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We report on a theoretical and experimental study on the anisotropic diffusion of
isolated prolate spheroidal particles in the presence of an aligning potential field. By
analysing the microscopic stochastic equations of motion, we obtained the coarse-grained
Fokker—Planck equations that govern the evolution of the probability distributions of
particle orientation in various configurational spaces. In particular, we found explicit
formulae for the diffusion coefficients parallel (D) and perpendicular (Dy) to the field
direction in the long-time limit. The predicted results were experimentally validated by
measuring the Brownian motions of fluid-suspended carbon nanotubes in an electric field.
Good agreement was observed between theoretical and experimental results, both of which
showed increasing D, and decreasing Dy, with increasing field strength up to a critical field
strength beyond which both curves start to flatten. Our theory and experimental results
provide a framework for understanding the coupling between rotation and translation in
a diffusion process, and for controlling the diffusion of particles with aligning potential
fields.

Key words: suspensions, general fluid mechanics

1. Introduction

Brownian motion, a ubiquitous phenomenon in the natural world in which small particles
undergo continuous random motion in a fluid, has been extensively studied ever since the
pioneering work of Einstein (1905) and Perrin (1909) in the early 20th century, with
the former modelling the Brownian motion via the friction coefficient of the particle and
the latter verifying this formulation experimentally. In recent years, the diffusion behaviour
of anisotropic particles has been attracting significant academic and industrial interest
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thanks to its increasing importance in chemical and biomedical systems. As the additional
degrees of freedom in particle shape and orientation introduce more complicated particle
dynamics, fundamental understanding of the diffusion behaviour of anisotropic particles
becomes essential for applications such as electrophoresis (Squires & Bazant 2006),
sedimentation (Makino & Doi 2003; Doi & Makino 2005) and particle sorting (Aristov,
Eichhorn & Bechinger 2013; Mijalkov & Volpe 2013).

Brownian motion of an anisotropic particle was first studied by Perrin (1934, 1936),
who analytically calculated the friction coefficient of an ellipsoid along its principal axes.
The coupling between translational and rotational Brownian motion of rigid particles of
arbitrary shape has been modelled by Brenner (1965, 1967). Experimental efforts have
been made by Han et al. (2006, 2009) using digital video microscopy to investigate the
Brownian motion of ellipsoidal particles (polymethyl methacrylate (known as PMMA)
and polystyrene) in water in two-dimensional and quasi-two-dimensional space. They have
studied both translational and rotational diffusion of the particles. Diffusion of particles
in other shapes and forms, including copper oxide nanorods (Cheong & Grier 2010),
graphene (Maragé et al. 2010), Janus particles (Wang et al. 2014), boomerang particles
(Chakrabarty et al. 2014) and actin filaments (Koster, Steinhauser & Pfohl 2005), have
also been measured.

The ability to effectively manipulate microparticles or nanoparticles, especially
anisotropic particles, in a fluid using an external field, opens up new possibilities in
a variety of applications (Yuan, Liu & Shan 2017; Yuan et al. 2019; Cetindag et al.
2017; Castellano et al. 2015, 2020). The additional field-induced alignment energy will
significantly affect the Brownian motion of an anisotropic particle. It is therefore important
to develop an enhanced fundamental understanding of the diffusion of anisotropic
particles in order to fully benefit from the unique controllability of an external field
over colloidal systems. A number of modelling efforts have been made to describe
the diffusion behaviour of anisotropic particles in the presence of an external field.
Through the perturbation method, Aurell ez al. conducted a systematic multiscale analysis
quantified by the dimensionless parameter that is defined as the ratio of the small scales
concerning rotational motion divided by the large scales concerning translational motion.
The effective long-term diffusion of an ellipsoidal Brownian particle subjected to a
constant external force have been mathematically derived and found anisotropic. A ratio
of 4/3 has been identified between the parallel and the perpendicular contributions to
the force-dependent but shape-independent diffusivity, which are relative to the force
field direction (Aurell et al. 2016). Guell et al. studied the diffusive properties of a
magnetically torqued paramagnetic ellipsoidal particle and showed that the crossover from
anisotropic to isotropic diffusion can be controlled by the amplitude and the frequency
of the applied field (Giiell, Tierno & Sagués 2010). Grima et al. analytically studied the
short- and long-time Brownian motion of an ellipsoidal particle in a potential field with
the particle motion restricted to a plane (Grima & Yaliraki 2007). They demonstrated
that the long-time diffusion coefficient is different from that of a free particle in the
presence of external forces, with the magnitude of the difference increasing proportionally
with the particle asymmetry. In the meantime, experimental approaches have been
used to study how an external field would change the Brownian motion of anisotropic
particles. Segovia-Gutierrez et al. studied both the rotational and translational dynamics
of trimmers subjected to a random potential energy landscape (Segovia-Gutiérrez et al.
2019). Obasanjo measured the diffusion coefficient of ellipsoidal colloid particles near

