the end of the simulation, only 170 000 computational
elements were required compared to the 2 million for the simulation with PSE. The
vorticity field in figure 11 exhibits the familiar growth and ejection of multipole
vorticity structures, although the structures are a bit more complex than in the PSE
simulations. Considering the aggressive spatial resolution adaptation being applied in
this case, the field is in good agreement with the PSE simulations, obtaining similar
qualitative behaviour. The drag coefficient also exhibits a similar evolution to the
PSE results (see figure 12).

A second simulation at medium resolution also captures the generation of multipole
vortex structures every half-cycle, but loses quite a bit of accuracy in the small
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Figure 14. Drag for Re = 15 000 flow, Ω∗ = 2 sin (πt∗). Implementation of the core expansion
technique with ∆t∗ = 0.01 (medium resolution).
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Figure 15. Vorticity field for Re = 15 000, Ω∗ = 2 sin (πt∗), t∗ = 3.15, contours at ω∗ = ±1, ±10.
Implementation of the core expansion technique with ∆t∗ = 0.02 (lowest resolution).

scale. This computation used ∆t∗ = 0.01, spatial adaptivity from dx∗ ≈ 0.0025 in the
boundary layer to dx∗ ≈ 0.015r∗, and required 2 hours on a single processor of a Cray
J90 and 20 000 computational elements. Figure 14 indicates that the reduced-drag
aspect of the flow is still captured by the medium resolution of the dynamics given
by the field in figure 13.

The lowest-resolution simulation is implemented with the parameters ∆t∗ = 0.02,
spatial adaptivity from dx∗ ≈ 0.0036 in the boundary layer to dx∗ ≈ 0.02r∗, and
required under one hour on a single processor of a Cray J90 and 12 000 computational
elements. Here a critical point in the required resolution is apparently exceeded and
the basic dynamics of the flow change. The rotation still forces the shedding of a
vortex structure each half-cycle, but in figure 15 it can be seen that the structure
is dominated by a single sign of vorticity and is not ejected as far from the body.
Thus it is possible that it has not actually been shed downstream. The growth of a
multipole vorticity structure on the lower half of the cylinder is also clearly modified
by the lower resolution as again there is less interaction between the opposing signs
of vorticity. Figure 16 indicates that the drag is increased by the modified dynamics
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Figure 16. Drag for Re = 15 000 flow, Ω∗ = 2 sin (πt∗). Implementation of the core expansion
technique with ∆t∗ = 0.02 (lowest resolution).

resulting from the lower resolution. This indicates that the drag reduction suggested
in the PSE simulations is linked to the distinctive vortex shedding.

Subsequent core expansion simulations in this paper use the parameters for the
∆t∗ = 0.01 simulation as it seems to capture the crucial dynamics while gaining
much computational efficiency. Resolution in the far wake is limited to a maximum
coarseness of dx∗ = 0.25.

3.3.2. Re = 15 000 flows: effects of variable forcing

The core expansion method selected above is used to simulate Re = 15 000 flow
with forcing of Ω∗ = 2 sin (πt∗) to t∗ = 50, at which point the system has clearly
settled into periodic, long-time behaviour. The flow is distinguished by the ejection
of a multipole vorticity structure every half-cycle and exhibits a greatly reduced drag.
The evolution of the vorticity field over the half cycle t∗ = 50–51 exhibits the same
general behaviour as the first shed structures seen in the starting-flow simulations
above. As presented in figures 17(a) to 17(e), a structure evolves on the lower half
of the cylinder, where the rotational motion parallels the free stream. The structure
from the previous half-cycle on the upper half of the cylinder is ejected into a wake
which exhibits no large-scale separation. Note again the parallels between the flow at
t∗ = 50 in figure 17(a) and the flow at t∗ = 51 in figure 17(e).

