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Abstract

The interaction between laser and relativistic electron beams is a promising source of very energetic X rays. We present an
accurate model for the collisions between very intense linearly polarized laser beams, corresponding to relativistic
parameters of the order of unity or greater, and electrons having energies up to 100 MeV. Our approach uses only one
approximation, namely it neglects the radiative corrections. We consider the two cases in which the laser field
polarization is either perpendicular or parallel to the plane defined by the directions of propagation of the laser beam
and electron beam, and calculate accurately the properties of the σ and π polarized scattered beams. The angle between
the directions of the laser and electron beams, denoted by θL, is allowed to have arbitrary values, so that the widely
analyzed 180° and 90° geometries, in which the two beams collide, respectively, head on and perpendicularly, are
particular cases. We prove that the polarization properties of the scattered beam depend on the angle θL. By varying
this angle, the polarization of the scattered beam can be varied between the two limit configurations in which the
electromagnetic field of the scattered beam is σ or π polarized with respect to the scattering plane. Our theoretical
results are in good agreement with experimental results published in literature. Our model shows that current
technologies can be used to produce hard harmonics of the scattered radiations. These harmonics can have relatively
high intensities comparable to the intensities of the first harmonics, and energies higher than 1 MeV. Our results lead
to the possibility to realize an adjustable photon source with both the energy and polarization of the scattered radiations
accurately controlled by the value of the θL angle.
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1. INTRODUCTION

The experimental realization of very intense laser pulses, cor-
responding to intensities higher than 1017 W/cm−2, has
opened up a new field in physics, namely the relativistic
interactions between laser and particle beams. A new version
of the relativistic Thomson scattering has recently been
developed, in which hard X-rays are generated through the
collision between very intense laser beams and relativistic
electron beams (Pogorelsky et al., 2000; Anderson et al.,
2004; Tomassini et al., 2005; Kotaki et al., 2000; Sakai
et al., 2003; Schwoerer et al., 2006; Babzien et al., 2006).
Studies related to properties of the σ and π type configur-
ations of the incident field polarization with respect to the di-
rections of the electron and laser beams, and to the properties

of the σ and π polarizations of the scattered beam are encoun-
tered in literature (Kim et al., 1994; Krafft et al., 2005). This
is the problem we investigate here. In the same time, we recall
that other effects related to the interactions between laser and
electron beams, are intensively studied, such as those in a
high-density electron beam in the field of a super-intense
laser pulse (Kulagin et al., 2008), effects in strongly corre-
lated plasmas (Fortmann et al., 2009), Thomson scattering
on electron trapped in plasma vacuum boundary (Liu et al.,
2009), the radiative reaction effect on electron dynamics
(Mao et al., 2010), and generation of attosecond X-ray
pulses (Liu et al., 2010).

Our analysis is made in the inertial system, denoted by S′,
in which the velocity of the electron beam is zero. This analy-
sis is based on a periodicity property of the Liènard-Wiechert
equation, which we presented in a previous paper (Popa,
2011). In that paper, we proved that the intensity of the scat-
tered electrical field is a periodic function of only one vari-
able, which is the phase of the incident field. We proved
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that this property is also valid in the case of the scattered elec-
tric field, which results from the collision between very in-
tense laser beams and relativistic electron beams, when the
analysis is made in the S′ system. This property leads to a
strong simplification of the mathematical solution, because
we show that the properties of the Thomson scattered beam
are evaluated by composite functions depending on only
one parameter, which is the phase of the incident laser
field. These functions are easily computable by computer
programs, even in the most general case, when the only
approximation made is neglecting the radiative corrections.
We show that these corrections are indeed overwhelmingly
negligible for the domain where our calculations are made.
The main result of our approach is determining the explicit
dependence of the polarization of the Thomson scattered
beam on the angle between the directions of the laser and
electron beams.
We consider the cases in which the laser electric field is

perpendicular on or parallel to the plane defined by the propa-
gation directions of the laser beam and electron beam. We
allow the angle between these directions, θL, to be arbitrary.
It follows that the 180° and 90° configurations, in which the
laser and electron beams collide, respectively, head on and
perpendicularly, are particular cases. We prove that the polar-
ization properties of the scattered electromagnetic field
depend on the θL angle, and the σ and π polarized scattered
beams can be accurately obtained for certain values of θL.
Our approach is valid for a< 100 and for Ei< 100 MeV,

where a and Ei are, respectively, the relativistic parameter
and the initial energy of the electron. For completeness, we
will show that, for these ranges of values, the quantum term
from the Compton relation, written in the S′ system, is negli-
gible compared to unity. In turn, this means that our analysis
is at the classical limit in the frame of the Compton model,
and, thus, using the Thomson model is justified. On the
other hand, it is worth recalling that polarized photon beams
can be obtained by Compton scattering on electrons having
initial energies of the order of GeV (Hoblit et al., 2009).
We show that our theory is in good agreement with

the experimental data from literature regarding the properties
of the spectrum of the scattered radiations in interactions
between laser beams and electron beams. For the above
domain, our theory predicts that it is possible to obtain hard
radiations having energies on the order of 100 MeV using cur-
rent technologies. This result suggests the possibility of realiz-
ing adjustable photon sources in which both the energy and
polarization of the emitted radiation are variable parameters.
The equations are written in the International System.

2. INITIAL HYPOTHESES

We analyze the collision between the electromagnetic wave
of a laser beam and a relativistic electron. The intensity of
the electric field, the magnetic induction vector, and the
wave vector of the electromagnetic field are denoted, respec-
tively, by EL, BL, and kL. The initial energy of the electron is

denoted by Ei, resulting that the relativistic parameters γ0 and
β0 are given by the relations Ei= γ0mc2, and β0 = V0/c,
where m, c and V0 are, respectively, electron mass, light vel-
ocity in vacuum and the initial velocity of the electron. We
consider the following initial hypotheses:

(h1) The electromagnetic field is produced by a very in-
tense laser beam, and the value of the intensity of
its electric field is on the order of one atomic unit,
namely 5.1423 × 1011 V/m, or greater.

