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Transitional flows with the entropic lattice
Boltzmann method
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The accuracy and performance of entropic multi-relaxation time lattice Boltzmann
models are assessed for transitional flows of engineering interest. A simulation of
the flow over a low-Reynolds-number SD7003 airfoil at Re = 6 × 104, at an angle
of attack α = 4◦, is performed and thoroughly compared to available numerical and
experimental data. In order to include blockage and curvature effects, simulations
of the flow in a low-pressure turbine passage composed of T106 blade profiles,
at a chord Reynolds number of Re = 6 × 104 or Re = 1.48 × 105, for different
free-stream turbulence intensities are presented. Using a multi-domain grid refinement
strategy in combination with Grad’s boundary conditions yields good agreement for
all simulations. The results demonstrate that the entropic lattice Boltzmann model
is a viable, parameter-free alternative to modelling approaches such as large-eddy
simulations with similar resolution requirements.
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1. Introduction
Understanding of boundary layer separation, transition to turbulence and reattachment

of the turbulent boundary layer is of great importance for many applications
ranging from diffusers and turbine blades to micro air vehicles and unmanned
air vehicles. Despite many experimental and numerical studies, improving the
efficiency of engineering designs remains challenging due to the lack of predictive
and controlling capabilities and requires further investigations to complement our
current understanding.

Laminar separation typically occurs in the low-Reynolds-number regime, for
example in the flow over an airfoil at incidence or in the flow over a flat plate
with a prescribed suction profile as the upper boundary condition. On the upper
surface, the boundary layer remains laminar beyond the point of minimum surface
pressure and into the pressure recovery region, where the adverse pressure gradient
opposes the flow and causes its detachment. Downstream of the separation point,
the highly unstable separated shear layer transitions to turbulence. Subsequently,
at sufficiently high Reynolds numbers or low angles of attack, the turbulent flow
promotes momentum transfer in the wall-normal direction and causes reattachment of
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the boundary layer, thus closing the so-called laminar separation bubble (LSB). The
later the reattachment happens, the bigger the LSB and the larger the loss of lift and
the increase in drag. In the limit of no reattachment and complete separation, the
airfoil is said to be in a stall condition with poor aerodynamic performance. Thus,
optimizing performance requires understanding and control of these mechanisms.

Recent studies were focused on the mechanism of transition to turbulence, with
special attention paid to understanding the stability features of LSBs, including the
role of primary and secondary instabilities in the transition process. While it was
shown theoretically and experimentally by Gaster (1963) and Dovgal, Kozlov &
Michalke (1994) that viscous instabilities, such as Tollmien–Schlichting (T–S) waves
(see e.g. Schlichting et al. 1960; Ho & Huerre 1984), amplify upstream disturbances
in the laminar part of the bubble, inviscid instabilities, e.g. of Kelvin–Helmholtz
(K–H) type, play the dominant role in the amplification of disturbances in the free
shear layer of the separation bubble and thus in the transition to turbulence (Ahuja
& Burrin 1984; Watmuff 1999; Yang & Voke 2001; Lang, Rist & Wagner 2004;
Yarusevych, Sullivan & Kawall 2006; Yarusevych, Kawall & Sullivan 2008; Hain,
Kähler & Radespiel 2009).

One of the first direct numerical simulations (DNS) of transition over a flat
plate, induced by a prescribed suction profile as the upper boundary condition, was
performed by Alam & Sandham (2000). Before the transition, a staggered formation
of Λ vortices was observed. Based on linear stability analysis, it was concluded
that the transition process was driven by convective instability (disturbances grow
in space) rather than by absolute instability (disturbances grow in time and spread
everywhere). In contrast, Spalart & Strelets (2000) performed a DNS with the same
set-up and observed transition of an unforced LSB with negligible T–S instabilities
and no distinct regions of primary or secondary instabilities, leading to a rapid
three-dimensionality.

Marxen et al. (2003) investigated LSBs over a flat plate by means of experiment
and DNS using periodic two-dimensional disturbances upstream of the separation
along with a spanwise array of spacers to trigger transition. It was observed that
vortices were formed due to the roll-up of the separated shear layer, which eventually
broke down to turbulence.

Subsequent investigations in Marxen, Rist & Wagner (2004) concluded that the
transition was driven by convective amplification of a two-dimensional T–S wave, and
that the dominant mechanism behind transition is an absolute secondary instability as
proposed by Rist, Maucher & Wagner (1996), Maucher, Rist & Wagner (1997, 1999)
and Rist & Maucher (2002), for which the growth of two-dimensional disturbances
via viscous T–S instability upstream of the separation point undergoes a gradual
transition to inviscid K–H-type amplification. The dominant downstream travelling
waves quickly saturate and form large, downstream-propagating spanwise vortices.
Besides this convective spatial growth, the existence of an additional temporal
amplification has been observed experimentally, theoretically and numerically by
Gaster (1992, 2006), Alam & Sandham (2000) and Maucher (2002), among others.

In the work of Jones, Sandberg & Sandham (2008) it was shown that although
classical linear stability theory of the time-averaged flow fields suggests convective
instability (Boutilier & Yarusevych 2012a) with no evidence of absolute instability,
removing the forcing still leads to self-sustained turbulence. They concluded, based
on three-dimensional simulations resolving the linear response, that transition occurs
by absolute instability of two-dimensional vortex shedding within the shear layer in
the absence of convectively driven transition. Further studies on flat plates and airfoils
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have shown the vortex roll-up occurring in the separated shear layer at the frequency
of dominant disturbance amplification with downstream vortex pairing for some flow
conditions (Watmuff 1999; Lang et al. 2004; Burgmann, Dannemann & Schröder
2008; Zhang, Hain & Kähler 2008; Hain et al. 2009; Yarusevych, Sullivan & Kawall
2009). In the work by Burgmann et al. (2008), time-resolved measurements of the
velocity field over the SD7003 airfoil revealed several types of coherent vortical
structures developing during transition. Qualitative differences in these structures
compared to the flow over flat plates, such as in Watmuff (1999) and Lang et al.
(2004), were observed and attributed to a dependence of the transition behaviour
on surface curvature as well as a dependence of the development of the coherent
structures on the flow conditions. In Kurelek, Lambert & Yarusevych (2016) it
was further demonstrated that the newly coalesced (due to vortex pairing) shear
layer vortices, characterized by an initially high spanwise coherence, undergo rapid
spanwise deformations and subsequently break down to smaller structures in the
vicinity of the reattachment point.

