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Item response theory (IRT) measurement models are now commonly used in educational, psychological, and health-outcomes
measurement, but their impact in the evaluation of measures of psychiatric constructs remains limited. Herein we present two,
somewhat contradictory, theses. Thefirst is that,whenskillfullyapplied, IRThasmuch toofferpsychiatricmeasurement in terms
of scale development, psychometric analysis, and scoring. The second argument, however, is that psychiatricmeasurement pre-
sents some unique challenges to the application of IRT – challenges that may not be easily addressed by application of conven-
tional IRTmodels andmethods. These challenges include, but are not limited to, themodelingof conceptuallynarrowconstructs
and their associated limited item pools, and unipolar constructs where the expected latent trait distribution is highly skewed.
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Introduction

Item response theory (IRT) measurement models and
associated methods hold much promise for the devel-
opment, psychometric analysis, refinement, and scor-
ing of psychiatric measures (Reise & Waller, 2009).
Many of the advantages of IRT modeling have been
realized by large-scale federally funded projects such
as the Patient Reported Outcomes and Measurement
Information Systems (PROMIS; Cella et al. 2010; see
http://www.nihpromis.org/science/PublicationsYears)
and NIH Toolbox (Gershon et al. 2013; see http://www.
nihtoolbox.org/Publications/Pages/Articles1.aspx).

In psychiatric measurement, arguably, many of the
attractive features of IRT have been severely under-
utilized (Thomas, 2011; Yang & Kao, 2014). This state
of affairs is unfortunate because as the ability to measure
neurobiological variables increases, our ability to mean-
ingfully link genetic variation and brain functioning
with behavioral phenotypes (e.g. impulsivity, obsessive
compulsive, attention deficit) critically depends on hav-
ing strong, well justified latent variable measurement
models for the phenotypes. In this regard, IRT measure-
ment models might be critical to advancing the field (e.g.
see Mungas et al. 2000; Tavares et al. 2004; Xu et al. 2015).

In this research, we review IRT measurement
models, their assumptions, and applications to solving
applied measurement problems. Analysis of data

collected on 1101 healthy adults who responded
to the dichotomously scored 19-item Eysenck
Impulsivity Inventory (EY19; Eysenck & Eysenck,
1978) will be used to illustrate key concepts (see
Table 1 for item content). The EY19 was selected as it
is a widely used impulsivity instrument and represents
a commonly implemented response structure (dichot-
omous). The main objective of this first section is to
demonstrate that IRT modeling has much to offer psy-
chiatric researchers. Our treatment of the technical
details of IRT (e.g. parameter estimation, scale-linking
methods) and associated statistical methods is neces-
sarily sparse.

We also argue that, although IRT methods hold
much promise, many researchers fail to recognize the
limits of IRT when applied to non-educational/achieve-
ment constructs in general and psychiatric constructs
in particular. These unique challenges include, but
are not limited to, the modeling of conceptually nar-
row constructs and their associated limited item
pools, and unipolar constructs where the expected la-
tent trait distribution is highly skewed. Some of these
issues have been raised and discussed previously in
the domain of patient-reported health outcomes meas-
urement (e.g. Reise & Revicki, 2015).

What are IRT models?

The foundation of (unidimensional) IRT models1† is
the assumption that a ‘causal’ common latent variable

* Address for correspondence: S. P. Reise, Ph.D., Department of
Psychology, UCLA, Franz Hall, Los Angeles, CA 90095, USA.

(Email: reise@psych.ucla.edu) † The notes appear after the main text.

Psychological Medicine (2016), 46, 2025–2039. © Cambridge University Press 2016
doi:10.1017/S0033291716000520

REVIEW ARTICLE

https://doi.org/10.1017/S0033291716000520 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291716000520


underlies the responses to a set of scale items; thus,
item responses are diagnostic of an individual’s pos-
ition on an underlying continuous latent variable.
Having made that basic assumption, the next step in
fitting an IRT model is to estimate the functional
form linking levels on the latent variable to the prob-
ability of endorsing the item in the keyed direction
(or with polytomous response formats, linking the la-
tent variable with the probability of responding in
each category). This process requires specification of
a formal ‘measurement model’ of item responding.
One common model applied to dichotomously scored
personality items, such as the EY19, is the two-
parameter logistic model (2PL) shown in equation (1).

P(x = 1|θ) = exp(α(θ − β))
1+ exp(α(θ − β)) . (1)

In the above, individual differences on a continuous
latent variable are denoted by theta (θ). For purposes
of statistical identification, this latent variable is typic-
ally defined to have a mean of 0 and variance of 1 in
the calibration population. In turn, each item is charac-
terized by two properties: the slope of the item re-
sponse curve (IRC) at the inflection point (α), and the
location on the latent variable where the probability
of responding to an item is 0.50 (β). Slopes in this
model typically range between 0.7 and 2.0 with higher
values (i.e. steeper IRCs) indicating more discriminat-
ing items. Location parameters, on the same metric
as z scores, typically range between −2 and 2, with

positive values indicating that higher levels of the la-
tent variable are required to endorse the item content
and negative values indicating that the item is rela-
tively easy to endorse, even for individuals low on
the latent variable.