(h2) The electromagnetic field is linearly polarized. For
completeness, we consider both cases, when the elec-
tric field is perpendicular or parallel to the plane
defined by the propagation directions of the laser
beam and electron beam. In order to make a distinc-
tion between the σ and π polarizations of the incident
electric field with respect to the plane defined by the
directions of the laser and electron beams, and the σ
and π polarizations of the scattered beam, with
respect to the scattering plane, defined by the direc-
tions of the incident and scattered beams, we use
the indexes L for the former. These cases are
described by the following relations: (a) The electric
field is perpendicular on the plane defined by the
vectors kL and V0, corresponding to the σL polariz-
ation (see Fig. 1a). The following relations are valid:

EL = EM cos ηi, BL = BM cos θL cos η j−
BM sin θL cos ηk, kL = |kL|( sin θLj+ cos θLk),

(1)

and

V0 = −|V0|k, (2)

with

η = ωLt − kLr + ηi, |kL|c = ωL, (3)

EM = cBM , and cBL = (kL/|kL|) × EL, (4)

Fig. 1. Components of the laser field in the S and S′ systems. The incident
field has the σL polarization. The intensities of electric fields, the magnetic
induction vectors and the wave vectors, for incident and scattered fields,
are shown on figures.
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where i, j, and k are versors of the ox, oy, and oz axes,
r is the position vector of the point where the electron
is situated, ωL is the angular frequency of the laser
field, and ηi is the initial phase of the field. (b) The
electric field is parallel to the plane defined by the
vectors kL and V0, corresponding to the πL polariz-
ation (see Fig. 2a). The components of the electro-
magnetic field are written:

EL = EM cos θL cos ηi− EM sin θL cos ηk, BL

= BM cos ηj, kL = |kL| sin θLi+ cos θLk
( )

,
(5)

while Eqs. (2)–(4) remain valid in this case.
Two situations are considered. In the first one, θL=

0°, and the σL or πL polarizations correspond to the
180° geometry in which the laser beam and electron
collide head on. The second situation is described by
θL=±90°, which corresponds to the 90° geometry
inwhich the laser beam and electron are perpendicular.

(h3) The radiative corrections are neglected. The values of
the relativistic parameter

a = eEM

mcωL
, (6)

for which the radiative corrections must be taken into
account, as results from the theory presented at page
340 from (Mourou et al., 2006), are given by the
relation a≥ εrad

−1/3, where εrad= 4πre/(3λL) and re
is the classical electron radius. For λL= 1.06 ×
10−6 m, in the case of a YAG:Nd laser, we obtain
εrad
−1/3= 96.5, which means that the radiative correc-
tions must be taken into account when a≥ 100.

(h4) The above relations are written in the laboratory re-
ference system, denoted by S(t,x,y,z). Our analysis
will be made in the inertial system, denoted by S′

(t′,x′,y′,z′), in which the initial electron velocity is
zero, resulting that the initial conditions, for both

polarizations, are as follows:

t′ = 0, x′ = y′ = z′ = 0, v′x′ = v′y′ = v′z′ = 0 and η′ = ηi,

(7)

where v′x′, v′y′, and v′z′ are the components of the elec-
tron velocity in the S′ system.

3. RELATIVISTIC MOTION OF THE ELECTRON
IN THE S′ SYSTEM, WHEN THE
ELECTROMAGNETIC FIELD IS σL OR πL
POLARIZED

3.1. The σL Polarization

The Cartesian axes in the S(t, x, y, z) and S′(t′, x′, y′, z′) sys-
tems are parallel. In virtue of Eq. (2), the S′ system moves
with the velocity – |V0| along the oz axis (see Fig. 1).

From Eqs. (1) and (3) it follows that the four-dimensional
wave vector in the S system is (ωL/c, 0, |kL| sin θL,
|kL| cos θL). In virtue of the Lorentz transformation, given by
Eq. (11.22) in Jackson (1999), it follows that the components
of the four-dimensional vector in the S′ system are as follows:

ω′
L = γ0ωL(1+ |β0| cos θL) and |k′L| = ω′

L/c, (8)

k′Lx′ = 0, k′Ly′ = |kL| sin θL and k′Lz′ = γ0|kL|(cos θL + |β0|), (9)

where

β0 = − |V0|
c

k and γ0 = (1− β20)
−1

2. (10)

Since the phase of the electromagnetic wave is a relativistic in-
variant (Jackson, 1999), we have

η = ωLt − kL · r + ηi = ω′
Lt

′ − k
′
L · r′ + ηi = η′, (11)

where r and r′ are the position vectors of the electron in the
two systems. Since the relations between the spacetime four-
dimensional vectors in the systems S′ and S are ct′ = γ0(ct+
|β0|z), z′ = γ0(z+ |β0|ct), x′ = x and y′ = y, it is easy to see
that these relations and Eqs. (8) and (9) verify (11).

We write equations (11.149) from Jackson (1999), which
give the Lorentz transformation of the fields, in the Inter-
national System, and using Eq. (1), we obtain the the follow-
ing expressions for the components of the electromagnetic
field in the S′ system:

E
′
L = γ0 1+ |β0| cos θL

( )
EM cos η′i

B
′
L = γ0 cos θL + |β0|

( )
j− sin θLk

[ ]EM

c
cos η′

= (k′Lz′ j− k′Ly′k)
EM

c|kL|
cos η′.

(12)

Fig. 2. Components of the laser field in the S and S′ systems. The incident
field has the πL polarization. The intensities of electric fields, the magnetic
induction vectors and the wave vectors, for incident and scattered fields,
are shown on figures.
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The equations of motion written for the electron are

m
d

dt′
(γ′v′x′ ) = −γ0(1+ |β0| cos θL)eEM cos η′

+ (k′Ly′v
′
y′ + k′Lz′v

′
z′ )

eEM

c|kL|
cos η′,

(13)

m
d

dt′
(γ′v′y′ ) = −k′Ly′v

′
x′
eEM

c|kL|
cos η′, (14)

m
d

dt′
(γ′v′z′ ) = −k′Lz′v

′
x′
eEM

c|kL|
cos η′. (15)

Using (3), (6), and (8), the equations of motion can be written

d

dt′
(γ′β′x′ ) = −aω′

L cos η
′ + aω′

L

k′Ly′

|k′L|
β′y′ +

k′Lz′
|k′L|

β′z′

( )
cos η′, (16)

d

dt′
(γ′β′y′ ) = −aω′

L

k′Ly′

|k′L|
β′x′ cos η

′, (17)

d

dt′
(γ′β′z′ ) = −aω′

L

k′Lz′
|k′L|

β′x′ cos η
′. (18)

Wemultiply (16), (17), and (18), respectively, by β′x′, by β′y′, and
by β′z′. Taking into account that β′x′

2+ β′y′
2+ β′z′

2= 1− 1/γ′2,
their sum leads to

dγ′

dt′
= −aω′

Lβ
′
x′ cos η

′. (19)

From (17) and (19) we obtain

d

dt′
(γ′β′y′ ) =

k′Ly′

|k′L|
dγ′

dt′
. (20)

Integrating this relation with respect to time between 0 and t ′,
and taking into account the initial conditions (7), we have:

β′y′ =
k′Ly′

|k′L|
1− 1

γ′

( )
. (21)

Similarly, from (18) and (19) we obtain

β′z′ =
k′Lz′
|k′L|

1− 1
γ′

( )
. (22)