The flow development near the reattachment point has shown significant variations
depending on the surface geometry and the operating conditions. Under certain
conditions, the reattachment process appears relatively steady with no shedding
of large coherent spanwise vortices (Balzer & Fasel 2010), while in other cases
it was observed to be an unsteady process accompanied by vortex shedding. The
unsteady reattachment behaviour is called bubble flapping and was observed both
experimentally and numerically, with a frequency below the one of the primary K–H
instabilities (see e.g. Watmuff 1999; Boiko et al. 2002; Rist & Maucher 2002; Lang
et al. 2004; Burgmann et al. 2008; Hain et al. 2009; Jones, Sandberg & Sandham
2010; Marxen & Rist 2010). To explain the cause of bubble flapping, various authors
pointed at the absolute secondary instability mechanisms of the shed vortices to
three-dimensional disturbances (Jones et al. 2008), at acoustic feedback mechanisms
(Jones et al. 2010; Jones & Sandberg 2011) and at a viscous–inviscid coupling
interacting with varying levels of free-stream turbulence (Marxen & Rist 2010). As
shown by e.g. Wissink & Rodi (2004), on performing a DNS on a flat plate with
different free-stream disturbances, a larger disturbance leads to a smaller bubble
size, while the reattachment point is moved upstream. Similarly, Jones et al. (2008)
observed a large decrease of the bubble size when forcing was applied, leading to a
significant increase of aerodynamic performance for the NACA0012 airfoil.

Due to the lack of a comprehensive picture (Boutilier & Yarusevych 2012b) of
the instability mechanisms at play during transition, it is inherently difficult to model
these phenomena. In the work of Spalart & Strelets (2000), the accuracy of various
Reynolds-averaged Navier–Stokes (RANS) turbulence models was assessed. Although
the results obtained by the Spalart–Allmaras model showed reasonable agreement
with the DNS, large discrepancies between the models and the reference case were
observed. In particular, more sensitive quantities such as the skin friction coefficient
showed significant deviations. Minor improvements of various RANS models were
reported in the works of Papanicolaou & Rodi (1999), Hadzic & Hanjalic (2000)
and Howard, Alam & Sandham (2000). In recent years, large-eddy simulations (LES)
for transitional flows have become increasingly popular (see e.g. Wilson & Pauley
1998; Yang & Voke 2001; Roberts & Yaras 2006; Eisenbach & Friedrich 2008; Xu,
Sullivan & Paraschivoiu 2010; Cadieux et al. 2014). While accurate results were
reported for implicit LES, relying on high-order schemes for spatial derivatives to
capture transition, combined with filtering for stabilization (see e.g. Galbraith &
Visbal 2008; Visbal 2009; Zhou & Wang 2010), the recent work of Cadieux &
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Domaradzki (2015) highlights the importance of appropriate subgrid-scale modelling
by a comparison of dynamic Smagorinsky, truncated Navier–Stokes and no-model
under-resolved DNS.

The motivation of the present study is to assess the recently developed entropy-
based lattice Boltzmann models with respect to capturing the subtle mechanisms
of transitional flows. Despite the fact that lattice Boltzmann methods (LBM) are
becoming increasingly popular due to their efficiency and simplicity, stability and
accuracy issues have obstructed applications to complex flows for a long time. These
issues have been overcome by entropy-based LBM, which has shown encouraging
results for resolved and, due to its built-in subgrid features, also coarse grid
simulations (Karlin, Ferrante & Öttinger 1999; Karlin, Bösch & Chikatamarla
2014; Bösch, Chikatamarla & Karlin 2015b; Dorschner et al. 2016a; Dorschner,
Chikatamarla & Karlin 2016b). In spite of validation in both laminar and turbulent
flow regimes, the transition to turbulence, which not only depends on accurate
prediction of the bulk flow but also is highly sensitive to the implementation of
the boundary conditions, has received little attention so far in the realm of LBM.
However, to establish LBM as a predictive method for engineering applications, it
is of great importance to also assess the accuracy of LBM in the transitional flow
regime.

The paper is organized as follows. In § 2, a brief review of entropy-based lattice
Boltzmann methods is presented. Subsequently, in § 3, we consider the flow past
the SD7003 airfoil at an angle of attack α = 4◦ and a chord Reynolds number of
Re = 6 × 104. Moreover, in order to test the model’s performance for highly curved
geometries, simulations of the flow in a low-pressure turbine passage for different
Reynolds numbers and free-stream turbulence intensities are performed and, where
available, compared to DNS and experimental data. Results are discussed in § 4.

2. Entropic multi-relaxation time lattice Boltzmann models
The LBM is a promising approach to computational fluid dynamics (CFD)

with applications in various regimes, such as turbulence or multiphase, thermal,
compressible and micro-flows among others (Succi 2015). While conventional
CFD discretizes the governing equations directly, the LBM employs discretized
particle distribution functions (populations) fi(x, t), which are designed to recover
the Navier–Stokes equations in the hydrodynamic limit (Higuera & Jimenez 1989;
Higuera & Succi 1989; Higuera, Succi & Benzi 1989). Each population is associated
with a discrete velocity ci, i = 1, . . . , Q, and these velocity vectors span a regularly
spaced lattice and thus allow for a highly efficient stream–collide algorithm with
exact propagation and easy parallelizability due to local nonlinearity.