an alternating current (AC) electrode polarized at ~0.1-4 kVm~! and ~0.1-3 kHz
(Obasanjo 2016).

924 A42-2


https://doi.org/10.1017/jfm.2021.653

https://doi.org/10.1017/jfm.2021.653 Published online by Cambridge University Press

Electric-field-controlled diffusion of anisotropic particles

In spite of the prior effort that has been put in to understand the field-modified diffusion
of anisotropic particles, to the authors’ best knowledge there has been no systematic
study (with both modelling and experiments) of the anisotropic diffusion behaviour of
a non-spherical particle in the directions parallel and perpendicular to the applied field.
Following the classical description of Brownian motion, we focus on a single particle
with two forces from the ambient continuum medium: the viscous friction and the thermal
agitation. For an anisotropic particle, it is necessary to take into account rotational motion
in the microscopic equations of motion. This gives rise to difficulty in solving and
interpreting the Langevin equation for the translational motion which is now orientation
dependent. Nevertheless, prior experimental and analytical work (Han et al. 2006; Cheong
& Grier 2010; Chakrabarty et al. 2014) has made for interesting discoveries, e.g. the
long-time diffusivity of an anisotropic particle in two dimensions should be isotropic
and converge to the average of the initial diffusivities in two directions. We are therefore
motivated to take a coarse-grained description and study the evolution of the probability
distribution function (p.d.f.) of the particle in configurational spaces. This description
is versatile: it enables us to fix the ‘strength’ of thermal agitations on the particle (or
fluctuation coefficients) and gives rise to a Fokker—Planck equation that governs the
evolution of p.d.f.s in both position and orientation space of the particle. Based on the
Fokker—Planck equation, we elucidate the transition time scale from anisotropic diffusion
to isotropic diffusion in the absence of an alignment field, and obtain explicit formulae for
the diffusivity of the particle in the presence of an alignment field. Although beyond the
scope of the present paper, this approach may also be extended to model and predict the
diffusivity of deformable particles or macromolecules in complex media for a fundamental
understanding of anomalous diffusion.

In the second part of this work we experimentally measure the diffusion of a carbon
nanotube (CNT) in mineral oil under an aligning uniform AC electric field. Specifically,
we calculate the mean square displacement (MSD) of a CNT using a single-particle
tracking technique, in which the trajectory of a single CNT is continuously tracked
and recorded under a microscope. The diffusion coefficients of the CNT in the x- and
y-direction are then extracted from the obtained MSD data, and compared with the
model-predicted values at different strengths of the alignment field. Good agreement
is found between experimental measurement and theoretical prediction, providing a
solid foundation for further exploration of field-controlled diffusion of particles in
applications.

2. Theory
2.1. Equations of motion

Note that in the following analysis, we notate 4 - @ and 4 - B as Aa and AB, respectively,
where a € R3, 4, B € R¥*3, since a second-order tensor can be seen as an operator
denoting linear transformations. We also apply the Einstein summation convention to any
repeated indices in the subscripts within a term. Vectors or tensors are denoted in bold.
To study the diffusion of an anisotropic particle in a medium, we consider the motions
of the particle in space under the application of external force and torque and thermal
agitations. Let {e; : i = 1, 2, 3} be a global orthonormal frame and {f;:i=1,2, 3} be
an orthonormal body frame fixed on the particle. The position and orientation of the
particle are described by kinematic variables: x = x(¢) for the position of the centre of
mass and rigid rotation matrix Q(t) = e; ® f;(¢) for the orientation. Associated with the
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skew-symmetric matrix QT Q, the angular velocity w is introduced such that for any vector
a e R, Q' Qa =  x a. In particular, we have

fi=0"0fi =wxf; (2.1)