On the other hand, the differentiation of the phase η′, given
by (11), leads to

dη′

dt′
= ω′

L − k′Ly′cβ
′
y′ − k′Lz′cβ

′
z′

= ω′
L 1− k′Ly′

|k′L|
βy′ −

k′Lz′
|k′L|

βz′

( )
, (23)

and from (16) and (23) we obtain

d

dt′
(γ′β′x′ ) = −a cos η′

dη′

dt′
. (24)

We integrate (24) with respect to time between 0 and t′, and
taking into the account the initial conditions (7), we obtain

β′x′ =
f ′1
γ′

where f ′1 = −a(sin η′ − sin ηi). (25)

We substitute the expressions of β′x′, β′y′, and β′z′, respectively,
from Eqs. (25), (21), and (22) in β′x′

2+ β′y′
2+ β′z′

2= 1− 1/γ′2

and obtain the expression of γ′:

γ′ = 1+ f ′21
2

. (26)

From (21) and (26) respectively, from (22) and (26), we
obtain the expressions of β′y′ and β′z′. With the aid of the
Eqs. (8) and (9), we have:

β′y′ =
f ′2
γ′

where f ′2 =
sin θL

γ0(1+ |β0| cos θL)
· f

′2
1

2
, (27)

and

β′z′ =
f ′3
γ′

where f ′3 =
cos θL + |β0|
1+ |β0| cos θL

· f
′2
1

2
. (28)

From Eq. (16), we obtain β̇
′
x′ , where the dot signifies the deri-

vation with respect to time:

β̇x′ =
1
γ′

−β′x′
dγ′

dt′
− aω′

L cos η
′ + aω′

L

k′Ly′

|k′L|
β′y′ +

k′Lz′
|k′L|

β′z′

( )
cos η′

[ ]
.

(29)

From (21) and (22) we obtain k′Ly′β
′
y′ + k′Lz′β

′
z′ =

|k′L|(1− 1/γ′). Introducing this expression in (29), together
with the expressions of dγ′/dt′ and β′x′, given respectively,
by (19) and (25), we obtain

β̇
′
x′ = ω′

Lg
′
1 where g

′
1 =

a

γ′3
f ′21
2

− 1

( )
cos η′. (30)

Similarly, from (17) and (18) we obtain β̇
′
y′ and β̇

′
z′ :

β̇
′
y′ = ω′

Lg
′
2 where g

′
2 = − sin θL

γ0(1+ |β0| cos θL)
· f ′1
γ′3

a cos η′, (31)

and

β̇
′
z′ = ω′

Lg
′
3 where g

′
3 = − cos θL + |β0|

1+ |β0| cos θL
· f ′1
γ′3

a cos η′. (32)

The analysis of the expressions of f′1, γ′, f′2, f′3, g′1, g′2, and g′3,
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given, respectively, by Eqs. (25)–(28) and (30)–(32), reveals
that the quantities β′x′, β′y′, β′z′, β̇

′
x′ , β̇

′
y′ , and β̇

′
z′ are periodical

functions of only one variable, that is the phase η′.

3.2. The πL Polarization

From Eqs. (3) and (5) it follows that the four-dimensional
wave vector in the S system is (ωL/c, |kL| sin θL, 0,
|kL| cos θL). With the aid of the Lorentz transformations,
we obtain the components of the four-dimensional vector
in the S′ system, denoted by ω′

L/c, k′Lx′, k′Ly′, k′Lz′), as follows
(see Fig. 2):

ω′
L = γ0ωL(1+ |β0| cos θL) and |k′L| = ω′

L/c, (33)

k′Lx′ = |kL| sin θL, k′Ly′ = 0 and k′Lz′ = γ0|kL|(cos θL + |β0|), (34)

where β0 and γ0 are given by (10).
The phase of the electromagnetic wave is a relativistic in-

variant (Jackson, 1999), and Eq. (11) remains valid. Since
the relations between the spacetime four-dimensional vectors
in the systems S’ and S are the same as in the previous sub-
section, it is easy to see that these relations and Eqs. (33) and
(34) verify (11).
With the aid of the Lorentz transformation of the fields,

and using Eq. (5), we obtain the the following expressions
for the components of the electromagnetic field in the S′

system:

E
′
L = γ cos θL + |β0|

( )
i− sin θLk

[ ]
EM cos η′ = (k′Lz′ i− k′Lx′k)

EM

|kL|
cos η′,

B
′
L = γ0

EM

c
1+ |β0|cos θL
( )

cos η′j.

(35)

With the aid of (3), (33), and (35), the equations of the
motion of the electron can be written:

m
d

dt′
γ′v′x′
( ) = −eEM

ω′
L

ωL
· k

′
Lz′

|k′L|
cos η′ + eEM

c
· ω

′
L

ωL
v′z′ cos η

′, (36)

m
d

dt′
γ′v′z′
( ) = eEM

ω′
L

ωL
· k

′
Lx′

|k′L|
cos η′ − eEM

c
· ω

′
L

ωL
v′z′ cos η

′, (37)

where v′y′ = 0 and

γ′ = 1− β′2x′ − β′2z′
( )−1

2, (38)

with β′x′ = v′x′/c and β′z′ = v′z′/c.
With the aid of (6), the equations of motion become

d

dt′
(γ′β′x′ ) = −aω′

L

k′Lz′
|k′L|

cos η′ + aω′
Lβ

′
z′ cos η

′, (39)

d

dt′
(γ′β′z′ ) = aω′

L

k′Lx′
|k′L|

cos η′ − aω′
Lβ

′
x′ cos η

′. (40)

We solve this system with the aid of the substitution

β′x′ = βv sin ξ+ βu cos ξ and β
′
z′ = βv cos ξ− βu sin ξ, (41)

where

sin ξ = k′Lx′
|k′L|

= sin θL
γ0 1+ |β0| cos θL
( ) and

cos ξ = k′Lz′
|k′L|

= cos θL + |β0|
1+ |β0| cos θL
( ) .

(42)

After substitution of (41) in (39) and (40), we multiply (39)
and (40), respectively, by cos ξ and− sin ξ. The sum of these
equations leads to (43) shown below. Similarly, by multipli-
cation of the same equations by sin ξ and cos ξ, we obtain
(44) shown below.

d

dt′
γ′βu
( ) = −aω′

L cos η
′ + aω′

Lβv cos η
′, (43)

d

dt′
γ′βv
( ) = −aω′

Lβu cos η
′. (44)

We multiply (43) and (44), respectively, by βu and βv. Taking
into account that βu

2+ βv
2= β′x′

2+ β′z′
2= 1− 1/γ′2, their sum

leads to

dγ′

dt′
= −aω′

Lβu cos η
′. (45)

On the other hand, the differentiation of the phase η′, given
by (11), taking into account (34), (41), and (42), leads to

dη′

dt′
= ω′

L − k′Lx′cβ
′
x′ − k′Lz′cβ

′
z′ = ω′

L(1− βv). (46)