In recent years, the development of LBM has made significant advances. In
particular, stability issues have been overcome by the development of collision
models beyond the original lattice Bhatnagar–Gross–Krook (LBGK) model. While on
the one hand, the inclusion of explicit turbulence models (see e.g. Chen et al. 2003;
Malaspinas & Sagaut 2012) has shown success, the class of parameter-free entropic
lattice Boltzmann models (ELBM) has achieved accurate results for both resolved and
under-resolved simulations. In particular, the notion of a discretized entropy function
H was introduced in Karlin et al. (1999) and used to determine the relaxation of
the population consistent with the second law of thermodynamics, resulting in a
nonlinearly stable scheme. A key component of ELBM is the adaptive relaxation of
the populations in both space and time (see e.g. Dorschner et al. (2016c) for a recent
discussion on the topic in the context of multi-domain simulations).
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Recently, this notion has been extended to multi-relaxation time (MRT) lattice
Boltzmann models. Generally, MRT models exploit the high dimensionality of the
kinetic system to choose the relaxation of higher-order, non-hydrodynamic moments
in order to stabilize the scheme. For a long time, this was done by tuning the
corresponding relaxation parameters (see e.g. d’Humieres 1992; Latt & Chopard
2006). In Karlin et al. (2014), the so-called Karlin–Bösch–Chikatamarla (KBC)
model was introduced, where this issue was resolved by invoking the notion of
entropy to choose the relaxation adaptively, which leads to enhanced stability and
accuracy (Karlin et al. 2014; Bösch et al. 2015b).

The derivation of the KBC model was already discussed in Karlin et al. (2014),
Bösch et al. (2015b) and Dorschner et al. (2016a); here we state the main steps and
restrict ourselves to the isothermal case using the standard D3Q27 lattice.

The general lattice Boltzmann equation for the population fi(x, t) is given by

fi(x+ ci, t+ 1)= f ′i = (1− β)fi(x, t)+ βf mirr
i (x, t), (2.1)

where the streaming step is given by the left-hand side and the post-collision state f ′i
is represented on the right-hand side by a convex linear combination of fi(x, t) and
the mirror state f mirr

i (x, t).
The KBC model, as used in all simulations in this paper, represents the population

fi in terms of its natural moments as the sum of a kinematic part ki, a shear part si
and the remaining higher-order moments hi:

fi = ki + si + hi. (2.2)

The mirror state is defined as

f mirr
i = ki + (2seq

i − si)+ ((1− γ )hi + γ heq
i ), (2.3)

where seq
i and heq

i denote si and hi evaluated at equilibrium. The equilibrium f eq is
defined as the minimum of the entropy function

H( f )=
Q∑

i=1

fi ln
(

fi

Wi

)
, (2.4)

subject to the local conservation laws for mass and momentum

Q∑
i=1

{1, ci}fi = {ρ, ρu}, (2.5)

where the weights Wi are lattice-specific constants. Finally, minimizing the H function
in the post-collision state yields the relaxation parameter

γ =
1
β
−

(
2−

1
β

)
〈1s|1h〉
〈1h|1h〉

, (2.6)

where 1si = si − seq
i and 1hi = hi − heq

i indicate the deviation from equilibrium and
the entropic scalar product is given by 〈X|Y〉 =

∑
i(XiYi/f

eq
i ).

The KBC model recovers the Navier–Stokes equations in the hydrodynamic limit,
where the parameter β in (2.1) is related to the viscosity as

ν = c2
s

(
1

2β
−

1
2

)
, (2.7)

where cs = 1/
√

3 is the lattice speed of sound.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.356


Transitional flows with the entropic lattice Boltzmann method 393

Finally, we mention that the transitional flows considered in this paper are
sensitive to the wall boundary conditions and spurious artefacts can occur for an
inappropriate choice. In the LBM framework, various propositions exist, among
which only a few have been shown to be stable and accurate for both resolved and
under-resolved simulations. To that end, we use the boundary condition as detailed in
Dorschner et al. (2015, 2016b), which was validated for various flow set-ups including
channel flow, the flow in engine-like geometries and self-propelled swimmers. Other
boundary conditions used in the simulations include inflow, outflow, free-stream and
periodic boundary conditions. Unless stated otherwise, we implement these boundary
conditions as follows: the inflow is prescribed using equilibrium populations with
unit density. For the outflow boundary, we employ the no boundary condition. The
free-stream or free-slip boundary condition reflects the population with respect to the
wall normal and is used to mimic an open space. The periodic boundaries are directly
applied within the advection step.

3. Flow separation and transition to turbulence

In this section, we investigate two cases to test the accuracy of KBC models. In
the first instance, we consider the flow over the SD7003 airfoil at angle of attack
α = 4◦ and Reynolds number Re = 6 × 104 based on the chord length c and the
inflow velocity U∞. The second test case is regarding the flow in a low-pressure
turbine passage composed of T106A airfoils at Reynolds numbers of Re = 6 × 104

and Re= 1.48× 105 based on the axial chord and the inflow velocity.
As stated in Cadieux & Domaradzki (2015) and also confirmed by our simulations,

the key to obtaining accurate results, in agreement with experiment, is to resolve the
reverse flow region near the wall and the shear layer which transitions to turbulence.
Despite the efficiency of the LBM, this is an intractable task for a uniform resolution.
To remedy this issue we employ the multi-domain grid refinement technique as
proposed and validated for various set-ups in our recent publication (Dorschner et al.
2016c).