Let v =x(f) be the velocity of the centre of mass, m the mass and I € ngf;’

(respectively, ¢ and g¢) the moment of inertia (respectively, external torque and force)
with respect to the centre of mass. The equations of motions for the particle can then be
written as

d
a(mv) =-R'v—R"w+g°+0,&,
(2.2)

d
U = —R"v —R"w+ 1 +0,£,

where £(7) € R? denotes the uncorrelated white noises satisfying that
M) =0, (&) =8;8—1), (2.3a,b)

0,0, € R33 are the fluctuation coefficients that will be determined by the
fluctuation—dissipation theorem (Kubo 1966), and R/ ¢ R3*3 represent the friction
coefficient tensors or the inverse of the mobility tensor. In other words, the drag force g
and torque 7 on the particle from the ambient fluid are related to the particle linear and

angular velocity by
Rtt Rtr v
(& 50
A (tt,tryrr) 4

Let R , I, &,6,, ¢ be the representation of quantities R I, @, ¢, ¢ with
respect to the body frame {f’; : i = 1, 2, 3}. It is standard to show that they are related by
the following transformations:

R 1 e,y =" R™™™ 1,60, 03
@,7%) = Q'(&, 9.
In particular, the friction tensors IAQ(n’tr’rr) and moment of inertia tensor 1 depend only

on the shape of the particle and their properties and explicit formulae have been studied
in details at, e.g., Bernal & De La Torre (1980). The coupled system (2.2) concerning
translational and rotational degrees of freedom could be simplified on account of the

geometric symmetry of the particle and the energy scale kgT of thermal agitations. (Here
kp is the Boltzmann constant and 7' is the absolute temperature.) First, for an axisymmetric

particle, R" = 0. In addition, with respect to the body frame (2.2) can be rewritten as
16 +&x (o) = —R"& + ¢+ 6,&. (2.6)

)
Since the rotational kinetic energy %6) - I1& ~ kT and inertia torque I ~ nvkpla/p, we

have
o x Id w|? kgT
o6l ol [bsTp 27
o] @] n-a

where p (respectively, a) is the density (respectively, characteristic size) of the particle and

n is the viscosity of the ambient fluid. Upon neglecting the term & x 1&, we can rewrite
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(2.2) as

mv=—Q'R"Qv +g° + atg,} 08

AA Arr A e . A A
I®=—-R"&+1°+0,E.

The stochastic differential equations (2.8) describe the microscopic motions of the
particle under the application of external forces and thermal agitations. To fix the unknown
fluctuation coefficients o; and o, and relate (2.8) with macroscopic observables, we
introduce a p.d.f. P(r, t) for a generic stochastic process ¥ = r(t). In other words, P(rg, t)dr
represents the probability of random variables r(¢) taking values from the infinitesimal
volume element dr centred at rg. From the master equation and neglecting higher-order
moments, we find that the p.d.f. satisfies the Fokker—Planck equation (Van Kampen 2007)

aP(r,1) i - @i
Y _in: ar,-{ aiP(r, 1) + 5 ar,-P(r’ t)}, (2.9)

where the coefficients are given by

(r(t+ A1) —r(n)

a(t) = lim ,
At—0 At
(2.10)
([r(t + AD) —r(O] @ [r(t + AD) — r(D)])

H= 1 .
B® A}Eo At

Here we emphasize that the physical meaning of variables r depend on the context. In
particular, variables r may represent velocity, position, orientation, or all of them in the
subsequent sections.

2.2. Fluctuation coefficients

To see the implications of the stochastic differential system (2.8), we first determine the
fluctuation coefficients o; and o, and how they depend on the orientation matrix Q. To
this end, we consider a process with Q being essentially constant by, e.g. exerting an
external torque ¢ that penalizes deviations from the prescribed orientation. In the absence
of external force (g¢ = 0), the stochastic differential equation (2.81) is recognized as a
vectorial Langevin equation,

mdv = —R"v dt + o ,£ dt. (2.11)
It is straightforward to verify that the solution to (2.11) satisfies (see e.g. Evans 2012)
! 1t
(t) = exp (——R ) v(0)
m
1 [ t—s_,
+— | exp| ——R" ) 0:&(s)ds. (2.12)
m Jo m