Equation (1) makes clear that the probability of
responding to an item in the keyed direction, the
IRC, is determined by both the individual’s level on
the latent variable (θ) and item properties of discrimin-
ation and location (α,β). Item parameter estimates,
along with traditional item statistics for the EY19, are
shown in Table 2. These parameters were estimated
using marginal maximum likelihood with the mirt li-
brary (Chalmers et al. 2015) available in the R program
(R Development Core Team, 2015). While mirt was
used for these analyses, other R libraries (i.e. irtoys:
Partchev, 2015; ltm: Rizopoulos, 2015) and commercial
software (i.e. EQSIRT: Wu & Bentler, 2011; FlexMIRT:
Cai, 2013; IRTPRO: Cai et al. 2011; Mplus: Muthén &
Muthén, 2012) are capable of performing the same ana-
lyses. For a review of commercial IRT software see Han
& Paek (2014).

First, observe in Table 2 that, generally speaking, IRT
parameters roughly correspond to their traditional
counterparts. That is, items with higher item-test corre-
lations correspond to higher slopes (or discriminations),
and items with lower endorsement rates have more
positive location parameters. Second, there is a lot of
variation in the slope parameters indicating that the
items differ importantly in their relation with the latent

Table 1. Eysenck Impulsivity subscale item content

Item no. Eysenck item no. Item content

Item 1 7 Do you often buy things on impulse?
Item 2 9 Do you generally do and say things without stopping to think?
Item 3 11 Do you often get into a jam because you do things without thinking?
Item 4 16 Are you an impulsive person?
Item 5 19 Do you usually think carefully before doing anything?*
Item 6 22 Do you often do things on the spur of the moment
Item 7 25 Do you mostly speak without thinking things out?
Item 8 26 Do you often get involved in things you later wish you could get out of?
Item 9 27 Do you get so ‘carried away’ by new and exciting ideas that you never think of possible snags?
Item 10 31 Do you need to use a lot of self-control to keep out of trouble?
Item 11 33 Would you agree that almost everything enjoyable is illegal or immoral?
Item 12 35 Are you often surprised at people’s reactions to what you do or say?
Item 13 38 Do you think an evening out is more successful if it is unplanned or arranged at the last moment?
Item 14 42 Do you usually work quickly, without bothering to check?
Item 15 43 Do you often change your interests?
Item 16 44 Before making up your mind, do you consider all the advantages and disadvantages?*
Item 17 48 Do you prefer to ‘sleep on it’ before making decisions?*
Item 18 49 When people shout at you, do you shout back?
Item 19 52 Do you usually make up your mind quickly?

Reverse-coded items denoted by (*).
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variable. Third, although not a great deal, there is some
variation in the item location parameters with most
items having endorsement rates <0.50 and positive IRT
location parameters. As will be clear shortly, this im-
portantly affectswhere on the latent variable continuum
the EY19 provides measurement precision, that is, the
greatest information.

For didactic purposes, Fig. 1 displays the IRCs for the
most (item 3) and least (item 17) discriminating items,
and for the item with the lowest (item 19) and highest
(item 11) location parameters. Note that, although
item 11 has the highest location parameter, it also has
the lowest item-test correlation. Based on item content,
‘Would you agree that almost everything enjoyable is
illegal or immoral?’, it is reasonable that factors other
than impulsivity are influencing item endorsement.
Items 3, 4, and 7 appear to be the most differentiating
items. The content for these items involves not thinking
before speaking, getting into a ‘jam’ because of not
thinking before speaking, and a directly stated question,
‘are you an impulsive person?’ The least discriminating
items tend to occur toward the end of the scale2, for ex-
ample, items 17, 18, and 13. These items may be con-
taminated by other personality characteristics such as
self-esteem (standing up for oneself if someone shouts)
and spontaneity (an unplanned evening out).

Having estimated the item parameters, the next step
is to consider how well these items measure individual
differences on the underlying latent variable. In IRT,
there is no notion of ‘scale score reliability’ or reporting
of coefficient alpha internal consistency values, rather,
what is critical is the contribution of each item in esti-
mating an individual’s position on the latent variable.
This can be determined by translating the IRC for each
item into an item information curve (IIC). In the case of
the 2PL model this is shown in equation (2).