3.1. Transitional flow past SD7003 airfoil
3.1.1. Numerical set-up

The numerical set-up is identical to the experimental and numerical studies of Ol
et al. (2005), Galbraith & Visbal (2008) and Zhou & Wang (2010) to allow a direct
comparison with the results obtained by the KBC model.

The experimental investigations of Ol et al. (2005) were conducted in order to
assess the suitability of three different test facilities, namely, a low turbulence wind
tunnel (Technical University of Braunschweig (TU-BS) Low-Noise Wind Tunnel), a
water tunnel (Air Force Research Laboratory (AFRL) Free-Surface Water Tunnel)
and a tow tank (Institute for Aerospace Research (IAR) Tow Tank). While good
agreement was found for IAR and TU-BS, the AFRL facility showed significantly
earlier separation and reattachment, and was not able to resolve reverse flow in the
bubble. The numerical study of Galbraith & Visbal (2008) was conducted to test the
capabilities of implicit large-eddy simulations (ILES) to capture the LSB mechanism
accurately. The use of high-order compact schemes for spatial derivatives and a
Pade-type low-pass filter for stability has yielded accurate predictions of LSB for
various operating points. In a similar fashion, Zhou & Wang (2010) employed an
implicit LES using a high-order spectral difference method to capture the LSB.
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x

y

z

FIGURE 1. (Colour online) Multi-domain block refinement for the flow past the SD7003
airfoil along with a slice of instantaneous streamwise velocity.

In our study and in accordance with Galbraith & Visbal (2008) and Zhou &
Wang (2010), we use a uniform inlet velocity with no inflow disturbances. A small
perturbation at the beginning of the simulation is introduced to initiate vortex shedding.
All statistical quantities are recorded after an initial transient of t = 15c/U∞ and
collected for another t = 45c/U∞ until statistically stationary conditions have been
reached. The solutions are obtained on a computational domain of 10c× 5c× 0.2c for
the stream, pitch and spanwise directions, respectively. Periodic boundary conditions
are applied in the spanwise direction, while free-stream boundary conditions are
prescribed in the pitchwise direction. The computational domain is refined with
five levels, where the coarsest level resolves the airfoil with c= 100 lattice points to
ensure enough spatial extent to represent the reverse flow region accurately. As shown
in figure 1, the refinement patches are located closely around the airfoil to minimize
computational cost. Based on the maximum wall shear stress in the reattachment
zone, the resolution in wall units amounts to 1y+ ≈ 2.1 at the finest level, which is
similar to the ILES study of Zhou & Wang (2010) with 1y+ ≈ 2.5 using high-order
spectral differences. As an additional verification of sufficient resolution, a snapshot
of the spatial distribution of the stabilizer γ is shown in figure 2. It has been shown
in Bösch, Chikatamarla & Karlin (2015a), Bösch et al. (2015b) and Dorschner et al.
(2016c) that the value of γ is directly related to the degree of under-resolution and
that γ automatically tends towards the LBGK value γlim = 2 in the limit of a fully
resolved simulation. Therefore, the deviation of the stabilizer from its limit value
indicates under-resolution. Figure 2 shows the expected small deviations from γlim= 2
at the finest grid level, suggesting negligible numerical diffusion. This assertion will
be further investigated through comparison to reference data.

3.1.2. Results
In order to gain insight into the coherent flow structures in the LSB, we present

an instantaneous snapshot of isosurfaces of the Q-criterion coloured by streamwise
velocity in figure 3. As expected, starting from the leading edge, the flow remains
laminar and further downstream it separates due to the adverse pressure gradient on
the suction side of the airfoil. Instabilities, forming a corrugated flow pattern, and
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1600 1700 1800 1900 2000 2100 2200

FIGURE 2. (Colour online) Instantaneous snapshot of the spatial distribution of the
stabilizer γ .

u

0.425

1.400

–0.550

FIGURE 3. (Colour online) Isosurfaces of the Q-criterion (Q = 4) coloured by normalized
streamwise velocity for the simulation of the SD7003 airfoil at an angle of attack α= 4◦
and a Reynolds number Re= 6× 104.

interaction with the small-scale structures in the recirculation zone can be observed
at the end of the laminar shear layer. Further downstream, spanwise distortion leads
to fully three-dimensional structures, indicating the transitional region, followed by
fine-scale turbulence.

Beyond the visual inspection, one can quantify separation, transition and reattach-
ment by computing the mean pressure coefficient Cp = (p− p∞)/(1/2ρ∞u2

∞
) and the

mean skin friction coefficient Cf = τ/(1/2ρ∞u2
∞
) on the airfoil surface as shown in

figures 4 and 5, respectively. Here, the mean wall shear stress is denoted by τ .
The distribution of the mean pressure coefficient over the suction side of the

airfoil surface can be used to extract various characteristics of the LSB. As seen in
figure 4, the point of minimum pressure is followed by a pressure plateau, which
has been shown to occur near the separated flow region (Tani 1964; Boutilier &
Yarusevych 2012b). Consequently, the separation point xs and transition location
xt can be identified as the start and the end of the pressure plateau (O’meara &
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1.0
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0 0.2 0.4 0.6 0.8 1.0

Zhou & Wang (2010)
Galbraith & Visbal (2008) Present

FIGURE 4. (Colour online) Average pressure coefficient Cp over the upper and lower
surfaces of the SD7003 airfoil. Here and in the following, the symbols represent sampled
values along the chord for clarity.

0.010

0.005

0

0.015

0.020

–0.005

–0.010
0 0.2 0.4 0.6 0.8 1.0

Zhou & Wang (2010)
Galbraith & Visbal (2008) Present

FIGURE 5. (Colour online) Average skin friction coefficient Cf over the upper and
lower surfaces of the SD7003 airfoil.