Inserting (2.12) into (2.10) (with r replaced by v), by (2.3a,b) we find the coefficients
associated with the Fokker—Planck equation (2.9) for the probability distribution
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P = P(v, 1) of particle in the velocity space,
1 1t 1 T
oa=——R"v and B = orta, (2.13)
m

Therefore, the Fokker—Planck equation governing the probability distribution of the
particle in the velocity space can be written as

0P(v, 1) B 0 Bix 0
o Xk: 90 [ aiP(v, 1) + —a—P(v z)} (2.14)

Meanwhile, from the classical statistical physics the stationary equilibrium p.d.f. P*(v)
should be given by the Maxwell-Boltzmann distribution,

P m|v|?
(v) ox exp _ZkBT . (2.15)

For consistency, we require (2.15) to be a stationary solution to (2.14) and conclude that
Bm/2kgT = R" /m, i.e.
00" = 2kgTR". (2.16)

We remark that the above relation is a ramification of the fluctuation—dissipation theorem.
Similarly, by the second equation of (2.8) we have a Langevin equation for angular
velocity in the absence of an external torque (¢ = 0),

. Amln Ael o2
do=—-I R'&di+1 o,&dr. (2.17)
Therefore, we find that for consistency,
6,67 = 2kgTR™, (2.18)

which gives rise to the stationary Maxwell-Boltzmann distribution to the Fokker—Planck
equation (2.9) (with r replaced by @) in the angular-velocity space,

P’(®) o exp [—‘:’ : I‘:’} . (2.19)

2kpT

2.3. Diffusivity
We are interested in the macroscopic diffusivity of an anisotropic particle in space
under an alignment field in the long-time limit. For this purpose, we introduce a
certain parameterization of the rotation matrix Q, for example the Euler angles @ =
(©1, ®,, ®3), to fix the orientation of the particle with respect to the global frame
{e; : i =1, 2, 3}. The angular velocity @ and rate of change of parameters @ are in general
related by a linear transformation,

w=T0O. (2.20)

Note that for anisotropic particles, the mobility tensors M™"" and transformation matrix
T in general depend on parameters @ (but not on the position x), which is sometimes
omitted in the notation for brevity.
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Neglecting the effect of inertia, we can write the equations of motion (2.2) as
x — M[tge +Mtlo_t£t,

N e rr 2.2D)
T =M"t°+M"0,§,,

where (M, M'") = (R")~!, (R™)~") are the translational and rotational mobility
tensors of the particle. Furthermore, both the external force g¢ and torque ¢ are assumed
to be conservative and hence are related to the gradient of potential V(x) for force
and V' (@) for torque. To find the exact relation between ¢ and V'"(@®), we notice
that the rate of work done by this external torque at any angular velocity is given by
—(d/dH)V'"" (@) = @ - T¢ and hence, by (2.20), we obtain

=T TVuVv™(@®). (2.22)

From the stochastic equations (2.21), by (2.10), (2.16) and (2.18) we find the coefficients
associated with translational variables x and rotational variables @ for the Fokker—Planck
equations,

al‘l‘ — —M"Van(x), ﬂll — 2kBTM”,
o« =T 'M"TTVueV"(©), (2.23)
B = 2kgTT'M"TT.

Therefore, the Fokker—Planck equation for the p.d.f. P = P(x, ©,¢) in the position—
orientation space (x, @) can be written as

8P( @t)—z 9 p( @z)+ﬂ’?ap( 0,1
or T L g [\ T TR

i,

d . B o
+8_@,~ |:(—oz,~ P(x,0,1) + Ta—@P(x, e, z))} } . (2.24)

It is straightforward to verify that

P'(x,0) = P'(x)P'(O),

th (x)
kT

V(@) ] (2.25)

i| , P(O@) xexp [— i

P’ (x) o exp |:—
is a stationary solution to (2.24), which is consistent with the classical statistical
mechanics.