info|θ = α2P|θ(1− P|θ). (2)
The IIC indicates how much psychometric informa-

tion (i.e. reduction in uncertainty) an item provides at
each level of the latent variable. Items with larger
slopes provide more information or discrimination.
The location of the IIC along the latent variable con-
tinuum is determined by the item location – items pro-
vide the most information at the location parameter.
For illustrative purposes, the IIC for each item from
Fig. 1 is shown in Fig. 2. Because of the assumption
of unidimensionality (and local independence to be
described below), IICs are additive. Thus, a test infor-
mation curve (TIC) can be derived by simply summing
the IICs. This is shown in Fig. 3. The amount of test in-
formation conditional on the latent variable is

Table 2. Classical test statistic, factor loadings, and 2PL model item parameters

Item no. Item-test correlation (r) λ Proportion endorsed Slope Location

Item 1 0.50 0.61 0.23 1.41 1.18
Item 2 0.53 0.77 0.14 1.99 1.45
Item 3 0.57 0.85 0.11 2.72 1.44
Item 4 0.64 0.75 0.30 2.33 0.65
Item 5 0.47 0.57 0.23 1.14 1.33
Item 6 0.59 0.67 0.47 1.78 0.12
Item 7 0.51 0.76 0.12 2.02 1.59
Item 8 0.45 0.54 0.26 1.01 1.24
Item 9 0.50 0.59 0.23 1.26 1.23
Item 10 0.46 0.61 0.15 1.34 1.69
Item 11 0.23 0.36 0.05 0.83 4.04
Item 12 0.39 0.44 0.27 0.77 1.43
Item 13 0.37 0.33 0.43 0.64 0.45
Item 14 0.52 0.60 0.24 1.31 1.18
Item 15 0.45 0.51 0.25 1.03 1.31
Item 16 0.38 0.44 0.17 0.90 2.01
Item 17 0.31 0.25 0.41 0.43 0.84
Item 18 0.37 0.35 0.39 0.62 0.81
Item 19 0.39 0.35 0.51 0.69 −0.07
Range 0.23 to 0.64 0.25 to 0.85 0.05 to 0.51 0.43 to 2.72 −0.07 to 4.04
Standardized (raw) α 0.79 (0.78)
Average inter-item correlation 0.16
Mean (S.D.) 0.26 (0.19)

r, Raw item-test correlations; λ, factor loadings.
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important because it is inversely related to the stand-
ard error of the maximum-likelihood estimate of the la-
tent variable as shown in equation (3).

SEM|θ = 1
�����������

TINFO|θ√ . (3)

This formula demonstrates that the more information
at a specific point along the latent variable, the higher
the measurement precision (i.e. lower standard error).
Thus, a conditional information value of 4 is required
to produce a standard error of 0.50, 9 is required for a
standard error of 0.33, and 16 is required for a standard
error of 0.25. For illustrative purposes, the standard
error of measurement curve for the EY19 is also shown
in Fig. 3. Clearly, this is a peaked information function

suggesting that the items are especially good at differen-
tiating among individualswho are aroundone standard
deviation above the mean on the latent variable.
Observe that the measurement precision is much
lower below the mean of the latent variable (zero), pre-
cisely because there are no items with location para-
meters in that range. We believe that such findings not
only inform about the EY19, but also potentially tell
researchers something important about the construct,
as we argue below.

Assumptions of IRT models and assessing fit

An important strength of IRT models, in part, is that
they force a researcher to consider the assumptions

Fig. 1. Item response curves for items with the highest and lowest slopes (top two plots) and items with the highest and
lowest location (bottom two plots).
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underlying their application and to evaluate the degree
to which the estimated model (i.e. the estimated item
parameters) accounts for, reproduces, or ‘fits’ the data.
In other words, IRT modeling forces researchers to
study in detail how well the items serve as indicators
of a latent variable and the overall quality of measure-
ment across the latent variable continuum. This process
of assumption checking and model-fit evaluation often
reveals troubling concernswith an instrument, concerns
that are easily overlooked in traditional scale analyses.

IRT models make three fundamental assumptions
(Embretson & Reise, 2000). Evaluating these assump-
tions and judging the consequences of their violation,
relies on application of complex statistics. We do not
have the space here to elaborate on the plethora of

available methods and their technical details but in-
stead we hope to convey the major ideas.

First, because IRT models (i.e. the IRC) force a mono-
tonically increasing relation between the latent variable
and the probability of endorsing the item [see equation
(1) and Fig. 1], the item response datamust bemonoton-
ically increasing; as trait levels increase, so should the
item endorsement rates. This assumption can be
checked through the examination of rest-score functions
(Meijer et al. 2015). Rest-score functions are simply plots
of the raw total score (minus the item score) and the item
proportion endorsedwithin a given rest-score grouping.

In Fig. 4 we display the rest-score functions (and
confidence bands) for all 19 items. These were com-
puted using the mokken library in R (Van der Ark,

Fig. 2. Item information curves for items with highest and lowest discrimination and location.
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2014). These plots reveal that the rest-score functions
for items 4 and 6 are ‘ideal’ in terms of applying a
2PL model – as rest-scores increase, the proportions
endorsed start near zero, then increase in a systematic
way across the entire rest-score range, and end up near
1.0. In contrast, the rest-score functions for item 11,
appears troubling because response rates do not in-
crease much as trait levels increase. Recall that this is
the item with only 5% endorsement and a location
above 4.0. In short, this item may be too extreme to
be of any value in the measurement of impulsivity.