Mueller 1987). Similarly, the reattachment point xr can be estimated as the point at
the end of the enhanced rate of pressure recovery downstream of the transition point.
These definitions are commonly used to experimentally obtain LSB characteristics
by linearly fitting the surface pressure data (Gerakopulos, Boutilier & Yarusevych
2010; Boutilier & Yarusevych 2012b). A first indication that the KBC model is able
to accurately predict the mean bubble size characteristics is given by the excellent
match of the Cp distribution with the high-order implicit LES of Galbraith & Visbal
(2008) and Zhou & Wang (2010).
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0 6.25 12.50 18.75 25.00

0.010

0.005

0

0.015

0.020

0.025

–0.005
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) (b)

FIGURE 6. (Colour online) Determination of the onset to transition. (a) Distribution of
Reynolds shear stress −u′w′/u2

∞
with a threshold of 0.001. (b) Reynolds shear stress value

plotted along the line of maximum shear stress.

Contribution Tu (%) xs/c xt/c xr/c

Ol et al. (2005), IAR (expt.) 0 0.33 0.57 0.63
Ol et al. (2005), TU-BS (expt.) 0.1 0.30 0.53 0.62
Ol et al. (2005), AFRL (expt.) ∼0.1 0.18 0.47 0.58
Galbraith & Visbal (2008) (ILES) 0 0.23 0.55 0.65
Zhou & Wang (2010) (ILES) 0 0.23 0.52 0.69
Present 0 0.30 0.55 0.68

TABLE 1. Comparison of the LSB properties for the flow over the SD7003 airfoil,
where Tu denotes the turbulence intensity of the inflow.

On the other hand, computing the skin friction on the airfoil surface gives another
meaningful way to determine the average geometrical properties of the LSB. The
separation and reattachment points can be inferred from the location of zero skin
friction. While the first root with a negative gradient indicates separation, reattachment
happens further downstream at zero skin friction and a positive gradient. From
this analysis, we report xs and xr along with the reference data in table 1. It is
apparent that excellent agreement with the experimental data is obtained. As was
mentioned above, the AFRL facility is an outlier of the experimental studies but is
still reported for completeness. Furthermore, the agreement with both ILES results is
reasonable. From the skin friction plot one can see that the KBC model predicts a
considerably later separation as compared to the ILES but matches the experimental
data. Nonetheless, the location of minimum skin friction and the reattachment location
agree well with the ILES results from Zhou & Wang (2010).

Finally, in order to identify the mean location of transition, Reynolds shear stresses
are considered. In figure 6(a), the distribution of Reynolds shear stress −u′w′/U2

∞
is

shown with a threshold of 0.001. The commonly used criterion for the transition onset
is the region which exceeds this threshold as these stresses describe the transport
of momentum into the boundary layer (Ol et al. 2005; Yuan et al. 2005; Burgmann
et al. 2008). Different criteria, such as the shape factor H12 (defined as the ratio
of the displacement thickness and the momentum thickness) or the deviation from
exponential growth, were identified and are in good agreement with each other
(Lang et al. 2004; McAuliffe & Yaras 2005). In figure 6(b), the Reynolds shear
stress value is plotted along the line of maximum shear stress, which allows us to
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FIGURE 7. (Colour online) Mean velocity profiles at x/c= 0.1–0.5.

10–110–2

10–4

10–6

10–8

10–10

100

10–2

FIGURE 8. (Colour online) Spectra of fluctuating streamwise velocity along the spanwise
direction.

accurately extract the transition point as the point exceeding the threshold of 0.001.
The agreement with all reference data is excellent (see table 1).

The mean velocity profiles along the chord line in the wall-normal direction are
compared to the ILES by Zhou & Wang (2010) in figure 7. The evolution from the
attached shear layer to the detachment is clearly visible and the separation location is
in line with its evaluation using the mean skin friction coefficient Cf . In agreement
with the previously observed deviations of the skin friction distribution over the airfoil
surface, the ILES predicts earlier separation compared to both experiment and the
present simulation. Nonetheless, the agreement between KBC and ILES is reasonable.

Next, we investigate the spanwise flow development. The recent experimental
study of the flow over a NACA0018 airfoil by Kurelek et al. (2016) suggests that
newly coalesced shear layer vortices possess a relatively high spanwise coherence
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FIGURE 9. Power spectral density (PSD) for two observer points, one within the bubble
and one in the near wake. (a) Power spectral density in the LSB at x/c≈ 0.53. (b) Power
spectral density in the near wake.

and undergo a rapid spanwise deformation, which eventually leads to a break down
into small-scale structures in the reattachment zone. To quantify this behaviour with
the present simulation, spanwise wavelength statistics are extracted by computing
the spectra of streamwise velocity fluctuations u′u′ along the spanwise direction for
various chordwise locations within the LSB at a constant wall-normal distance of
y/c = 0.00625. The corresponding spectra are reported in figure 8. Starting beyond
the separation point at x/c= 0.4, one can observe that the maximum corresponds to
the spanwise extent, thereby confirming the two-dimensionality of the main vortices.
At the mean transition location x/c= 0.55, a steep increase at λ/c≈ 0.01 is followed
by a plateau of dominant wavelengths ranging from λ/c ≈ 0.03 to λ/c ≈ 0.1. This
characteristic behaviour is identical to what was observed by Kurelek et al. (2016)
and implies three-dimensional vortex structures and weak spatial periodicity. Beyond
transition onset at x/c = 0.615, the breakdown into small structures is evidenced by
a broadening of the aforementioned plateau and an increase of the spectra at lower
wavelengths. At the average reattachment point x/c = 0.68, the spectra practically
overlap and only a minor increase at higher wavelengths is observed, suggesting
a rather fast breakdown. These results agree well with the experimental study of
Kurelek et al. (2016) and therefore confirm that the KBC model is able to capture
the spanwise evolution of the flow.