It appears to be reasonable to interpret the tensors /2 and B’"/2 as the macroscopic
translational and rotational diffusivities of the particle, respectively. The caveat lies in that
both tensors in general depend on the orientation variables @. For rotational diffusion,
(2.24) implies a time scale

(2n)*

rot ™ Tt
1B

(2.26)

If we are only interested in the translational diffusion in space at a time scale that is much
larger than T, the rotational motion may be assumed to be statistically stationary in the
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sense that the p.d.f. P = P(x, O, ¢) is of the following form:

(2.27)

P(x, ©,1) = Py(x, HP’ (@) x Py(x, 1) exp |:— V”(@):| .

kT

Inserting the above equation into (2.24) and integrating over @-space, we obtain the
standard diffusion equation for the probability of distribution of the particle P = P, (x, t)
in physical space in the absence of external force (V" = 0), as follows:

0 .
EP* (x,1) = div(DVP,(x, 1)), (2.28)

where the effective diffusion tensor is given by
DY = kpT / M"(©@)P(©)d0e. (2.29)

The above relation (2.29) between diffusivity and mobility can be regarded as a
generalization of the classical Stoke—Einstein’s relation. It should be noted that even if
the physical conditions are different, (2.28), which governs the probability of distribution,
possesses the same terms associated with the effective diffusivity as that derived in Aurell
et al. (2016). Differently, in our work, the drift velocity due to the non-zero external force
and its impact on the probability distribution over the orientation space vanish, and the
probability distribution in the orientation space is dominated by the external alignment
field (torque).

For an anisotropic particle, the diffusivity along a particular direction, e.g. ej-direction,
in general depends on the orientation p.d.f. P*(®) and hence the external alignment field.
Nevertheless, noticing the transformation (2.5), we have

Tr(DYy = kgT / Tr[M"(©)]P°(©)dO
— kgTTr(M"™), (2.30)

~ It A ft . J .
where M = (R )~! is the mobility tensor with respect to the body frame and hence
independent of the orientation of the particle for isotropic ambient fluids. In particular, if
there is no external alignment field, the effective diffusivity tensor will be isotropic and
satisfies

b =pY

ef _
11 =Dy =D

I = LpTTr™). (2.31)

2.4. Effective translational diffusion coefficient of CNT aligned by electric field

We now apply (2.29) to calculate the diffusion coefficients of a suspended CNT aligned
by an AC electric field in an isotropic fluid. The shape of a CNT will be approximated
as a prolate spheroid with aspect ratio e (> 1) and major semiaxis length a. Because of
axisymmetry, it suffices to describe the orientation of the CNT by specifying two angles
(@, ¢). As illustrated in figure 1, let 6 be the angle between the symmetry axis f'| of the
body frame and e; of the global frame, and ¢ be the angle between e; and the projected ray
of f; on the ep—e3-plane. In terms of (6, ¢), the rigid rotation matrix Q can be explicitly
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Figure 1. Representation of the current configuration.
written as
cosf  sinfcosg sin 6 sin ¢
QO(p,0) = | sinf —cosfcosg —cosfsing |. (2.32)
sin ¢ —Cos @

According to Kim & Karrila (1991), the off-diagonal components of M" vanish in account
of the axisymmetry of a spheroid whereas the diagonal components of M are given by

e|:(2.e2 — 1) In (e + m) — em]
3/2 ’
S = 1) o (233)
A . e[(262—3)ln(6+«/ez—1)—0—6«/62—1]
Moz =M = 167na(e? — 1)3/2 ,
where 7 is the viscosity of the ambient fluid. For e >> 1, we have approximations
(22 -1)~2e m(e+Ve—T)xm2ex»1, e/ -1~
(2.34)

3/2
<€2 — 1) ~ 63, (262 — 3) ~ 22,
Then for fixed minor semiaxis length b = ‘;‘ of the spheroid, (2.34) and (2.33) lead to

~ A N Ine
My, My, M33 & - (2.35)

By (2.5) and (2.32), we find the diagonal components of the mobility tensor with respect
to the global frame are given by

M (¢, 6) = cos® OM, + sin® OMY,,
MY, (@, 6) = cos® p(sin MY, 4 cos? ML) + sin® pM?,, (2.36)
MY (¢, 6) = sin® p(sin® OMY| + cos® OML,) + cos® pM?,.

Furthermore, the applied AC electric field aligns the CNT along the field direction
because of the induced dipole. The time-averaged alignment potential can be written as
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(Jones 1995)
V'(0) = em|E|?a’C sin 0, (2.37)
where |E| denotes the amplitude of the external AC electric field, and ¢, is the dielectric

constant of the isotropic ambient fluid. In addition, the dimensionless factor ¢ is given by
(Jones 1995)

(-2)
2n (L, — L €
- “(322 URe - ot - . (@238)
¢ [_—Mm(l__—m)}[_—mﬂz(l__—m)}
€p €p €p €p
where Re denotes the real part, L and L, are geometrical parameters given by
1 Ve —1) —+er -1
Lot Ve b oVe ol o, (2.39a.)