Also troubling, in terms of applying the 2PL model,
is that some items appear to require non-zero lower
asymptote parameters, for example, items 13, 17, 18,
and 19. These are all items with relatively low slopes
and relatively high endorsement rates. On the other
hand, many items, such as 1, 5, and 7, appear to
require a non-one upper asymptote to model appropri-
ately. For those items, regardless of how high an indi-
vidual scores on the EY19, the probability of endorsing
a statement appears to have an upper bound <1.0.
These examples represent the problem of model
‘under-parameterization’ – the 2PL model does not
properly capture the response process.

More complex models such as a 3PL (a model with a
non-zero positive lower asymptote), a 3PLU (a model
with a non-one upper asymptote), or 4PL (a model

where both a lower and upper asymptote parameter
are estimated) may be required (see Reise & Waller,
2003, for discussion within the context of psychopath-
ology measurement). The 4PL model is shown in
equation (4).

P(x = 1|θ) = c+ (d− c) exp(α(θ − β))
1+ exp(α(θ − β)) , (4)

where c is a lower asymptote parameter and d is an
upper asymptote parameter setting limits on the
lower and upper tails of the IRC, respectively. The
3PLU model fixes all the c parameters to zero and esti-
mates d. The 3PL fixes all the d parameters to 1.0 and
estimates c. If c is fixed to 0 and d is fixed to 1.0, this
model reduces to the 2PL in equation (1).

For illustration purposes, we estimated 3PLU and
3PL models on the present data and the results are
shown in Table 3. Clearly, for several items, estimating
additional parameters changes the slope and location3

of the IRCs, and thus the IRC and IIC, and ultimately
the test information and standard error. However, note
that χ2 tests based on comparison of log-likelihoods
indicated that the 2PL is not a significant decrement
in fit compared to the 3PL (χ2 = 12.61, df = 19, p = 0.86)
or 3PLU (χ2 = 11.54, df = 19, p = 0.90) and thus, the
2PL should be preferred due to parsimony. Moreover,
the mirt program yielded a warning that parameter

Fig. 3. Test information curve and standard error for Eysenck Impulsiveness subscale.
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estimates in the 3PL and 3PLU models may be un-
stable, and suggested imposing priors. In other
words, for accurate parameter estimation these models
may require larger sample sizes than are presently
available.

The second and third assumptions are highly inter-
related, but can be considered as distinct concepts
and empirically evaluated separately. Specifically,
item response models assume unidimensionality and

local independence. Unidimensionality means that
the correlations among the items can be explained by
a single common factor that represents the target con-
struct a researcher designed the instrument to assess
(impulsivity in the present case). The problem is that
no psychological data that contains meaningful content
heterogeneity will strictly meet this assumption. Thus,
researchers typically examine item response data for
evidence of ‘essential’ unidimensionality – the data

Fig. 4. Rest-score functions for all 19 items. Items in order (1–19) from left to right.
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are close enough to unidimensionality such that the
item parameters are relatively unbiased reflections of
the relation between the target latent variable and the
item responses, and examinee’s theta estimates reflect
individual differences on the intended latent variable
(i.e. are not overly biased by multidimensionality).

One ofmanyways to assess essential unidimensionality
is the evaluation of the relative size of eigenvalues. In the
present data, for example, thefirstfive eigenvalues are 6.2,
1.2, 0.6, 0.4, and 0.3 suggesting that the first factor is much
stronger than the additional common factors by a factor of
roughly 6:1. Moreover, when the data were factor ana-
lyzed, no interpretable 2-, 3-, or 4-factor models could be
identified. Alternatively, IRT estimation programs such
as mirt also report more familiar model fit indices for
the unidimensional model that are similar to those rou-
tinely used in structural equation modeling (SEM; see
Maydeu-Olivares et al. 2011). In the current data, we
found: RMSEA= 0.056 (0.052–0.061), CFI = 0.917, and
SRMSR = 0.055. Judging by conventional standards,
collectively, these vales indicate a good fit of a one-
dimensionmodel.Note, however, that the generalizability
of SEM fit benchmarks to an IRT context is questionable.

Finally, local independence (LI) is the assumption
that, after controlling for the latent variable, the corre-
lations among items are zero. This indeed is also the
technical definition of unidimensionality (i.e. when

responses are locally independent after controlling for
a single factor). As noted above, however, it is still pos-
sible for an instrument to be essentially unidimension-
al but the single latent factor does not reproduce the
item responses exactly. This occurs commonly in per-
sonality and psychopathology scales due to redundant
item content. When item content is too redundant, the
correlation among those items may be inflated (due to
sharing variance from a general and item specific fac-
tors). In turn, this may ‘pull’ the latent variable toward
the item pair with the inflated correlation resulting in
overestimated slope parameters (see also Steinberg &
Thissen, 1996).