Finally, the time-resolved KBC simulation allows us to study the LSB dynamics.
The power spectral density of the streamwise velocity fluctuations is shown in
figure 9 for two observer points, one within the LSB at x/c≈ 0.53 and the other in
the near wake. Despite the fact that more frequencies are present in the near wake,
both observer points display a dominant vortex shedding frequency at a Strouhal
number Stvs = f sin(α)c/U∞ ≈ 0.38. In order to assess if the reattachment behaviour
is steady or if bubble flapping occurs, the normalized bubble length l/c, which is
computed through the instantaneous Cf distribution, is monitored over the course
of the simulation (see figure 10a). A highly unsteady reattachment behaviour with
various frequency contributions is evident and the bubble length fluctuates as much as
0.15l/c from its mean value. By employing spectral analysis and plotting the power
spectral density of the bubble length (see figure 10b), various dominant frequencies
are revealed. On the one hand, the vortex shedding frequency at Stvs is observed
as in the analysis above. On the other hand, other dominant frequencies at lower
Strouhal numbers, namely St ≈ 0.09 and St ≈ 0.02, are superimposed. As mentioned
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FIGURE 10. LSB dynamics. (a) Evolution of the bubble size. (b) Power spectral density
for the bubble size.

in the introduction, similar behaviour was observed numerically and experimentally
(see e.g. Watmuff 1999; Boiko et al. 2002; Rist & Maucher 2002; Lang et al. 2004;
Burgmann et al. 2008; Hain et al. 2009; Jones et al. 2010; Marxen & Rist 2010).
While the bubble flapping effect is confirmed by the present simulation, the cause of
the low-frequency contribution is controversial in the literature and deserves further
investigation in future work.

Summarizing, we have shown that the parameter-free KBC model supplied with
the boundary conditions as in Dorschner et al. (2015, 2016b) is able to accurately
predict the boundary layer separation, transition to turbulence and reattachment of
the turbulent boundary layer. Thus, it provides a simple and efficient alternative to
conventional modelling approaches such as LES. It also needs to be stressed that to
accurately capture the transition phenomena it is necessary to resolve the recirculation
region for which grid refinement is crucial to keep the computational cost reasonable.

3.2. Flow in a low-pressure turbine passage
In this section, the flow in a low-pressure turbine passage is considered. Similar to the
flow past the SD7003 airfoil in the previous section, low-pressure turbines typically
operate at relatively low Reynolds and Mach numbers. Under these conditions,
depending on the geometry and the inflow, a LSB might occur. Note that, while
in general compressibility effects may not be neglected for industrial applications,
insight into LSB dynamics can already be gained in the incompressible flow regime
(Zhang et al. 2015; Bigoni et al. 2016). The present set-up is distinctly different
from the previous case of the SD7003 airfoil as it allows for blockage and curvature
effects, as well as the unsteady wake of the blade, which can have a significant
influence on the LSB and the onset of transition. In particular, the flow is redirected
by more than 100◦ and accelerated to approximately double its inflow value, leading
to a large streamwise straining where its principal axes vary spatially, as observed by
Wu & Durbin (2001).

Various experimental investigations have been conducted to study LSBs in
low-pressure turbines (LPTs) (Mayle 1991; Schulte & Hodson 1994; Engber &
Fottner 1996; Schulte & Hodson 1998; Hodson 2000; Sieverding 2000; Hilgenfeld,
Stadtmüller & Fottner 2002; Stieger & Hodson 2003). Considering the full rotor/stator
arrangement in real turbine cascades, the incoming flow is highly unsteady, with wakes
generated by the preceding row of blades. In the work of Schulte & Hodson (1994),
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a significant effect of a periodically passing turbulent inflow wake on the LSB and
thus performance was observed. Combined with hot-film measurements (Schulte &
Hodson 1998), it was concluded that separation is periodically suppressed by the
turbulent incoming wake and the subsequent calmed region with their full velocity
profiles (see also Stieger & Hodson 2003).

On the numerical side, the increasing computing power and the relatively low
Reynolds and Mach numbers in LPTs allow for DNS (see e.g. Wu et al. 1999;
Wu & Durbin 2001). Noteworthy is the DNS study of Wu & Durbin (2001), who
investigated the bypass transition due to a periodic, turbulent inflow wake, which was
used to generate large free-stream disturbances.

On the modelling side, the lack of accuracy of RANS models (Raverdy et al. 2003)
led to an increasing number of LES studies of LSBs in LPTs, focusing again on
the boundary layer–wake interference (Mittal, Venkatasubramanian & Najjar 2001;
Michelassi, Wissink & Rodi 2002, 2003; Rodi 2006). The results of these LES are
encouraging, but uncertainties remain and high resolution is needed to capture all
features of the transition. In the LES study of Michelassi et al. (2003) for example,
significant discrepancies with the reference DNS are observed, where the LES was
not capable of fully reproducing the transition location (delayed transition) and
skin friction coefficient. These discrepancies are attributed to the resolution near
the boundary and also in the bulk, which is not able to account for the fine-scale
structures convected by the wake and thus to trigger transition.

In this paper, analogous to Raverdy et al. (2003), we focus on the flow past the
turbine blade without an inflow wake. To analyse the effect of Reynolds number and
free-stream turbulence, we conduct simulations at Reynolds numbers of Re= 6× 104

and Re= 1.48× 105 with imposed free-stream turbulence intensities in the range Tu=
0–10 %.

3.3. Numerical set-up
The simulation set-up is identical to the DNS of Wu & Durbin (2001), who conducted
incompressible flow simulations with and without a turbulent inflow wake. For
comparison with experiment, the study of Engber & Fottner (1996), who carried out
various experiments for different inflow disturbances and Reynolds numbers (but no
turbulent wake), is considered.