(62 _ 1)3/2
and €, (respectively, €,,) is the complex permittivity of the particle (respectively, medium)
and given by (e, permittivity; o, conductivity; w, AC frequency)

Epm = €pm — z% (2.40)

For parameters consistent with our experiment (CNT and mineral oil, and frequency up to
1 kHz), we notice that

|€ml

— LK1, (2.41)
|€p|
so the factor ¢ can be simplified as
~ 2] (2.42)
3 |mze—1] '

Inserting (2.37) into (2.25), we find the stationary p.d.f. of the CNT orientation,

, i ema3§|E|2sin29:|
sinf exp | —

ksT
P9) = -

3 2 a2 ’
E 0
Jo exp |:_ema gIkB|T = :| sinf d@

(2.43)

The derivation of (2.43) is given in the Appendix.
Consequently, by (2.29) and (2.36) we find that the effective diffusion coefficients along
three axes of the global frame are given by

L
D??p = D, — (DY, — D3,) / P*(0) sin® 6 do),
0 (2.44)

L
ng;f = D_fg = D% + %(Dtltl - thtz)/(; P*(0) sin® 0 d0),

where D = kgTM is the diffusivity with respect to the body frame. In addition, all the
off-diagonal components of D will vanish by symmetry.
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We remark that if |E| = 0, the p.d.f. (2.43) is clearly a uniform distribution, and by
directly integrating (2.44) we find D is isotropic with diffusivity %Tr(]f)), as noticed
before in (2.31). When |E| — 400, the p.d.f. (2.43) would be a delta function at § = 0,
implying complete alignment with electric field, and hence

p¥ =pt, Df =Dy = DY = D, (2.45a,b)
When €,a’¢|E|*/kgT > 1, the p.d.f. (2.43) may be approximated by a Gaussian
distribution which can be used to fix the factor ¢ or the electrical properties of
nanoparticles by experimentally measuring the p.d.f. (Guo, Su & Guo 2012; Castellano
et al. 2015). For general electric field strength, the integrals in (2.44) can be numerically
evaluated, with sample results shown in the Results and discussion section (§ 4).

3. Experiments

In this work we use a single-particle tracking technique (Michalet 2010) to measure the
translational diffusion coefficient of CNTs in mineral oil under an aligning AC field. In
this technique, individual CNTs in suspension are continuously tracked and analysed under
an optical microscope for a relatively long period of time compared with the rotational
diffusion time scale (2.26) of the particle (supplementary material available at https://doi.
org/10.1017/jfm.2021.653).

3.1. Experimental set-up

Multiwall CNTs (110-170 nm in diameter and ranging between 5 and 9 pm in length,
Sigma Aldrich #659258) are first dispersed in light mineral oil (Drakeol 7 LT Mineral
Oil, Calumet Specialty Products and Partners, L.P.) at a volume fraction ~0.001 %
using a bath sonicator (Fisher Scientific — FS60 Ultrasonic Cleaner), before being placed
between a pair of parallel electrodes. Since the suspension is extremely dilute, interactions
between particles can be safely neglected in our experiments. The AC electric field in
the experiments is provided by an arbitrary function generator (Tektronix AFG3200C)
connected to a high-frequency amplifier (TREK 2100HF). Field strengths of 0 Vmm™!,
33Vmm 1, 67Vmm =, 13.3Vmm 1,20 Vmm—!,26.7 Vmm~! and 33.3 Vmm~! are
used while the AC frequency is fixed at 1 kHz and the field is always in the e;-direction.
We measure approximately 10-30 different CNTs at each field strength. The Brownian
motion of individual particles is recorded by a high-speed monochrome CCD camera
(pco.edge sSCMOS, PCO AG) mounted on an inverted optical microscope (Olympus IX71,
Olympus Corp.) with a x40 objective lens (Olympus LUCPLEFN x40, N.A. 0.6, Olympus
Corp). The sampling frequency is chosen to be 10 Hz (AT = 0.1 s) and the time window
of each measurement is 400 s. We combine at least 10 time windows to calculate one
averaged translational diffusion coefficient at each field strength. The overall observation
time, as the sum of these windows, is much longer than the rotational diffusion time
scale. Therefore, our measurement of translational diffusion is unlikely to be affected by
rotational diffusion (see supplementary material). The trajectory of the centre of mass of
the particles is then extracted from the recorded images using a custom-written MATLAB
program (see supplementary material). A schematic of the experimental set-up is shown
in figure 2.