In the present data, we searched for local independ-
ence violations by computing the Chen & Thissen
(1997) index, again using mirt. This index compares
the observed response proportions in each 2 × 2 contin-
gency table between item pairs, with those predicted
based on the estimated model parameters. The values
can be interpreted like z scores where higher positive
values indicate large positive residuals and large nega-
tive values indicate a large negative residual. We will
only be concerned here with the large positive values,
say, when the index is >10.

By this criterion, the most problematic item pair is
items 16 and 5. A glance at Table 1 reveals these to
be essentially the same question asked in slightly

Table 3. Item parameter estimates for the 3PLU, 3PL, and log-logistic models

Item no.

3PLU 3PL Log-logistic

α β d α β c η λ

1 1.60 0.89 0.83 1.43 1.18 0.00 1.41 0.19
2 1.95 1.46 1.00 3.75 1.40 0.04 1.99 0.06
3 2.73 1.44 1.00 2.78 1.43 0.00 2.72 0.02
4 2.94 0.48 0.89 2.32 0.66 0.00 2.33 0.22
5 1.22 1.09 0.88 1.44 1.36 0.05 1.14 0.22
6 1.91 0.07 0.97 1.81 0.13 0.00 1.78 0.81
7 1.99 1.59 0.99 2.28 1.55 0.01 2.02 0.04
8 1,00 1.25 1.00 1.41 1.34 0.08 1.01 0.29
9 1.24 1.23 1.00 1.32 1.24 0.01 1.26 0.21
10 1.34 1.69 1.00 1.55 1.66 0.02 1.34 0.10
11 1.05 1.99 0.31 0.85 3.96 0.00 0.83 0.03
12 0.77 1.41 0.99 0.86 1.48 0.03 0.77 0.33
13 1.23 −0.58 0.68 0.65 0.45 0.00 0.64 0.75
14 1.3 1.17 1.00 1.32 1.18 0.00 1.31 0.21
15 1.02 1.31 1.00 1.13 1.33 0.02 1.03 0.26
16 1.07 1.22 0.68 0.93 1.96 0.00 0.90 0.16
17 0.45 0.62 0.95 0.60 1.46 0.15 0.43 0.70
18 0.63 0.71 0.97 0.63 0.82 0.00 0.62 0.61
19 0.99 −0.59 0.82 0.72 −0.06 0.00 0.69 1.05

3PLU is a three-parameter logistic model with upper asymptote; 3PL is a three-parameter logistic with lower asymptote; α,
item discrimination; β, item location; c, lower asymptote; d, upper asymptote; η = α; λ = exp(−αβ).
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different ways (basically, ‘do you think carefully’ before
acting). Other potential problem pairs are items 1 &
4, 2 & 7, 6 & 4, 12 & 8, 17 & 16, and 17 & 19.
Although not obviously overly content redundant,
there may be contingencies between these item pairs
that are not accounted for by the unidimensional IRT
model. These LI violations are important because if
an item from one of these pairs were to be removed
from the scale, the item parameters for the other
items may change. If there were no LI violations, not
only would the data be unidimensional in a strict stat-
istical sense, the item parameter estimates would be in-
variant, that is, their values would not depend on what
other items are included in the scale.

The above analyses are typically conducted either
prior to estimating an IRT model (e.g. monotonicity as-
sessment) or immediately after fitting a hypothesized
model (LI evaluation). After a model has been fitted,
however, a researcher must also conduct some empir-
ical investigations of item fit. The evaluation of item fit
remains a contentious issue in the literature and there
is no current consensus on how best to proceed.
Nevertheless, for illustrative purposes here we review
a standard χ2 and graphical approaches for judging
item fit.

To judge statistical fit, we reviewed chi-square
item-fit values output from mirt based on a formula
presented in Orlando & Thissen (2000, 2003). The com-
putation of these indices is complex because it involves
an iterative or recursive formula. Simply stated, these
indices are based on comparison of the number of
individuals endorsing each item conditional on the
overall composite raw score, compared with the
proportion predicted based on the estimated IRT
model parameters. These χ2 indices are notoriously
powerful, but in the present data, only items 1 and 2
produced the warning flags of statistical significance
below p < 0.05.

To follow-up on these results, Fig. 5 presents ‘fit
plots’. Specifically, for each individual, their location
on the latent trait is estimated. Individuals are then
grouped into, say 10, intervals along the theta con-
tinuum. For each interval, the observed response pro-
portion is computed and compared to the estimated
IRC. In the left panel is the fit plot for item 4 which
had the best fit as judged by χ2. Clearly, the IRC
does an excellent job of representing observed re-
sponse proportions – all the confidence bands contain
the IRC. Interestingly, the right panel displays the fit
plot for the worst fitting item (item 1). Here, the prob-
lem seems to lie in the tendency for the estimated IRC
to overestimate the observed response proportions
around the mean theta, and then underestimate them
for trait levels above the mean. Again though, despite
statistical significance, the empirical fit is certainly ‘in

the ballpark’ and we would not be overly concerned
that the estimated item parameters for item 1 are great-
ly in error.