From (44) and (45) we have d(γ′βv)/dt′ = dγ′/dt′. Integrating
this equation, and taking into account the initial conditions
(7) and Eq. (46), we have

1
γ′

= 1− βv =
1
ω′
L

dη′

dt′
. (47)

Introducing 1− βv from (47) in (43), we obtain d(γ′βu)
/dt′ =−a cos η′ dη′/dt′. We integrate this equation, taking
into the account the initial conditions (7), and obtain

βu =
f

γ′
, (48)

where

f = −a(sin η′ − sin ηi), (49)

From (45) and (48) we obtain

dγ′

dt′
= −aω′

L

f

γ′
cos η′. (50)
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From (47) and (48), taking into account that βu
2+ βv

2= β′x′
2+

β′z′
2= 1− 1/γ′2, we have

γ′ = 1+ f 2

2
, (51)

and from (47) and (51) we obtain

βv =
f 2

2γ′
. (52)

Introducing (48) and (52) in (41), we obtain the expressions
of the normalized velocities, as follows:

β′x′ =
f ′1
γ′

where f ′1 = − cos θL + |β0|
1+ |β0| cos θL

f + sin θL
γ0(1+ |β0| cos θL)

f 2

2
,

(53)

β′z′ =
f ′3
γ′

where f ′3 = − sin θL
γ0(1+ |β0| cos θL)

f + cos θL + |β0|
1+ |β0| cos θL

f 2

2
.

(54)

From Eq. (39), we obtain β̇
′
x′ :

β̇
′
x′ =

1
γ′

−β′x′
dγ′

dt′
− aω′

L

k′Lz′
|kL|

cos η′ + aω′
Lβ

′
z′ cos η

′
( )

. (55)

Introducing the expressions of dγ′/dt′, β′x′ and β′z′, given
respectively by (50), (53), and (54), in (55), we obtain

β̇
′
x′ = ω′

Lg
′
1 where g

′
1 =

a

γ′
ff ′1
γ′

+ f ′3
γ′

− cos θL + |β0|
1+ |β0| cos θL

( )
cos η′.

(56)

Similarly, from (40) we obtain β̇
′
z′ :

β̇
′
z′ = ω′

Lg
′
3 where g′3 =

a

γ′
ff ′3
γ′2

− f ′1
γ′

[

+ sin θL
γ0 1+ |β0| cos θL
( )

]
cos η′.

(57)

We see that, in virtue of the expressions of f, γ′, f ′1, f ′3, g ′
1, and

g′3, given, respectively, by Eqs. (49), (51), (53), (54), (56),
and (57), the quantities β′x′, β′z′, β̇

′
x′ , and β̇

′
z′ are periodical

functions of only one variable, that is the phase η′.
The term appearing in the Compton relation written in the

S′ system that reflects the quantum behavior is ω′
Lh−/(mc2) =

γ0(1+ |β0| cos θL)[ωLh−/(mc2)] for both the σL and πL polar-
izations of the electromagnetic field. We recall that this paper
considers initial energies of the electron smaller than
100 MeV, which correspond to γ0< 200. In this case, the
above quantum term is negligible compared to unity. Conse-
quently, the Compton model is at the classical limit and,
therefore, using the Thomson model, on which our analysis
is based, is justified.

4. CALCULATIONS OF THE SPECTRAL
COMPONENTS OF THE ELECTROMAGNETIC
FIELD IN THE S′ AND S SYSTEMS

4.1. Spectral Components of the Electromagnetic Field
in the S′ System

In order to obtain the intensity of the electrical field gener-
ated by the motion of the electron, we introduce the

expressions of β
′
and ˙β

′
, calculated in the previous section,

in the Liènard-Wiechert relation:

E
′ = −e

4πε0cR′ ·
n′ × n′ − β

′( )
× ˙β

′[ ]
1− n′ · β′

( )3 , (58)

where R′ is the distance from the electron to the observation
point (the detector) and n′ is the versor of the direction
electron-detector. We calculate the right-hand side of Eq. (58)
at time t′. In virtue of the significance of the quantities
entering in the Liènard-Wiechert equation, it results that
the field E

′
corresponds to the time t′ + R′/c and we have

E
′ = E

′
(r′ + R

′
, t′ + R′/c), where R

′ = R′n′. The inequality
R′ >>r′ is strongly fulfilled (Jackson, 1999). We write the
vector n′ in a spherical coordinate system, so its components
are written as follows:

n′x′ = sin θ′ cosf′, n′y′ = sin θ′ sinf′ and n′z′ = cos θ′, (59)

where θ′ is the azimuthal angle between the n′ and k versors
and f′ is the polar angle in the plane x′y′.
Introducing the components of β

′
and ˙β

′
, given, respec-

tively, by f′1/γ′, f′2/γ′, f′3/γ′ and ω′
Lg′1, ω′

Lg′2, ω′
Lg′3, in (58),

and taking into account that f′2= 0 and g′2= 0 for πL polariz-
ation, we obtain the following expression of the intensity of
the scattered electric field in the system S′ (Popa, 2011):

E
′ = K ′

F′3
1

h′1i+ h′2j+ h′3k
( )

with K ′ = −eω′
L

4πε0cR′ , (60)

where

h′1 = F′
2 n′x′ −

f ′1
γ′

( )
− F′

1 g
′
1, (61)

h′2 = F′
2 n′y′ −

f ′2
γ′

( )
− F′

1 g
′
2, (62)

h′3 = F′
2 n′z′ −

f ′3
γ′

( )
− F′

1 g
′
3, (63)

with

F′
1 = 1− n′x′

f ′1
γ′

− n′y′
f ′2
γ′

− n′z′
f ′3
γ′
, (64)

F′
2 = n′x′g

′
1 + n′y′g

′
2 + n′z′g

′
3. (65)
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From Eqs. (60)–(65) we see that the components of the field
given by Eq. (58) are periodic composite functions of only
one variable, which is η′, and they can be developed in Four-
ier series.
We expand the components of the electric field E

′
in

Fourier series and find the expression of the intensity of
harmonics j of the electric field, which is denoted by E

′
j:

E
′
j = E

′
js + E

′
jc, (66)

where

E
′
js = K ′ f ′1sji+ f ′2sjj+ f ′3sjk

( )
sin jη′,

E
′
jc = K ′ f ′1cji+ f ′2cjj+ f ′3cjk

( )
cos jη′,

(67)

f ′αsj =
1
π
∫
2π
0

h′α
F′3
1

sin jη′dη′ and f ′αcj =
1
π
∫
2π
0

h′α
F′3
1

cos jη′dη′, (68)

with α= 1,2,3 and j= 1,2,3,….
It is easy to verify that, in virtue of Eqs. (58)–(65), we have

E
′
n′ = 0. We multiply both equations (67) by n′, taking into

account the previous equation and (68), and obtain:

E
′
jsn

′ = 0 and E
′
jcn

′ = 0. (69)

Eqs. (66)–(68) can be simplified, due to the following sym-
metry properties. It is easy to see that, in virtue of the relations
from the previous section, taking into account (61)–(65),
for σL and πL polarizations, the functions h′α/F′

1
3 are

of the form F(η′)= f(sin η′ − sin ηi) cos η′. Since the
function F has the symmetry F(η′)=−F(π− η′), it is easy
to see that

f ′αsj = 0 when j = 1, 3, 5, . . . and f ′αcj = 0 when j = 2, 4, 6, . . .