The drag is significantly reduced from the experimentally determined values for a
fixed cylinder as seen in figure 18. Averaged over five forcing cycles from t∗ = 40 to
50, the average drag coefficient is cD = 0.43. Although this is double the Tokumaru
(1991) measurement, it represents nearly a 70% reduction in drag from fixed-cylinder
experimental measurements. Experiments include three-dimensional effects, but the
two-dimensional computational results capture the same qualitative behaviour as
Tokumaru’s (1991) experiments and thus seen to reflect the behaviour he observed.

Simulations with different forcing parameters were run to aid in assessing the
mechanism driving the observed dynamics. First the amplitude of the oscillation
was reduced to Ω∗ = 0.5 sin (πt∗). In this case the average drag coefficient rose to
cD = 1.42. The vorticity field in figure 19(a) reveals that vortex structures shed every
step consist primarily of a single sign of vorticity. The wake exhibits a larger-scale
vortex structure of positive vorticity immediately behind the body and one of negative
vorticity a few diameters downstream in the wake. Thus the altered shedding seems
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Figure 17. Vorticity field for Re = 15 000 flow, Ω∗ = 2 sin (πt∗), t∗ = 50.25, contours at ω∗ = ±1,
±10. (a) t∗ = 50, (b) 50.25, (c) 50.5, (d) 50.75, (e) 51.0.
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Figure 18. Drag for Re = 15 000 flow, Ω∗ = 2 sin (πt∗).
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Figure 19. Vorticity field for Re = 15 000 flow, Ω∗ = 2 sin (0.5πt∗), t∗ = 48, contours at
ω∗ = ±1, ±10. (a) t∗ = 49, (b) 48.
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Figure 20. Drag measured in two-dimensional simulations with Ω∗ = 2 sin (πt∗) (symbols)
compared to experimental measurements of drag over a fixed cylinder (Ω∗ = 0) (line)
(Roshko 1961).

to result in more classical wake development. A second case lowers the frequency of
the forcing to Ω∗ = 2 sin (0.5πt∗), resulting in a drag averaged over a single forcing
cycle (t∗ = 40–48) of cD = 1.14. The plot of the vorticity field for this case in figure
19(b) reveals that the vortex multipole creation observed in the other forcing cases
no longer exists for this oscillation. The large structure seen on the lower half of the
cylinder is presumably the result of the clockwise rotation of the body from t∗ = 44 to
48, during which the body on the lower half moves in opposition to the free stream,
enhancing separation as expected in classical thinking.

3.3.3. Reynolds number effects for Ω∗1 = 2, Sf = 1

The influence of Reynolds number on the observed drag reduction is assessed
with a series of simulations using the forcing Ω∗ = 2 sin (πt∗) and identical simulation
parameters to the above core expansion tests. Reynolds numbers in the range 150–
15 000 are considered, with ∆t∗ = 0.01 and spatial adaptivity from ∆x∗ ≈ 0.3/

√
Re

in the boundary layer to ∆x∗ ≈ (0.9/
√
Re)r∗ with the coarsest resolution limited to

∆x∗ = 0.25. The results reveal that both the drag reduction and multipole vortex
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Figure 21. Vorticity fields at t∗ = 50, Ω∗ = 2 sin (πt∗) for (a) Re = 150, (b) 500, (c) 1500, (d) 5000,
(e) 15 000. Contours at ω∗ = ±0.5, ±5 with solid for positive, dashed for negative.

structures only exist at higher Reynolds numbers, and become more apparent as
Reynolds number increases.

In order to reach the quasi-periodic state of these flows, simulations were run
to t∗ = 50 (25 diameters of downstream motion) and averages were taken over
five forcing cycles from t∗ = 40 to 50. The average drag coefficient in each case
is given in figure 20. At lower Reynolds numbers the forcing is ineffective and the
decrease in drag simply parallels the known drop for the fixed cylinder (although for
two-dimensional flow, fixed cylinder drag actually increases over the range Re = 200–
1000; cf Henderson 1995). But at the higher Reynolds numbers, clear drag reduction
develops between the forced and fixed cases, increasing to the previously noted
significant reduction for Re = 15 000.