924 A42-11


https://doi.org/10.1017/jfm.2021.653
https://doi.org/10.1017/jfm.2021.653
https://doi.org/10.1017/jfm.2021.653

https://doi.org/10.1017/jfm.2021.653 Published online by Cambridge University Press

T. Yuan, W. Yuan, L. Liu and J.W. Shan

Function generator High-frequency amplifier
— 0 M DInput Output
00 00 [ |

J = = ‘I._l
_ | Parallel
[ 1 ] electrodes (on

Image | | glass slide)
acquisition and analysis
——
Camera Microscope objective

Figure 2. Experimental set-up for measurement of CNT diffusion under an aligning electric field.

3.2. Data processing

In order to determine the translational diffusion coefficient, we first calculate the MSD of
the particle for consecutive lag times in the x- (parallel to the field ) and y- (perpendicular
to the field) directions,

N—k—1
MSDy (1) = T Z [x(nA?) — x((n + k) AD]?,
o =0
e (3.1)
MSDy (1) = ~— 3 Dy -y +ban],
n=0

where N is the total number of points in each measurement and 7 = kAT (k=
1,2,...,N — 1) is the lag time. The MSD generally grows linearly with the lag time t
for ideal Brownian motion,

MSD,(7) = 2sz,}
(3.2)

MSD\(t) = 2Dy,
where D, and D, are the translational diffusion coefficient in x and y direction,
respectively. However, the average velocity of the CNTs may not vanish for the considered
time interval because of the inevitable background motion (see supplementary material)

of the fluid due to the non-uniformity of the field or other sources; a better approximation
of MSD versus t would be of the following form:

MSD,(t) = 2Dyt + vﬁrz,} a3

MSDy(t) = 2Dyt + v 7%,

where v, and vy are the field-induced translational velocities in the x- and y-directions,
respectively. Therefore, we use a quadratic fitting algorithm to process the experimental
MSD data and extract the coefficients associated with the linear term to determine the
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Figure 3. Measurements showing that D, + 2D, remains a constant as the field strength (and thus the
alignment energy) is increased, as predicted by the model.
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Figure 4. Predicted and measured anisotropic diffusion of CNTs in mineral oil under an aligning potential
field.

diffusion coefficients. Only the first 50 MSD data points are used in our fitting to ensure
the accuracy of the results. The calculated diffusion coefficients of different CNTs are
normalized and combined into an averaged value at each field strength based on the CNT
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dimensions using the formulae
2aD, In(2e)
- (22) (22)
n2e) 2a
D) = <12aDy > ' <ln(2e)>.
n2e) 2a

Because the CNTs could be broken into shorter pieces by ultrasonication, the actual
lengths of the CNTs were measured optically with the microscope during the experiments.
An average length of 3.5 wm was observed. The diameter of the CNTs was taken to be
140 nm.

(3.4)

4. Results and discussion

To validate our methods, we start by showing the measured Dy + 2Dy in figure 3, which is
predicted by our model to be a constant for all electric-field strengths according to (2.30),
even though D, and D, both vary with electric-field strength. The x-axis is set to be the
dimensionless ratio of the field-induced alignment energy and kg7, which is a measure of
how well the CNTs are aligned (cf. (2.43) and (2.44)). The results are shown in figure 3.
The variations in the measured D, + 2D, over seven different field strengths are within
5%. The excellent agreement between the predicted and measured values for Dy + 2Dy in
a way validates both our modelling and experimental methods.