(70)

Since the phase of the j harmonics of the electromagnetic
field is jη′, it follows that, in virtue of Eq. (11), the
angular frequency and the wave vector of the radiation
scattered in the n′ direction, corresponding to the j harmo-
nics, are

ω′
j = jω′

L, k
′
j = j|k′L|n′ and ω′

j = c|k′j|. (71)

The corresponding magnetic field is

B
′
j = n′ ×

E
′
j

c
, B

′
js = n′ ×

E
′
js

c
and B

′
jc = n′ ×

E
′
jc

c
. (72)

4.2. Spectral Components of the Electromagnetic Field
in the S System

We calculate the components of the electromagnetic field
corresponding to an arbitrary value of j following a procedure

similar to that presented in (Popa, 2011) and used there to
calculate the fundamental component of the electromagnetic
field in the laboratory system when j= 1. We use again the
Lorentz transformations of the fields given by Eq. (11.149)
from (Jackson, 1999) to calculate the component E js in the
laboratory system S. From (72), we obtain for an arbitrary
value of j:

E js = γ0 E
′
js − β0 × cB

′
js

( )
− γ20

γ0 + 1
β0 β0 · E′

js

( )
=

γ0 1− |β0| cos θ′
( )

E
′
js + K ′

γ0
|β0|f ′3sj

sin jη′ n′ − γ0|β0|
γ0 + 1

k

( )
.

(73)

Similarly, we have:

E jc = γ0 1− |β0| cos θ′
( )

E
′
jc + K ′γ0|β0|f ′3cj cos jη′ n′ − γ0|β0|

γ0 + 1
k

( )
.

(74)

From (59), (66)–(68), (73), and (74) and taking into
account that the phase of the electromagnetic field is a rela-
tivistic invariant, namely η= η′, we obtain the expression
for the intensity of the fundamental electrical field in the
system S:

Ej = E js + E jc, (75)

where

E js = K ′ I1sji+ I2sjj+ I3sjk
( )

sin jη and

E jc = K ′ I1cji+ I2cjj+ I3cj
( )

k cos jη,
(76)

with

I1sj = γ0 1− |β0| cos θ′
( )

f ′1sj + γ0|β0| sin θ′ cosf′f ′3sj, (77)

I1cj = γ0 1− |β0| cos θ′
( )

f ′1cj + γ0|β0| sin θ′ cosf′f ′3cj, (78)

I2sj = γ0 1− |β0| cos θ′
( )

f ′2sj + γ0|β0| sin θ′ sinf′f ′3sj, (79)

I2cj = γ0 1− |β0| cos θ′
( )

f ′2cj + γ0|β0| sin θ′ sinf′f ′3cj, (80)

I3sj = f ′3sj, (81)

I3cj = f ′3cj. (82)

From (70) and (75)–(82), we obtain

I1sj = I2sj = I3sj = 0 and Ej = E jc when j = 1, 3, 5, . . . , (83)

and

I1cj = I2cj = I3cj = 0 and Ej = E js when j = 2, 4, 6, . . . (84)

Polarization effects in collisions 597

https://doi.org/10.1017/S0263034612000675 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034612000675


5. ENERGIES OF THE SCATTERED RADIATIONS,
POLARIZATION OF THE SCATTERED
ELECTROMAGNETIC FIELD AND INTENSITY
BEAM RELATIONS

5.1. Energetic and Angular Relations

With the aid of Eqs. (59) and (71), we find that the four-
dimensional wave vector of the j-th harmonics, in the S′

system, is (ω′
j/c, |k

′
j| sin θ′ cosf′, |k′j| sin θ′ sinf′, |k′j| cos θ′).

With the aid of the Lorentz equations, we calculate the com-
ponents of this vector in the S system, denoted by (ωj/c, kjx,
kjy, kjz). We obtain

ωj

c
= γ0

ω′
j

c
+ β0 · k

′
j

( )
= γ0

ω′
j

c
1− |β0| cos θ′
( )

, (85)

k jz = γ0 k′jz′ − |β0|
ω′
j

c

( )
= γ0|k

′
j| cos θ′ − |β0|
( )

, (86)

k jx = k′jx′ = |k′j| sin θ′ cosf′ and k jy = k′jy′

= |k′j| sin θ′ sinf′. (87)

From (85)–(87) we obtain

ωj

c
= |kj|. (88)

We denote by n the versor of the direction in which the radi-
ation is emitted in the S system. Its components are:

nx = cos θ sinf, ny = sin θ sinf and nz = cos θ. (89)

From (86) and (89) we have k jz = |kj| cos θ = γ0|k
′
j| cos θ′−
(

|β0|
)
. From (71), (85), and (88) we obtain |kj|/|k′j| =

γ0 1− |β0| cos θ′
( )

. From these relations, we deduce the
relation between the angles θ and θ′, as follows:

cos θ = cos θ′ − |β0|
1− |β0| cos θ′

and sin θ = sin θ′

γ0 1− |β0| cos θ′
( ) . (90)

We note that these equations are identical to (5.6) from
Landau and Lifschit (1959), in spite of the fact that they
are deduced in a completely different way.
In order to find the relation between f and f′, we

observe that, in virtue of Eqs. and (8), we have k jx =
|kj| sin θ cosf = |k′j| sin θ′ cosf′ and k jy = kj| sin θ sinf =
|k′j| sin θ′ sinf′. The ratio of these relations leads to

f = f′. (91)

It is easy to prove, that in virtue of equations (73), (74), (89),
(90), and (91), the following relations are valid:

E jsn = 0 and E jcn = 0. (92)

With the aid of Eqs. (8) (which is the same for both the σL
and πL polarizations), (71), and (85) we obtain the following

expressions of the angular frequency and of the wavelength
of the j-th component of the scattered radiation, in an arbi-
trary direction:

ωj = jωLγ
2
0 1+ |β0| cos θL
( )

1− |β0| cos θ′
( )

and

λj = λL
jγ20 1+ |β0| cos θL

( )
1− |β0| cos θ′
( ) . (93)

The energy of the quanta of the scattered radiation, in an ar-
bitrary direction, is:

Wj = ωjh− = jωLγ
2
0 1+ |β0| cos θL
( )

1− |β0| cos θ′
( )

h− . (94)

5.2. Polarization of the Electromagnetic Field of the
Scattered Beam

The scattering plane is defined by the directions of the incident
and scattered beams. The versors corresponding to these direc-
tions are nL = kL/|kL| and n. The versor normal to the scatter-
ing plane, which is the same as the versor of the electric field
intensity, in the case of the σ polarization, denoted by nσ, is
n × nL. Its expression is different for the σL and πL polarizations
of the incident beam, sowewill analyze separately these cases.

