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Abstract. We study a particle moving at unit speed in a channel made by connected self-
similar billiard tables that grow in size by a factor r > 1 from left to right (this model was
recently introduced in the physics literature by Barra, Gilbert and Romo). Let q(T ) denote
the position of the particle at time T . Our main result is the existence of an asymptotic
distribution of q(T )/T as T → ∞ and {ln T /ln r} → ρ for some 0 ≤ ρ < 1.

1. Introduction
A billiard is a mechanical model in which a point particle moves in a container D and
bounces off its boundary ∂D. This is a Hamiltonian system preserving a smooth Liouville
measure. The corresponding return map constructed on ∂D (also called the collision map)
preserves a smooth measure, too.

If the billiard table D is unbounded and spatially isotropic, as is a periodic Lorentz gas,
then billiard dynamics represents a mechanical system in equilibrium. The billiard particle
in a planar periodic Lorentz gas with finite horizon exhibits a diffusive behavior without
drift [6, 13]. If the horizon is infinite, the diffusion becomes abnormal [5, 18], but the drift
is still absent.

In order to induce a non-equilibrium steady state with some transport of mass
(manifested by the particle’s drift), one can apply a constant external force on the
particle [11, 12, 16]. Then the drift may be observed and the invariant measure (steady
state) may become singular. However, one has to prevent an indefinite acceleration
(heat-up) of the particle by introducing a thermostat. For example, a Gaussian
thermostat [11, 12, 16] keeps the kinetic energy of the particle constant; the corresponding
equations of motion (between collisions) read

q̇ = v, v̇ = e − 〈e, v〉〈v, v〉
−1v, (1.1)
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where q is the position and v the velocity of the particle, e is the (constant) external field,
and 〈·, ·〉 denotes the scalar product of vectors in R2. It is easy to see that 〈v, v̇〉 = 0, and
thus ‖v‖

2
= constant.

Planar periodic Lorentz gases with finite horizon where the particle moves in a small
external field e according to (1.1) were studied in [11, 12]. It was shown that the system had
a unique (singular) invariant measure, µe, with smooth conditional densities on unstable
manifolds (i.e. SRB measure), the average speed of the particle was µe(v)= De + o(e),
where D was the diffusion matrix corresponding to the unperturbed system (with e = 0).

The Gaussian thermostatted dynamics (1.1) can be described by Hamiltonian
formalism, as was first noticed in [14]. A general theorem by Wojtkowski [19, 20] states
that the billiard table can be transformed by a conformal mapping to the so-called torsion
free connection (called the Weyl connection) so that the trajectories of (1.1) are mapped
onto geodesic lines (trajectories of the Weyl flow), and the specular character of reflections
at the boundary is preserved. The unit cell of the periodic Lorentz gas is then transformed
into a distorted (asymmetric) domain; see below.

Now consider a unit cell of a periodic Lorentz gas (with finite horizon) and impose
periodic boundary conditions in the y direction but not in the x direction. Then one gets
the so-called Lorentz channel [15], a one-dimensional (1D) chain of identical connected
cells. Suppose that the particle moves in the Lorentz channel according to (1.1) under a
small horizontal external field e = (e, 0), e > 0. Then Wojtkowski’s transformation maps
the Lorentz channel onto a chain of connected self-similar dispersing billiard tables that
grow in size by a factor r = exp(e) > 1 (see [3]), from left to right.

Such a channel of self-similar billiard tables was recently independently introduced
by Barra, Gilbert and Romo [1], who studied the resulting dynamics heuristically and
numerically. They made several interesting conjectures on the existence of a singular SRB
measure, on the asymptotic drift of the particle, and on the relation between Lyapunov
exponents and the entropy production rates. Some of their conjectures actually follow
from the results of [11, 12] if one makes use of Wojtkowski’s theorem [19, 20] (see the
latest papers [2, 3]).

Here we obtain rigorous results related to some other conjectures made in the physics
literature by Barra, Gilbert and Romo [1, 2], specifically those concerned with the
asymptotic drift of the particle in the Barra–Gilbert–Romo (BGR) channel.

2. Statement of the result
To define a BGR channel of self-similar billiard tables we first describe its fundamental
cell D0 (see Figure 1).