Views of the vorticity field at t∗ = 50, time-averaged streamlines, and time-averaged
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(a)

(b)

(c)

Figure 22. Colour plots for (a) Re = 150, (b) Re = 1500, and (c) Re = 15 000.
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Figure 23. Time-averaged pressure distributions with reference value p∗(θ = 180◦) = 0.5.
(a) Re = 150, (b) 500, (c) 1500, (d) 5000, (e) 15 000.

pressure give a good perspective on the foundation of the drag behaviour. At t∗ = 50,
a half-cycle of forcing with clockwise rotation has been completed and thus a vorticity
structure such as that observed in the Re = 15 000 case has formed on the upper half
of the cylinder. As the Reynolds number drops, the added diffusivity impedes the
roll-up of this structure as seen in figures 21 and 22, and prevents it from attaining
the multipole nature evident at Re = 15 000. Between Re = 1500 and 5000, there is
a clear transition in the nature of the development of this structure, just as the drag
reduction begins to become significant in this range.

At the lower Reynolds numbers, the vortex structures formed every half forcing
cycle could be characterized as the shedding of a slight dipole dominated by a single
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Figure 24. Time-averaged streamlines, contours at ψ∗ = 0, ±0.1, ±0.2, ±0.3, ±0.4, ±0.5.
(a) Re = 500, (b) 5000, (c) 15 000.

sign of vorticity. For Re = 5000, the structures become more complex. Note how
the structure formed on the lower half of the cylinder from t∗ = 48 to 49 is drawn
farther from the body as Reynolds number increases. And note how at low Reynolds
numbers the structures dominated by a single sign of vorticity tend to clump into
large-scale vortices in the wake, typical of natural vortex shedding. On the other hand,
the mixed-sign multipole structures at the higher Reynolds numbers lead to a more
heterogeneous near-wake dominated by smaller vortex structures.

The vortex dynamics can be seen as linked to a general trend of a time-averaged
delay in separation as Reynolds number increases, thus leading to drag reduction. The
separation delay occurs only in a time-averaged sense as the rotation triggers frequent,
small-scale, unsteady separation events. The time-averaged pressure distributions in
figure 23 clearly show a pattern of increasing time-averaged delay of separation as
Reynolds number is increased. Time-averaged streamlines in figure 24 verify that the
flow field exhibits this time-averaged form of separation delay at the higher Reynolds
numbers.

It is again instructive to observed the boundary layer developments in the region
of multipole vortex creation in figures 25 to 27. At both Re = 15 000 and Re = 5000,
similar dynamics to those observed in the short-time Re = 15 000 simulation above
are present. In both cases, the boundary layer from the previous rotation half-cycle
becomes a strong, relatively unconstrained shear layer and a compact vortex rolls
up in this region, leading to the multipole development. At Re = 1500, however, this
region of large shear and reversed flow does not exist, presumably due to the greater
influence of diffusion at this Reynolds number. Similarly, the suppression of multipole
growth for lower forcing amplitude and frequency at Re = 15 000 observed above is
presumably linked to the absence of a thin, opposite-signed vortex layer residing
above the wall layer as observed in figures 25 and 26.

Observing the rotational forcing over a range of Reynolds numbers helps to
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Figure 25. Velocity profiles in the boundary layer for Re = 15 000, (a) t∗ = 50.05 and (b) 50.3.
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Figure 26. Velocity profiles in the boundary layer for Re = 5000, (a) t∗ = 50.05 and (b) 50.3.

clarify the physics behind measured drag reductions. The vortex multipole found to
grow in the boundary layer for the Re = 15 000 simulations encourages an overall
delay in separation, presumably by a combination of destruction of vorticity through
cancellation and convection of vorticity away from stagnation regions. As Reynolds
number is decreased and diffusivity increases, the multipole growth is lessened and
eventually suppressed, thus reducing its effects and leading to less drag reduction. An
understanding of the dynamics behind the drag reduction also clearly indicates that
a laminar-to-turbulent boundary layer transition is not responsible for the lowered
drag.
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Figure 27. Velocity profiles in the boundary layer for Re = 1500, (a) t∗ = 50.05 and (b) 50.3.