5.2.1. The Case of the σL Polarization of the Incident Field

In virtue of relations Eqs. (1) and (89), it follows that the
versor normal to the scattering plane is

nσ = cos θLny − sin θLnz
( )

i− cos θLnxj+ sin θLnxk. (95)

In virtue of (76), (83), and (95), it follows that the angle ξo
between the vector Ej and the direction of the σ polarization
in the case of odd harmonics (when Ej = E jc) is given by the
following relation

cos ξe =
E jc

E jc
· nσ

= cos θLny − sin θLnz
( )

I1cj − cos θLnxI2cj + sin θLnxI3cj�����������������
I21cj + I22cj + I23cj

√ .

(96)

Similarly, the angle ξe between the vector Ej and the direction
of the σ polarization, in the case of even harmonics (when
Ej = E js) is given by the relation

cos ξe =
E js

|E js|
· nσ

= cos θLny − sin θLnz
( )

I1sj − cos θLnxI2sj + sin θLnxI3sj�����������������
I21sj + I22sj + I23sj

√ .

(97)

5.2.2. The Case of the πL Polarization of the Incident Beam

From Eqs. (5) and (89), we obtain the following expression
of the versor normal to the scattering plane

nσ = cos θLnyi+ sin θLnz − cos θLnx
( )

j− sin θLnyk. (98)

From (76), (83), and (98), it follows that the angle between
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the vector Ej and the direction of the σ polarization, in the
case of odd harmonics, is given by the relation

cos ξ0 =
E jc

|E jc|
· nσ

= cos θLnyI1cj + sin θLnz − cos θLnx
( )

I2cj − sin θLnyI3cj�����������������
I21cj + I22cj + I23cj

√ .

(99)

Similarly, the angle between the vector Ej and the direction
of the σ polarization, in the case of even harmonics, is
given by the relation

cos ξe =
E js

|E js|
· nσ

= cos θLnyI1sj + sin θLnz − cos θLnx
( )

I2sj − sin θLnyI3sj�����������������
I21sj + I22sj + I23sj

√ .

(100)

We observe that Eqs. (92) and (95)–(100) define completely
the polarization of the scattered electromagnetic field Ej. This
happens because the vector Ej is situated in the plane perpen-
dicular on n, and makes an angle ξo or ξe, respectively, for
odd and even harmonics, with the direction of the σ polariz-
ation. If ξo= 0 or ξe= 0 the scattered electromagnetic field is
σ polarized, while when ξo= π/2 or ξe= π/2 the scattered
field is π polarized.

5.3. Intensities of the Harmonic Radiation Beams in the
S′and S Systems

The average value of the intensity of the j-th component of
the scattered radiation, normalized to ε0cK′2, in the system
S′, is given by

I ′j =
Ij

ε0cK ′2 =
1
2π

∫
2π
0

E
′2
j

K ′2 d(jη
′). (101)

Taking into account (66), we obtain the following relation:

I ′j =
1
2

f ′21sj + f ′21cj + f ′22sj + f ′22cj + f ′23sj + f ′23cj
( )

. (102)

In order to calculate the average value of the intensity of the
j-th harmonics of the scattered radiation in the laboratory
system, we calculate first the expression of E

2
j , where Ej is

the intensity of the electric field in the S system. The Lorentz
transformation of the electric field intensity from the S′ to the
S system is given by Eq. (11.149) of Jackson (1999), and,
written in the International System, leads to the following
relation:

E
2
j = γ0 E

′
j − β0 × cB

′
j

( )
− γ20

γ0 + 1
β0 β0 · E

′
j

( )[ ]2
. (103)

Since cB
′
j = n′ × E

′
j, n

′ · E′
j = 0 and E

′
j · β0 × n′ × E

′
j

( )[ ]
=

−E
′2
j β0 · n′
( )

, Eq. (103) becomes

E
2
j = γ20E

′2
j 1+ β

2
0 sin

2 α3 + γ20β
4
0

γ0 + 1
( )2 cos2 α2

[

+2|β0| cos α1 −
2γ0β

2
0

γ0 + 1
cos2 α2

]
,

(104)

where α1 is the angle between β0 and n′, α2 is the angle be-
tween β0 and E

′
j, and α3 is the angle between β0 and

n′ × E
′
j. It is easy to see that γ0

2β0
2/(γ0+ 1)2− 2γ0/(γ0+

1)=−1, and Eq. (104) can be written:

E
2
j = γ20E

′2
j 1+ β

2
0 sin

2 α3 − β
2
0 cos

2 α2 + 2|β0| cos α1
( )

. (105)

The three vectors, n′, E′
j, and n′ × E

′
j form a right trihedral

angle, therefore, cos2 α1+ cos2 α2+ cos2 α3= 1 and we
obtain:

E
2
j = γ20E

′2
j 1+ |β0| cos α1
( )2

. (106)

Since α1= π− θ′, from (106) we obtain

E
2
j = E

′2
j γ

2
0 1− |β0| cos θ′
( )2

. (107)

The intensity of the j-th harmonics of the scattered radiation
is ε0cE

2
j in the S system. Its averaged value, normalized to

ε0cK′2, results from Eqs. (101), (102), and (107), as follows

Ij =
Ij

ε0cK′2 = γ20(1− |β0| cos θ′)2
1
2π

∫
2π
0

E
′2
j

K ′2 d(jη
′)

= 1
2
γ20 1− |β0| cos θ′
( )2

× f ′21sj + f ′21cj + f ′22sj + f ′22cj + f ′23sj + f ′23cj
( )

,

(108)

or

Ij = γ20(1− |β0| cos θ′)2I ′j. (109)

The analysis Eqs. (60)–(65) shows that the intensity com-
ponents of the electric field in the S′ system, namely h′1/
F′
1
3, h′2/F′

1
3, and h′3/F′

1
3, are composite functions of f ′1, f ′2,

f ′3, g′1, g′2, g′3, and γ′, which, in turn, are periodic functions
of η′. Our method is based on this property, because the cal-
culation of the composite functions and their integrals can be
easily performed by simple computer programs.