The applications of IRT

The above establishes that, for the most part, the EY19
is amenable to a 2PL model. The three concerns are: (a)
some items do not contribute meaningfully to the
measurement of the latent variable, (b) several item
pairs may display LI violations, possibly inflating the
correlation among those item pairs and thus distorting
model parameter estimates (and thus test information
and standard error), and (c) many of the items appear
to require a more complicated IRT model, such as a
3PLU model where the upper asymptote of the IRC
is estimated, rather than assumed to be 1.0 as in the
2PL model. What exactly to do about these concerns
would require extended discussion and possibly
some simulations to judge the impact of any model
misspecification.

There have been many texts and articles written
comparing IRT psychometrics with traditional
approaches. These articles typically emphasize four
virtues of IRT modeling: (a) scale analysis and con-
struction, (b) linking the scales from multiple measures
of the same construct, (c) assessing differential item
functioning (measurement invariance), and (d) admin-
istering tests via computerized adaptive testing (CAT).
Each of these topics has its own large literature and we
can only try to convey the major ideas here.

Psychometric analysis

Several of the advantages of IRT modeling, in terms of
scale construction and psychometric analyses, are ob-
vious from the above application. Specifically, because
IRT simultaneously considers both person properties
and item properties, it provides a framework for clear-
ly understanding how each item contributed to meas-
urement of a latent variable. For example, we can
compute a test information curve for any subset of
EY19 items and know exactly what the standard errors
of measurement would be for examinees at different
trait levels. In turn, that information function makes
clear where along the latent variable continuum meas-
urement precision is high or relatively low, perhaps
unacceptably low. This, of course, is critical informa-
tion in terms of scale revision.

Linking scales

Another chief advantage of IRT modeling is that, as-
suming two measures are assessing the same latent
variable, it is relatively easy to use IRT ‘linking’ meth-
ods to place the item parameter estimates (and scale
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scores) from one measure on the scale of another meas-
ure. This is invaluable and is arguably one of the chief
accomplishments of projects such as PROMIS cited
earlier. As is well known, in certain health outcome
domains, there are dozens of competing measures of
similar constructs. This chaotic situation only serves
to hamper attempts to progress research in a given
substantive domain.

One goal of the PROMIS project was to use IRT link-
ing methods to create a common metric (e.g. depres-
sion, anxiety), so that individuals could be compared
not only if they were administered PROMIS depression
or anxiety items, but also many popular competing de-
pression or anxiety scales (Choi et al. 2014; Schalet et al.
2014). Put in the present context, the need for such an
IRT project in the domain of ‘impulsivity’ (also known

as ‘cognitive control’, ‘response inhibition’) measure-
ment is clear and compelling, especially for researchers
who hope to link biological parameters to self-reported
impulsiveness phenotypes (e.g. Horn et al. 2003); how-
ever, like us, they are bewildered by the numerous con-
ceptualizations and measures presently available.

Differential item functioning

A further advantage of IRT modeling is that it provides
an elegant framework for the evaluation of
between-group differences in item or test functioning
(i.e. whether an item or test is measuring the same con-
struct in the same way for two or more groups).
Simply stated, an item is invariant when IRCs esti-
mated separately in demographic groups are equal.

Fig. 5. Item fit plots for the best (item 4) and worst (item 1) items.
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A test is considered invariant if the test response
curves (TRC) are equivalent when estimated separately
by group (with the caveat that the item parameters
from the two groups have first been ‘linked’ to the
same scale). A TRC is simply the sum of the IRCs
and reflects the relationship between the latent variable
and the expected total test score. In the EY19 for ex-
ample, Fig. 6 shows the TRC when the item parameters
are estimated separately for English and Spanish
speakers. It is clear that there are no meaningful differ-
ences here suggesting that the EY19 is measuring the
same construct with equal fidelity in both groups
and there is no need to allow for different item para-
meters for the different populations.

Scoring and CAT

A final advantage of IRT is that, assuming the data fits
the model, any item response, or subset of item
responses can be used to estimate an individual’s pos-
ition on the latent variable. This feature of IRT has
resulted in a revolution in testing such that nowadays
many major tests such as the Graduate Record
Examination are administered as CATs (computer
adaptive tests). A CAT is essentially a short-form
tailored to the trait level of the individual examinee.