3.3.4. Efficiency of control at Ω∗1 = 2, Sf = 1

A final issue concerns the practical efficiency of the rotational control studied above.
Although drag reduction can be obtained, there is a cost associated with rotating the
cylinder against skin friction. A comparison is made between the power saved (which
otherwise would be expended to move the body upstream) by the drag reduction and
the power required to rotate the cylinder against skin friction. There is further cost
in overcoming the rotational inertia of the body, but this is dependent on material
properties and practical implementation and not factored into this analysis. Define
the power savings ratio, PSR, as the ratio between the power saved by drag reduction
and power expended by the rotation. The power saved by the drag reduction is given
by

Power saved = ( 1
2
ρU2
∞D∆cD)U∞ = 1

2
ρU3
∞D∆cD. (14)

The power exerted to rotate against skin friction is given by

Power exerted = (ρU2
∞R

2cM)θ̇ (15)

where the moment coefficient

cM = − 1
Re

(∫ 2π

0

ω∗dθ − 4πθ̇∗
)

dθ. (16)

Thus the power savings ratio is given by

PSR =
∆cD

|θ̇∗cM | (17)

where the denominator is time averaged as for the drag coefficient. Figure 28 shows
that the efficiency of the process begins to greatly increase in as the Reynolds number
rises to 15 000.

In table 1 a summary of the results from the long-time simulations with the core
expansion method is provided.
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Re Ω∗ cD θ̇∗cM

150 2 sin (πt∗) 1.47 0.84
300 2 sin (πt∗) 1.27 0.56
500 2 sin (πt∗) 1.25 0.42
800 2 sin (πt∗) 1.02 0.32

1500 2 sin (πt∗) 0.96 0.27
3000 2 sin (πt∗) 0.77 0.16
5000 2 sin (πt∗) 0.73 0.13
8000 2 sin (πt∗) 0.55 0.10

15 000 2 sin (πt∗) 0.43 0.07
15 000 0.5 sin (πt∗) 1.42 0.02
15 000 2 sin (0.2.5πt∗) 1.14 0.03

Table 1. Results for simulations with rotational forcing run to t∗ = 50 with the
core expansion method.

15

10

5

0
103 104 105

Re

PSR

Figure 28. The power saving ratio (PSR) for cases in which drag was substantially reduced.

4. Conclusions

The computational simulations presented verify Tokumaru & Dimotakis’ (1991)
observation of drag reduction. Analysis of the data shows that boundary layer
bursting leading to the formation of a multipole vorticity structure, triggered by
appropriate rotational oscillation, leads to a time-averaged separation delay and
thus drag reduction. This control mechanism is only found to be effective at higher
Reynolds numbers (Re & 3000), apparently because viscosity damps the trigger to the
multipole growth. Similarly, it is found that the amplitude and frequency of the forcing
must be sufficiently large to generate the multipoles, which coincides with Tokumaru’s
(1991) observations. The cause of these two limitations on the control effectiveness
seems to stem from the link between the multipole structure and its precursor, a
boundary layer composed of two opposite-signed vortex layers of variable strength.
Convergence tests are used to verify that a sufficient level of accuracy is present in
the computations. Although the smallest scales are beyond the level of resolution
achieved in this study, it is shown that the dynamics accurately capture qualitative
behaviour in the flow and drag measurement is converged. Finally, the efficiency of
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rotational control for drag reduction is assessed, suggesting that this procedure is
most efficient at higher Reynolds numbers.
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