We fix an r > 1 (the scaling factor, see below). The cell D0 is made of a trapezoid
with unequal vertical sides of length d

√
3/r and d

√
3r , respectively, and equal top and

bottom sides; here d is the (horizontal) distance between the vertical sides. Our cell D0

is the trapezoid minus five disks: one of radius R centered on the intersection of the
diagonals, two disks of radius R

√
r centered on the right-hand side vertices, and two disks

of radius R/
√

r centered on the left-hand side vertices.
Thus our cell is a billiard table bounded by one full circle, four circular arcs, and four

short line segments connecting the endpoints of the arcs. We assume that R is large enough
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FIGURE 1. The cell D0 and the action of F̃ on �̃.

FIGURE 2. The Barra–Gilbert–Romo (BGR) channel.

to ensure the finite horizon condition (meaning that every billiard trajectory collides with
the circular part of the boundary), but not too large to prevent the disks from overlapping.
This imposes some restrictions on d and R; see details in [1, Appendix A].

The ratio of the vertical sides of our cell is r > 1. Now we attach toD0 a bigger cell,D1,
identical in shape to D0 but scaled by r ; we glue the right side of D0 with the (equal in
size) left side of D1. Similarly, we attach to D0 a smaller cell, D−1, scaled by r−1, gluing
the left side ofD0 with the right side ofD1. Repeating this procedure gives a chain of self-
similar cellsDi , i ∈ Z, and we callD =

⋃
i∈Z Di the Barra–Gilbert–Romo (BGR) channel

(Figure 2).
Observe that the size of Di is proportional to r i , so our cells grow exponentially from

left to right, and the negative ‘half’ of the chain
⋃

i≤0 Di is actually bounded. Also note
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that each pair of adjacent circular arcs in the neighboring cells Di and Di+1 have the same
center and radius, thus their union is a (bigger) circular arc. Furthermore, every circular
arc is perpendicular to the adjacent (top or bottom) side of the cell. This all implies that
our billiard table essentially has no corner points (they can be eliminated by a standard
unfolding scheme [13, §1.2]), and our dynamics is equivalent to a dispersing billiard with
smooth boundary.

We consider a particle moving in D at unit speed and bouncing off ∂D. Note that the
common vertical edge of every pair of neighboring cells Di and Di+1 is not a part of ∂D,
thus the particle is free to move from cell to cell all across the channel D. We suppose
that the initial position q(0) of the particle is uniformly distributed withinD0 and its initial
velocity v(0) is uniformly distributed on the unit circle. Let (q(t), v(t)) denote the state of
the particle at time t .

THEOREM 1. There is ε0 > 0 such that for 1< r < 1 + ε0 the following holds. Suppose
that Tn → ∞ so that the fractional part {ln Tn/ln r} → ρ ∈ [0, 1). Then the distribution
of q(Tn)/Tn converges to a limit (which may depend on ρ).

Our theorem states that the limit distribution of q(Tn)/Tn , as n → ∞, exists but it does
not specify how (and if ) it depends on ρ. In particular, it may be constant, i.e. q(T )/T
may simply converge to a limit as T → ∞.

However, our explicit formulas in §5 suggest that the limit of q(Tn)/Tn has a non-trivial
dependence on ρ. In addition, recent computer simulations [4] reveal that the ratio q(T )/T
does not converge to a limit but evolves periodically, in accordance with our theorem
(more precisely, q(T )/T changes periodically with respect to the variable ln T ; and its
period is ln r ).

3. Collision map
The self-similar structure of the BGR channel allows us to reduce the dynamics of the
particle in D to the motion of a (model) particle in the fundamental cell D0. Precisely, if
the real particle (q, v) moves in Di , our model particle (q̃, ṽ) moves in D0 so that

q̃ = q∞ + (q − q∞)/r i , ṽ = v/r i , (3.1)

where q∞ = (−d/(r − 1), 0) is the accumulation point of Di as i → −∞. We denote
by π the projection (3.1) of the phase space M=D × S1 of the real particle on the
phase space M̃=D0 × R2 of the model particle. Then we have 8̃t

◦ π = π ◦8t ,
where 8t

: M→M and 8̃t
: M̃→ M̃ denote the corresponding phase flows.