The basic idea of a CAT (or ‘tailored’ testing) is that a
test begins by assuming, that in general, an individual
is at the mean, that is, θ = 0. An item of middle diffi-
culty is administered (β = 0), a response collected, and
then an individual’s updated position on theta is

estimated (typically using a Bayesian prior). A new
item is then administered that maximizes the informa-
tion at the individual’s current trait level estimate, a re-
sponse collected, and the latent trait score re-calibrated.
This process is repeated until either a fixed number of
items are answered or an individual’s standard error is
below a certain value.

In education, much research has demonstrated that
CAT reduces the number of items administered by at
least 50% with almost no loss in measurement preci-
sion. The reason being is that CAT is designed
to only administer items that are relevant to an indivi-
dual’s trait level (i.e. hard items to high ability indivi-
duals and easy items to low ability individuals).
In the EY19, we used the Firestar CAT (Choi, 2009)
simulation program to estimate what would happen
in our data if, hypothetically, the examinees were eval-
uated with CATs of 5, 10, and 15 items (of 19 possible
items).

We found that trait level estimates based on CAT
were correlated with theta estimates based on all 19
items (r = 0.90, 0.97, and 0.99, respectively). In other
words, we can do a good job of recovering the relative
ordering of individual differences with as few as 5
items, but with 10 (half the scale length) we recover
full-scale theta almost perfectly. Interestingly, an exam-
ination of the items administered frequencies in the
5-item fixed length CAT showed that only items, 1, 4,
6, 14, and 19, were used with high frequency. This sug-
gests that perhaps a short form should be created using
just these five items.

Fig. 6. Test response curves for English and Spanish speakers.
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What are the challenges to applying IRT models?
IRT models are attractive for many reasons as
described above. In previous writings, however, we
have urged caution in applying latent variable model-
ing techniques in general, and IRT modeling in par-
ticular in personality, psychopathology, and health
outcomes domains (Reise & Waller, 2009). It should
be noted that IRT methods were developed almost en-
tirely within the context of large-scale educational/
achievement assessment to meet the pressing needs
of this industry. At a minimum, unlike typical per-
formance measures, educational measurement specia-
lists seldom are concerned with response styles,
self-deception, acquiescence, and so on. For this and
many other reasons, the transition of IRT models and
methods to other construct domains is not always
that simple. Below we review a few of these conceptual
and empirical challenges.

Approximately twenty-five years ago Bollen &
Lennox (1991) demonstrated that the type of psycho-
metric interpretation implicit in IRT-type models (i.e.
latent variable measurement) critically depends on
the latent variable being a ‘source’ of item responses.
When constructs are products of the indictors (items),
such as ‘social economic standing’ or ‘quality of family
functioning’, the latent variable changes depending on
which particular items are included on a measure. For
instance, Fayers & Hand (2002) note that quality of life
scales often include items that function as causal indi-
cators, that is, the concept being measured is defined
by the items. With this latter type of construct, where
items are ‘causal’, the entire logic and mathematics of
IRT falls apart. Unfortunately, sometimes the IRT ham-
mer appears to be applied to every possible nail with-
out any consideration of the nature of the latent
variable.

More recently, Reise & Revicki (2015), for example,
have argued that educational constructs and health
outcomes differ, typically, in a variety of ways includ-
ing: (a) the interpretation of individual differences on
the construct (i.e. unipolar v. bipolar), (b) the expected
distribution on the latent variable (e.g. normal v. posi-
tively skewed), and (c) the conceptual bandwidth of
constructs or, stated differently, the diversity of trait
manifestations. In what follows, we briefly review
these concerns and their implications for the applica-
tion of IRT to the measurement of psychiatric
constructs.

Consider the case of developing a measure of a
broad bandwidth construct such as verbal ability in
adults. In particular, consider three reasonable expecta-
tions: (a) there is a nearly infinite number of reading
comprehensive paragraphs, vocabulary, analogies,
grammar items, and so on from which to build a

pool of items, (b) a normal distribution is likely ad-
equate to describe individual differences, in the popu-
lation, and (c) both ends of this distribution are
meaningful, and psychologically interpretable, that is,
the construct is bipolar. This is an ideal situation to
apply IRT models because we can expect to find
items that vary in location parameter across the entire
trait range and thus have good measurement precision
across that trait range, which in turn makes CAT a
feasible option.

Moreover, although IRT makes no formal normality
assumption, item parameters are typically estimated
assuming a normal prior for the latent variable.
Violating this assumption (i.e. a misspecification) can
only lead to biased parameter estimates. Estimation
methods that potentially remedy the parameter bias
that occurs when the latent variable is misspecified
(Woods, 2006) are only now emerging in commercial
software (Monroe & Cai, 2014). Alternatively, new
IRT modeling approaches that are specifically
designed to account for skewed latent trait distribu-
tions are currently being researched, for example, see
Molenaar (2014). It will be interesting to see how
these new psychometric developments ultimately
change the way IRT models are applied to psychiatric
data in future years.