When the incident electromagnetic field is σL polarized,
our calculations are made using Mathematica 7 with the aid
of the following algorithm. In the first step, we introduce
the initial data of the system, which are a, γ0, θL, ηi, ωL θ′,
f′ and j. In the second step, we calculate the functions f′1,
γ′, f′2, f′3, g′1, g′2, g′3, F′

1, F′
2, h′1, h′2, and h′3. In the third step,
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we calculate the integrals (68), from which we obtain the f′1sj,
f′1cj, f′2sj, f′2cj, f′3sj, and f′3cj. Eqs. (102) and (109) lead, finally, to
the values of I ′j and Ij. The relative errors of our calculations
are of the order 10−12.
When the incident electromagnetic field is πL polarized,

the calculations are very similar to those performed for the
σL polarization. There is one difference: in the second step
of the algorithm, the order of the calculation of the composite
functions is f, γ′, f′1, f′3, g′1, and g′3 (in this case f′2= g′2= 0).

6. APPLICATION: SCATTERED BEAM
CHARACTERISTICS IN THE DIRECTION
IN WHICH THE SCATTERED BEAM
HAS MAXIMUM INTENSITY

We consider in this section the applications in which the scat-
tered radiations are emitted in the direction in which the elec-
tron beam moves, which corresponds to θ′ = θ= π. We will
show below that the intensity of the radiation emitted in
this direction is maximum.

6.1. The 180° and 90° Configurations, as Particular
Cases of σL and πL Polarizations

As the angle θL increases, the system will pass periodically
through the two configurations of interaction having 180°
or 90° geometries. We recall that these two geometries corre-
spond to the cases in which the laser and electron beams col-
lide, respectively, head on and perpendicularly. This holds
for both the σL and πL polarizations.
The value θL= 0 corresponds to the 180° geometry. In this

case, the σL and πL polarizations are identical, because they
correspond to the same incident electromagnetic field,
when EL = EM cos ηi, BL = BM cos ηj, and kL = |kL|k.
The values θL=±90° correspond to the 90° geometry.

For these values of θL the σL and πL polarizations behave
differently. For the σL polarization, we have EL =
EM cos ηi, BL = ∓BM cos ηk, and kL = ±|kL| sin θLj, while
for the πL polarization, EL = ∓EM sin θL cos ηk, BL =
BM cos ηj, and kL = ±|kL| sin θLi. Figure 3, obtained with
the aid of Eq. (94), shows the variation of the quanta
energy of the radiation scattered in the direction in
which the electron beam moves (which corresponds to θ′ =
θ= π) as function of θL. The energy is normalized to
jωLγ20(1+ |β0|)2h− . The 180° geometry corresponds to θL=
0°; 180°, while the 90° geometry corresponds to θL= 90°;
270°; these points have been marked accordingly on the
curve illustrated in Figure 3. This figure shows that the energy
corresponding to the 90° geometry is half the energy corre-
sponding to the 180° geometry, for same values of ωL and γ0.
From the properties of the the Liènard-Wiechert equation,

it results that the components of the scattered electromagnetic
field emitted in a certain direction are rigorously determined.
It follows that for a point on the curve shown in Figure 3,
which corresponds a certain value of θL and to a certain

geometry of the collision between the laser and electron
beams, we can evaluate exactly the polarization of the scat-
tered beam. The polarization, which corresponds to a given
interaction geometry, results from Figure 4, in which we rep-
resent the variations of the angle ξ with θL, in the cases of the
two σL and πL polarizations, for odd and even harmonics. The
angle ξ corresponds to the polarization of the electric field of
the scattered radiation.
We can find the polarization of the scattered field in a

given geometry from Figures 3 and 4. We consider, for
example, the 180° geometry, which corresponds to θL= 0

Fig. 3. Variation of the quanta energy of the scattered radiation normalized
to jωLγ20(1+ |β0|)2h− as function of θL, for θ′ = θ= 180° and γ0= 100. The
point θL= 0° corresponds to the 180° geometry, while the points θL= 90°
and θL= 270° correspond to the 90° geometry.

Fig. 4. Variations of the angle ξ, which corresponds to the polarization of the
electric field of the scattered radiation, as function of θL, for a= 4, γ0= 100,
θ′ = θ= 180°, ηi= 20° and ωL= 2.355 × 1015 rad/s. Curve 1 correspons to
the σL polarization of odd harmonics, curve 2 correspons to the σL polariz-
ation of even harmonics, while curve 3 corresponds for the π polarization,
for both the even and odd harmonics. The σ polarization of the scattered
field corresponds to ξ= 0°, while the π polarization corresponds to
ξ=±90°.
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in Figure 3. We can see from Figure 4 that the scattered field
is π polarized, because it corresponds to ξ= 90° for all cases,
when the incident field is either σL or πL polarized, for odd
and even harmonics. For the 90° geometry, which corre-
sponds to θL= 90° in Figure 3, we find from Figure 4 that
the scattered field is σ polarized for even harmonics, because
it corresponds to ξ= 0 on curve 2.

6.2. Comparison between Theory and Experiment

The initial data entering our model, which correspond to cer-
tain experiments reported in the literature, consists of the
initial energy of the electron, the energy of the laser pulse,
the radius of the laser beam, the duration of the laser pulse,
and the wavelength of the laser pulse. These quantities are
denoted, respectively, by Ei, WL, rL, τL, and λL. We use the
relations γ0 = Ei/mc2, |β0| =

����������
1− 1/γ20

√
, IL = WL/(πr2LτL),

EM = ����������
2IL/(e0c)

√
, ωL = (2πc)/λL, and a= eEM/(mcω) to

calculate, respectively, γ0, |β0|, IL, EM, ωL, and a, where IL
is the intensity of the laser beam.
Figure 5 presents the angular distributions of the scattered

radiations, which correspond to four experiments. The curves
1, 2, 3, and 4 from Figure 5 correspond, respectively, to the
experiments (Babzien et al., 2006; Pogorelsky et al., 2000;
Anderson et al., 2004; Kim et al., 1994). The calculations
are made for θ′ = π and for the values of θL, a, γ0, λL, and
ωL, listen in caption of the figure. These calculations are
made as follows. With the aid of Mathematica 7 and the pro-
cedure described in previous section, we calculate first the

variation of the scattered beam intensity I1 as function of
θ′, when θ′ takes values between 90° and 180°. With the
aid of Eq. (90) we calculate the values of θ as function of
θ′ and the values of the angle α given by the relation

α = π− θ. (110)

Knowing the variations I1(θ
′) and α(θ′) we obtain the vari-

ation of I1 as function of α.
The values of the divergence angles of the scattered

beams, which result from Figure 5, are almost identical to
the experimental values. For example, in the case of curve
1, the divergence angle is 8 mrad. This value is in agreement
with the experimental value which results from Figure 3a in
Babzien (2006). Similarly, curves 2 and 3 show divergences
of 8 mrad, which are in good agreement with the experimen-
tal data presented, respectively, at page 090702-4 in Pogor-
elsky et al. (2000) and in Figure 3 in Anderson et al. (2004).