In order to investigate how the external electric field affects the translational diffusion
coefficient of the CNTs, in figure 4 we have plotted D, and D, as a function of the
field strength squared and the alignment energy over kg7 similar to figure 3. The
predicted theoretical values are also presented here with the fluid viscosity as an adjustable
parameter. The experimental results are in good agreement with the model predictions,
both of which indicate that the CNTs show anisotropic diffusion behaviour under an
aligning electric field. In particular, as we increase the field strength, the x-direction
diffusion coefficient increases while the y-direction diffusion coefficient decreases. For the
specific parameters of this experiment, the diffusion coefficient in the alignment direction
increases by approximately 30 % and the diffusion coefficient in the perpendicular
directions decreases by 20 %, with both curves saturating for field strengths giving
alignment energies exceeding 3kpT. The error bars indicate the standard deviation of
the mean of the measured diffusion coefficients. The experimental variations may be
due to uncertainties in CNT dimensions, as well as uncertainties introduced in the image
processing and by out-of-plane motion of the CNTs.

To study the role of CNT dimensions in their observed anisotropic diffusion behaviour,
we have also plotted the D, and Dy as a function of In(e)/e of the CNT in figure 5 at a
given field strength of 33.3 Vmm~!. The term In(e) /e is chosen based on (2.35) in the
modelling part which reveals the dependence of diffusion on the CNT dimensions. As
indicated by the solid lines in figure 5, the model predicts that both D, and D, increase
with increasing In(e)/e (or decreasing particle aspect ratio) in an almost linear manner.
The experimental data for the diffusion coefficients show a general trend of increasing
with CNT aspect ratio that is consistent with the theory. However, the experimental data is
too scattered for quantitative comparison with the model, likely because the CNT length
range in our experiments is too small to overcome the measurement uncertainties.
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Figure 5. Predicted and measured CNT diffusion in x- and y-directions plotted against In(e) /e of CNTs.

5. Conclusions

In this work we have developed a theoretical model to describe the diffusion behaviour of a
suspended spheroidal particle in fluid. General analytical solutions were obtained, and then
specialized to derive formulae for the effective translational diffusion tensor for prolate
spheroidal particles under an aligning potential field. Corresponding experiments were
carried out where the translational diffusion coefficients of CNTs are measured in mineral
oil under an AC electric field using a single-particle tracking technique. Good agreement
was observed between experimental and modelling results, both of which show anisotropic
diffusion behaviour in which the diffusion coefficient parallel to the field direction (Dy)
increases with the field strength, while that perpendicular to the field direction (Dy)
decreases with the field strength, as expected. The theoretical and experimental curves for
D, and D, both began to flatten out as the diffusion coefficients become insensitive to the
increasing field strength above a dimensionless alignment energy of 3. It is hoped that this
work will provide useful insight into laboratory and industrial systems in which anisotropic
particle diffusion can play an important role. The theoretical and experimental approach
presented here can also be generalized to anisotropic paramagnetic or ferromagnetic
particles under magnetic fields, or any other colloidal system with controlled alignment
of anisotropic particles.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.653.
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Appendix A. Derivation for the p.d.f. P*(#) in (2.43)

In general, the p.d.f. is initially defined as P°(@) in (2.25), which is determined by a
conservative potential V' (@) where @ = (¢, 0) is a parameterization of the orientation
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of a spheroidal particle. By definition, it is straightforward to see

27 b1 b1d
/PS(@)d@zf / PS(<p,9)sin9d¢d9=/ 2P (g, 0)sinfdo = 1. (Al)
§2 0 0 0

In our work, the conservative potential (alignment energy) V" (@) is defined in (2.37),
which only relies on 6. Thus, by substituting (2.37) into (2.25), we directly arrive at

ema’C|E|*sin 0

, A2
KT (A2)

P’(9,6) ocexp | —

which implies the p.d.f. P°(@) := P*(p, 0) of the orientation is only dependent on 6.
Based on (A2), to solely consider the p.d.f. in 6-space, i.e. [0, 1], we have to define

3112 i
! E 0
P*(#) := dsinf exp _&md §|I<B|T — . (A3)

due to (A1). Here d is a constant that guarantees

T
/ P(6)do = 1. (A4)
0
Substituting (A3) into (A4) yields

d= ! (AS5)

. end3C|E? sin26 | ’

Jo exp | — T sin6 df

B

and thus inserting (AS5) back into (A3) generates

ema’C|E|*sin 0

inf e
sin 0 exp KT
P(O) = : (A06)
- ema’C|E|*sin” 0
Jo exp | — in6 do
kgT
which is exactly (2.43).
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