Now consider the measurement of ‘impulsivity’ as
exemplified by the EY19 or measures of psychopath-
ology more generally. Although the trait arguably
manifests across a wide range of behavioral domains,
once one has asked a few questions about thoughtless
and reckless behavior (e.g. spending), lack of cognitive
mediation in decision making (e.g. deliberates carefully
before taking action, makes up mind quickly), and la-
bile attention and interests (frequently changes inter-
ests or hobbies), the pool of content quickly runs dry.
This is certainly not an ideal situation for the develop-
ment of an item pool for the administration of a CAT; if
even feasible, it appears to us that such a pool would
contain many overly content redundant items.

It also, to us, remains debatable whether impulsiv-
ity, as least as measured by the EY19, is truly a bipolar
construct with scores that are interpretable across the
entire latent variable continuum, from low (reflecting
‘self-control’ or ‘conscientiousness’) to high (reflecting
‘impulsiveness’). We believe that impulsivity may be
more of a quasi-trait (see Reise & Waller, 2009), or
what Lucke (2015) has termed a unipolar trait – defin-
able and meaningful only at one end of the continuum
(e.g. pathological gambling). In other words, we specu-
late that only variation among high scores reflect any-
thing substantively meaningful, while low scores
reflect the mere absence of impulsivity, not necessarily
high degrees of self-control.
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Observe that some evidence of the quasi-trait nature
of impulsivity is to be found in the present results.
First, in the EY19, and in other self-report measures
we have examined, one cannot find a good range of
item location parameters. We note that this concern
has been raised by Reise & Waller (2009) as being gen-
erally true in psychopathology measurement. Second,
and related to the first, is that scores on the EY19 are
not normally distributed, either raw or latent trait esti-
mates, and are, in fact, highly positively skewed. If one
takes the next step and entertains the idea of a unipolar
trait of impulsivity, then one analytic approach that
may be taken is to fit a zero-inflated mixture IRT
model (Wall et al. 2015).

In this type of model, a latent class is defined to be a
‘no trait’/‘no symptoms’ or ‘normal’ group and the per-
centage of such cases in the population is estimated.
Then, assuming normality, one or more latent classes
are identified to represent ‘traited’, ‘symptomatic’, or
‘clinical’ groups, and IRT item parameters are esti-
mated based only on this latter latent class. This
model may be ideal for the assessment of constructs
where a researcher believes that low and zero scores
are essentially meaningless, while variation in higher
scores is meaningful and valid. This model, however,
was developed for data where there are many more
zero scores than observed in the EY19 data, and thus
we will not illustrate an application.

Alternatively, in the presence of high skew, instead
of assuming normality, a more reasonable latent trait
distribution may be the log-normal (where zero is the
lowest latent trait score possible, low scores reflect an
absence of the trait and high scores reflect severity of
pathology relative to absence of the disorder).
Moreover, a more appropriate IRT model may be the

log-logistic instead of the logistic (see Lucke, 2014,
2015, for technical details). The log-logistic model is
shown in equation (5).

P(x = 1|θ) = λθη

1+ λθη
, (5)

where λ is a multiplicative parameter with higher
values shifting the IRC to the right, and η is an item
discrimination parameter.

This model can be estimated using Bayesian meth-
ods as described in Lucke’s research, but for simplicity,
observe that ‘naive’ parameters can be found as simple
transformations of the parameters from the 2PL model.
Specifically, η = α and λ = exp(− αβ); theta estimates in
the log-logistic can be found as exp(θ2PL) = θLL. The
item parameter values are shown in Table 3 and the
corresponding IRCs for the 19 items are shown in
Fig. 7. Compared to a logistic model [equation (1)], in
the log-logistic [equation (5)] individual differences at
the high end of the trait are expanded and individual
differences at the low end are contracted. This means
that for individuals scoring low on the measure,
theta estimates are rather homogeneous and near
zero. For individual’s scoring relatively high on the
measure, theta estimates are more spread out.

At this point, we are not prepared to argue one way
or another in regards to the correct latent variable
measurement model for impulsivity, or other psychi-
atric constructs. This modeling issue, however, is im-
portant to raise here not only to motivate researchers
to consider the continuous v. quasi-continuous nature
of constructs, but also to point out that typically IRT
modeling and associated applications may not work
well in particular construct domains. This may be espe-
cially true in psychiatric domains where the construct

Fig. 7. Item response curves for the EY19 items in the log-logistic model.
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is unipolar, the latent variable highly positive skewed,
and the range of possible trait indicators very narrow.
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Notes
1 There are also multidimensional IRT models (Reckase,
2009), but these are beyond the present scope.

2 For this sample, the items were administered in random
order as part of a much larger battery, thus there is no pos-
sibility of item order effects here.

3 Note that the location parameter in the 3PL, 3PLU, and
3PL models is no longer interpreted as the point on the la-
tent variable where the probability of endorsement is 0.50.
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