In the same time, there is a good agreement between theor-
etical and experimental values of energies or wavelengths of
the scattered radiations, which correspond to the data shown
in Figure 5. For example, using the data for cases 1 and 3, we
obtain, with the aid of Eq. (94), respectively, the valuesW1=
6.45 keV and W1= 77.1 keV. These values have to be com-
pared, respectively, to the experimental values 6.5 keV (Bab-
zien et al., 2006) and 78.5 keV (Anderson et al., 2004). In
the same mode, using the data for cases 2 and 4, we
obtain, with the aid of Eq. (93), respectively, the values
λ1= 1.9A and W1= 1.02A. These values have to be com-
pared, respectively, to the experimental values 1.8 A (Pogor-
elsky et al., 2000) and 1 A (Kim et al., 1994).

We evaluate now the properties of the second harmonic,
resulted from the experiment corresponding to curve 1 from
Figure 5. Using Eq. (94), in which we set j= 2, θL= 0, and
θ′ = π, we obtain W2= 12.9 keV. This value is in good
agreement with the corresponding experimental value of
W2exp= 13 keV (Babzien et al., 2006).

For the aforementioned experiment, we calculate the angu-
lar distribution of the second harmonic, I2. We record in
Figure 6 the angular variation of I2 as function of α. A com-
parison between our theoretical results shown in Figure 6 and
the experimental results shown in Figure 3 in Babzien et al.,
(2006) reveals that the angular distributions of I2 are the same
in both cases. The distance between the two-peak pattern of
the second harmonics radiation, shown in Figure 3b in Bab-
zien et al., (2006), corresponds to 6 mrad. This value is in
good agreement with our calculated value, which results
from Figure 6.

For the same initial data, corresponding to the first case
presented in Figure 5, we have calculated the polar distri-
bution of the X-ray intensity, namely the variation of I2
with f, for constant θ′. This variation, when the electromag-
netic field is linearly polarized in the directions ox and oy, is
shown in Figure 7. If we compare Figure 7 of our paper and
Figure 4 in (Babzien et al., 2006), we will see a good agree-
ment between the theoretical and experimental polar

Fig. 5. Variations of I1, normalized to their maximum values, with α. Curve
1 is for the 180° geometry, θL= 0°, γ0= 117.4, j= 1, a= 0.35, ηi= 0°, θ′ =
180°, f′ = 0° and ωL= 1.777 × 1014 rad/s; curve 2 is for the 180° geome-
try, θL= 0°, γ0= 117.4, j= 1, a= 0.053, ηi= 0°, θ′ = 180°, f′ = 0° and
ωL= 1.777 × 1014 rad/s; curve 3 is for the 180° geometry, θL= 0°, γ0=
111.5, j= 1, a= 0.2012, ηi= 0°, θ′ = 180°, f′ = 0° and ωL= 2.355 ×
1015 rad/s; curve 4 is for the 90° geometry, σL polarization, θL= 90°,
γ0= 62.62, j= 1, a= 0.08369, ηi= 0°, θ′ = 180°, f′ = 0° and ωL=
2.355 × 1015 rad/s; curve 5 is for the same parameters as for curve 4, but
the πL polarization is used instead.
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distributions of I2. We notice in both figures that these distri-
butions are represented by two lobes, whose axes are parallel
to the two directions of the field polarization.
We use Eqs. (102) and (109) to calculate the spectra of the

beam scattered in the direction of the moving of the electron,
in the inertial systems S′ and S, when I ′j and Ij are normalized
to their maximum values. This direction corresponds to the
maximum intensity in the narrow emission cone of the scat-
tered radiation. The spectra, which are calculated for three
values of the a parameter, are represented in Figure 8. As it
results from this figure, and from Eqs. (102) and (109), the
spectra corresponding to I ′j and Ij are identical.

This analysis reveals two properties. First, the spectrum
has a specific shape that comprises a slowly increasing
region for low order harmonics, followed by a maximum
and a fast decreasing region for higher harmonics. Second,
the maximum of the spectrum is shifting to shorter wave-
lengths, when a increases.
We recall that the spectrum given by I ′j = I ′j(j) is calculated

in the system S′ when a very intense laser field, characterized
by relativistic parameters having values bigger than unity, in-
teracts with an electron whose initial velocity is zero. We
compare our theoretical prediction with the spectral curve ob-
tained in an experiment presented in (Ta Phuok et al., 2003)
that involved the interaction of a very intense laser beam and
an electron having negligible initial velocity. The compari-
son of the curves illustrated in Figure 8 and Figure 2a in
Ta Phuok et al., (2003) shows that these curves have similar
shapes. The second property stated above, namely that the
maximum of the spectrum is shifting to shorter wavelengths
when a increases, is in good agreement with the experimental
data presented in Ta Phuok et al. (2003).
We note that the energies of the radiations calculated in

this example for low orders of harmonics with the aid of
Eq. (94) are on the order of 1 MeV. For example, for j= 5,
we obtain W5= 1.189 MeV (see Fig. 8).

7. CONCLUSIONS

We presented an accurate model used to calculate the angular
and spectral distributions of the scattered radiations in col-
lisions between very intense laser beams and relativistic elec-
trons. Its accuracy stems from the fact that it uses only one
approximation, namely it neglects the radiative corrections.

Fig. 6. Variations with α of I2, normalized to its maximum value, for the
180° geometry, θL= 0°, γ0= 117.4, j= 2, a= 0.35, ηi= 0°, θ′ = 180°,
f′ = 0° and ωL= 1.777 × 1014 rad/s.

Fig. 7. The intensities of the second harmonics, I2, normalized to their maxi-
mum values, as functions of f in the case of the head-on interaction between
the electromagnetic field and relativistic electrons. The calculations are made
for θL= 0, γ0= 117.4, ωL= 1.777 × 1014 rad/s, θ′ = 130° and ηi= 0°. The
field is characterized by a= 0.35 and is linearly polarized in the ox direction
for curve 1, and in oy direction for curve 2.

Fig. 8. Typical spectral distributions ot the scattered Thomson radiation,
namely variations of Ij′ and Ij in the inertial systems S′ and S, normalized
for their maximum values, for odd harmonics, Ei= 100MeV, γ0= 195.8,
θL= 0°, θ′ = 180°, f′ = 0°, ηi= 0° and ωL= 2.355 × 1015 rad/s. The
spectra from curves 1, 2 and 3 correspond, respectively, to a= 3, a= 5
and a= 7. The spectra of Ij′ and Ij are identical. The continuous curves
interpolate the discrete values of Ij′ and Ij, which are denoted by points.
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The model is in in good agreement with numerous exper-
imental data presented in literature, and it predicts the possi-
bility of obtaining photonic sources for energies greater than
1 MeV with the existing technology. We proved that the
energy and the polarization of the electromagnetic radiations
emitted by such a source can be accurately adjusted by the
variation of the angle between the directions of the laser
and electron beams.
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