The set-up consists of a single T106 low-pressure turbine blade, which is
periodically repeated in the pitchwise direction to mimic the full turbine passage.
The distance between two consecutive blade profiles is given by the normalized pitch
g/Cax = 0.93, where Cax denotes the axial chord. The Reynolds number is based on
the mean inflow velocity and the axial chord. The computational domain is chosen as
[−Cax, 3Cax] × [−0.5g, 0.5g] × [−0.1Cax, 0.1Cax] for the stream, pitch and spanwise
directions, where the turbine blade is located at the origin. The computational cost
is reduced by using three levels of grid refinement, where the coarsest level resolves
the turbine blade with Cax = 300 lattice points (see figure 11). In the case of full
transition, this yields a maximum effective grid spacing of 1y+ ≈ 0.25 within the
separation bubble and 1y+ ≈ 2.1 in the turbulent boundary layer at the trailing edge.

Periodic boundary conditions are applied in the pitch and spanwise directions. The
exit flow has a designed angle of −63.2◦ with the x axis and we employ convective
boundary conditions at the outlet. Regarding the inflow, simulations with uniform and
turbulent inflow conditions at an inlet angle of 37.7◦ are presented.

In order to generate the inflow turbulence, a method similar to that in Zhang et al.
(2015) was adopted, where a frozen homogeneous isotropic turbulence field within a
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x

y

z

FIGURE 11. (Colour online) Computational set-up for the flow over an T106 turbine
blade.

(a) (b)

FIGURE 12. (Colour online) Flow in low-pressure turbine passage at Re = 1.48 × 105,
visualized by vorticity isosurfaces coloured by streamwise velocity. (a) Uniform inflow.
(b) Turbulent inflow.

periodic box of spanwise length is superimposed onto the mean flow at the inlet angle.
The box is duplicated to fill the entire inflow plane and advected with the inflow
velocity to mimic time-varying fluctuations. The initial turbulence field is computed
using a synthetic kinematic simulation (Fung et al. 1992), where the solenoidal
velocity field is described as a superposition of a finite number of random Fourier
modes according to an energy spectrum of the form E(k) = Ak4 exp(−2k2/k2

0). The
constant A and the wavenumber of the spectrum peak k0 are chosen in accordance
with the prescribed turbulence intensity.

3.4. Results
First, for the purpose of validation, we consider the high-Reynolds-number case of
Re = 1.48 × 105 with a uniform inflow and a turbulent inflow with Tu = 0.2 %. A
snapshot of the flow in the periodically completed turbine passage is visualized in
figure 12 using vorticity isosurfaces, coloured by streamwise velocity. The distribution
of the pressure coefficient over both the suction and the pressure sides of the turbine
blade is shown in figure 13 along with the reference data for the uniform and turbulent
inflow. On the suction side, a favourable pressure gradient accelerates the flow until
the adverse pressure gradient downstream of x/Cax ≈ 0.6 causes a deceleration. On
the pressure side, the pressure gradient is nearly zero until x/Cax≈ 0.5, where a steep
pressure gradient accelerates the flow up to the trailing edge.
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FIGURE 13. (Colour online) Distribution of the mean pressure coefficient over the axial
chord of the T106 turbine blade at Re= 1.48× 105.

The comparison of the simulated pressure coefficient with the experimental and
numerical data in figure 13 shows good agreement. On the pressure side, only
marginal discrepancies between all data are observed. On the suction side, due to the
different inflow conditions, the discrepancies are larger. The influence of the wake
for the DNS data becomes apparent in the aft of the blade, where the pressure is
increasing at x/Cax ≈ 0.85 compared to the uniform inlet. Similarly, minor deviations
between the different inflow disturbances can be observed for the experimental data
and the present simulation.

To further investigate the effect of the inflow disturbances, a close-up image zoomed
in from the top in figure 14 shows the isosurfaces of the Q-criterion coloured by the
normalized streamwise velocity. Both simulations exhibit Λ-type vortices at the initial
stage, which subsequently develop into hairpin-type vortices. While for the simulation
using a uniform inflow, these flow structures are relatively well ordered in staggered
formation, the hairpin vortices for the case with a turbulent inlet are more pronounced
with a higher degree of disorder.

However, as indicated by the distributions of the pressure and skin friction
coefficient over the airfoil surfaces, the influence of free-stream turbulence is minor
in terms of the aerodynamic quantities. In fact, the integral effects, as manifested
by the drag and lift coefficients, are insignificant with deviations of less than 0.25 %
and 0.01 %, respectively. While the rapid increase of the skin friction coefficient as
shown in figure 15 indicates a starting transition process, full transition, as defined by
the Reynolds stress criteria used above, is triggered by neither uniform nor turbulent
inflow conditions. Moreover, as indicated by the skin friction coefficient and in line
with DNS and LES results (Wu & Durbin 2001; Rodi 2006), the mean flow does
not separate. This is in contrast to the LES by Raverdy et al. (2003), who reported
a fully developed LSB, albeit at a lower nominal Reynolds number of Re= 1.1× 105

and a uniform inflow.
To investigate this discrepancy, another set of simulations was run with the same

Reynolds number Re= 1.1× 105 as in Raverdy et al. (2003). However, the change in
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FIGURE 14. (Colour online) Snapshot of isosurfaces of the Q-criterion (Q= 200) coloured
by normalized streamwise velocity at Re= 1.48× 105: (a) Tu= 0 %; (b) Tu= 0.2 %.
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FIGURE 15. (Colour online) Distribution of the mean skin friction coefficient over the
axial chord on the suction side of the T106 turbine blade at Re= 1.48× 105.