The motion of the model particle in D0 is governed by the following rules. Let 0L

and 0R denote the left and right (vertical) sides of D0, respectively. When the particle
hits 0R at a point (d, y) with velocity v, it instantly reappears on 0L at the point (0, y/r)
with velocity v/r . When it hits 0L at a point (0, y) with velocity v, it reappears on 0R at
the point (d, yr) with velocity vr . These are ‘periodic’ boundary conditions with rescaling
of the y coordinate and the velocity.

Let � denote the cross-section of the phase space M consisting of pair z = (q, v)
where q lies either on the boundary ∂D or on a common vertical side of some neighboring
cells Di and Di+1 and (for q ∈ ∂D) v is the ‘outgoing’ (post-collisional) velocity vector.
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We call � the (extended) collision space and denote by F : �→� the corresponding
return map, or the (extended) collision map.

Then �̃= π(�) is a cross-section (the collision space) for the flow 8̃; it consists of
points z = (q, v) where q ∈ ∂D0 and v points inside D0. We denote by F̃ : �̃→ �̃ the
corresponding return map; note that F̃n

◦ π = π ◦ Fn . The action of F̃ is illustrated in
Figure 1(b). It is clearly independent of the speed ‖v‖ of the model particle, so we may for
simplicity normalize all the velocity vectors in the space �̃.

When the original particle moving in the channel D crosses from one cell Di into the
neighboring cell Di+1 or Di−1, our model particle appears on 0L or 0R, respectively.
Accordingly, we define a function 1 on �̃ such that

1(q, v)=


+1 if q ∈ 0L,

−1 if q ∈ 0R,

0 elsewhere.

Let

In =

n∑
i=1

1 ◦ F̃ i .

Observe that the original particle, after n reflections (n iterations of F), will be exactly in
the cell DIn .

As we said, Wojtkowski’s theorem [19, 20] allows us to transform the trajectories of
the flow 8t into those of the Gaussian thermostatted particle in a periodic Lorentz channel
with finite horizon under a small external field e = (e, 0) (whose value is determined by r ,
precisely e = ln r ; see [3]). Even though Wojtkowski’s transformation does not necessarily
preserve convexity, the images of the curved boundaries ofD0 will remain convex when ε0

in Theorem 1 is small enough. While this transformation does not synchronize time
between collisions, it certainly establishes a conjugacy between the corresponding collision
maps. Thus the map F̃ : �̃→ �̃ has all the same properties as the collision map of the
thermostatted particle studied in [8, 11, 12].

In particular, the map F̃ has a unique SRB measure, µ (invariant probability measure
whose conditional densities on unstable manifolds are smooth), which is ergodic,
mixing, Bernoulli, and positive on open sets. This measure enjoys exponential decay
of correlations, satisfies the central limit theorem, and has other strong statistical
properties [8, 11, 12]. For r = 1, we recover the billiard map F̃1 on a (symmetric)
fundamental cell of the periodic Lorentz gas that preserves a smooth measure µ1.

If γ ⊂ �̃ is a sufficiently smooth unstable curve and ρ a sufficiently smooth probability
density on it, we call `= (γ, ρ) a standard pair; see precise definitions in [9, §4] or
[13, Ch. 7] (as usual, we only consider homogeneous stable and unstable curves, on which
we can control distortions, see [8, p. 216] or [13, Ch. 5]). We denote by P` the measure
on γ with density ρ. For any function A : �̃→ R we put E`(A)=

∫
γ

A dP`. We say that
`= (γ, ρ) is proper if length(γ ) > δ0, where δ0 > 0 is a small but fixed constant.