Reynolds number had only a marginal effect and no transition or mean flow separation
was observed, also not under turbulent inflow conditions with Tu = 0.2 %. Thus,
similar to Zhang et al. (2015), we decreased the Reynolds number to Re = 6 × 104,
thereby stipulating mean flow separation on the airfoil, and studied three cases with
varying free-stream turbulence intensities, Tu = {0 %, 5 %, 10 %}. The corresponding

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.356


Transitional flows with the entropic lattice Boltzmann method 405

(a) (b) (c)
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u

FIGURE 16. (Colour online) Snapshot of isosurfaces of the Q-criterion (Q = 110)
coloured by normalized streamwise velocity at Re= 6× 104: (a) Tu= 0 %; (b) Tu= 5 %.
(c) Tu= 10 %.

instantaneous snapshots showing isosurfaces of the Q-criterion, zoomed in from
the top view onto the trailing edge of the blade, are shown in figure 16. It is
apparent that for uniform inflow as in figure 16(a), the flow separates as shown by
the two-dimensional vortex structures in the aft of the blade. However, turbulent
structures are only developing in the wake of the blade and no natural transition
occurs on the blade surface. The cases with a free-stream turbulence of Tu = 5 %
and Tu= 10 % are shown in figure 16(b,c), respectively. It can be seen that transition
is triggered for both cases, and is initiated by the formation of Λ-type vortices,
similar to the high-Reynolds-number case. Further downstream these vortices develop
into hairpin-type vortices, which eventually break down into fine-scale turbulence
past the blade. This is in contrast to the high-Reynolds-number case, for which the
boundary layer remains attached without transition to turbulence. On the other hand,
in the present low-Reynolds-number cases with free-stream turbulence, separated-flow
transition is observed.

The effect of free-stream turbulence on the geometrical properties of the LSB is
investigated next. In figure 17 we present the skin friction coefficient for all turbulence
intensities. As in Zhang et al. (2015), we observe that the separation location is
affected by the level of free-stream turbulence and moves downstream with increasing
Tu. In addition, the reattachment location moves upstream with increasing Tu, thereby
reducing the extent of the entire LSB and improving aerodynamic performance. It is
worth pointing out that figure 17 also shows that the effect of LSB size reduction is
nonlinear with respect to Tu. This effect mainly stems from the nonlinear upstream
shift of the reattachment location rather than the separation location, which appears
to behave more linearly. Similar behaviour is shown by the mean pressure coefficient
over the suction side of the airfoil in figure 18, where the pressure plateau is most
pronounced for the uniform inflow case, suggesting the largest LSB. All geometrical
quantities of the LSB are tabulated in table 2, where we define the onset to transition
xt as above using a threshold of u′w′/u2

∞
≈ 0.001. Investigating the flow field in more

detail, we report the mean and root-mean-square (r.m.s.) streamwise velocity profiles
(tangential to the blade surface on the suction side) for x/Cax= 0.88–0.99 in steps of
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FIGURE 17. (Colour online) Average skin friction coefficient over the suction side of
the T106 blade for varying free-stream turbulence intensities at Re= 6× 104.
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FIGURE 18. (Colour online) Average pressure coefficient over the suction side of the
T106 blade for varying free-stream turbulence intensities at Re= 6× 104.

0.1Cax as a function of the normal distance n/Cax in figure 19. The average velocity
profiles in figure 19(a) confirm the visual impression from the instantaneous snapshots
of a pronounced separation for the case without free-stream turbulence. For the cases
including free-stream turbulence, separation is less distinct and a smaller shear layer
thickness with a clear reattachment zone can be observed. Also for the mean velocity,
the trend of earlier reattachment with increasing Tu is obvious. The fluctuations of
the streamwise velocity component are presented in figure 19(b). In the case of
uniform inflow, mild fluctuations within the separated region indicate the unsteady
two-dimensional vortex rolls, whereas relatively sharp peaks of r.m.s. values are
measured within the reattachment zone, which are confined to the near-wall region
up to a normal distance of n/Cax ≈ 0.005. In contrast, in the case of free-stream
turbulence, no vortex rolls are observed in the separation zone and the reattachment
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FIGURE 19. (Colour online) Streamwise velocity profiles (tangent to the suction side of
the blade surface) as a function of the normal distance for x/Cax = 0.88–0.99 in steps of
0.1Cax at Re= 6× 104. (a) Mean streamwise velocity. (b) The r.m.s. streamwise velocity.
For the legend see figure 18.

Tu (%) xs/c xt/c xr/c

0 0.890 NA 0.992
5 0.903 0.973 0.976
10 0.914 0.967 0.968

TABLE 2. Comparison of LSB properties for the flow over the T106 blade for different
free-stream turbulence intensities at Re= 6× 104.

region exhibits a much broader plateau due to transition, as compared to the uniform
case. This is in line with what is observed in the literature (see e.g. Raverdy et al.
2003).
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4. Concluding remarks

Due to the lack of a comprehensive understanding of the mechanisms at play during
the formation of a LSB, increasing the performance of engineering devices requires
simple and efficient predictive tools. In this work, we presented a detailed investigation
of entropic multi-relaxation time models and their application to transitional flows.
The simulations show that the KBC model, together with Grad’s boundary conditions,
is capable of accurately capturing all features of LSB including separation, transition
and unsteady reattachment. Although the implicit subgrid features of the KBC allow
for a relatively coarse mesh resolution (Dorschner et al. 2016a), accurate results were
only achieved by resolving the reverse flow region on the airfoil surface. To meet
these resolution requirements, an appropriate grid refinement technique is crucial.

Thus, we have shown that the KBC model in combination with appropriate
boundary conditions and grid refinement strategies is a robust, parameter-free and
accurate alternative method for studying complex flows of engineering interest, where
a simple grid refinement study is sufficient to ensure the validity of the simulation.
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