A standard family [13, Ch. 7] is a (countable or uncountable) collection G = {`α} =

{(γα, ρα)}, α ∈ U, of standard pairs with a probability factor measure λG on the index set U.
Such a family induces a probability measure PG on the union

⋃
α γα (and thus on �̃), and
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we write EG(A)=
∫
�̃

A dPG . To control the size of curves γα in a standard family G,
we use

ZG := sup
ε>0

PG(LG < ε)
ε

= sup
ε>0

∫
P`α (x ∈ γα : LG(x) < ε) dλG(α)

ε
,

where LG(x) denotes the distance from x ∈ γα to the closer endpoint of the curve γα . A
standard family G is proper if ZG ≤ C0, where C0 is a large constant (so that any proper
standard pair makes a proper standard family). If a family G is not proper, but ZG <∞,
then its image F̃nG will be proper for n ≥ C1 ln ZG , where C1 > 0 is a large constant. In
particular, if a standard pair `= (γ, ρ) is not proper, then its image F̃n` will be a proper
standard family for n ≥ C1|ln|γ ||.

For any proper standard family G the iterations of the measure PG under F̃ weakly
converge to µ, so that

EG(A ◦ F̃n)→ µ(A),

and the convergence is exponentially fast for Hölder continuous functions. (For billiards,
this fact was proved in [13, §7.5], and in our case the same argument applies; cf. [8].)
Moreover, it is proved in [11] that the thermostatted Lorentz particle has a non-zero
drift, thus

1̄ := µ(1) > 0.

More precisely,

1̄= De + o(e)= D(r − 1)+ o(r − 1),

where D = (1/2)
∑

∞

i=−∞
µ1((1 ◦ F i

1)1) is half the sum of autocorrelations of the
function 1 in the unperturbed (classical billiard) system.

The functions In have the following standard statistical properties.

PROPOSITION 1. (Central limit theorem, see [8]) For any proper standard family G the
sequence n−1/2(In − n1̄) converges in distribution to a normal random variable with
respect to the measure PG .

PROPOSITION 2. (Large deviations) For any constant 0< a < 1̄ and for any proper
standard family G we have PG(In ≤ an)≤ c1θ

n
1 for some constants c1 > 0 and θ1 ∈ (0, 1),

which depend on a.

In what follows we have many exponential bounds similar to the one above, and we will
denote by ci > 0 and θi ∈ (0, 1) various constants whose values are not important.

PROPOSITION 3. (Moderate deviations) For any constant 1/2< b < 2/3 and for any
proper standard family G we have PG(|In − n1̄|> nb)≤ c2θ

n2b−1

2 .

For the proofs of the last two propositions, see [9, §§A.3–A.4].
These properties imply that In = n1̄+O(

√
n) grows linearly in n. On the other

hand, let L(q, v) denote the free path length, i.e. the distance (in D0) from q ∈ �̃

to the next collision (in the ‘extended’ sense as defined above) at the point q ′
∈ ∂D0,
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where (q ′, v′)= F̃(q, v). Then the time elapsed between the zeroth and the nth collision
of the original particle at ∂D will be

Sn =

n−1∑
k=0

r Ik L ◦ F̃k . (3.2)

Thus we should expect that Sn ∼ r In , and the x coordinate of the particle at the nth collision
is also q(Sn)∼ r In , which indicates that q(Sn) should be asymptotically proportional to Sn .
However, the terms in (3.2) grow exponentially, so the major contribution comes from the
last few terms, which makes the limit distribution of Sn strongly dependent on that of the
last few terms. (This makes it necessary to impose restrictions on ln T in Theorem 1.)

Lastly we recall the growth lemma (see [9, §4.4] or [13, Ch. 5] or [8]) for the map F̃ . Let
G = {`α} = {(γα, ρα)}, α ∈ U, be a standard family. For n ≥ 1 and x ∈ γα denote by Ln(x)
the distance from F̃n(x) to the closer endpoint of the corresponding component of F̃n(γα).

PROPOSITION 4. (‘Growth lemma’) There exists a constant C1 > 0 such that for any
proper standard family G and n ≥ 1 we have PG(Ln < ε)≤ C1ε for all ε > 0. In addition,
for every 1 ≤ n1 ≤ n2,

PG
(

max
n1≤i≤n2

Li < δ0

)
≤ c3θ

n2−n1
3 . (3.3)

Lastly, for any standard pair `= (γ, ρ) its image under F̃n is a proper standard family
for all n ≥ A|ln length(γ )| + B, where A, B > 0 are constants determined by the shape
of D0 alone.

4. Advance map
It is convenient to ‘reduce’ the collision map F̃ in a somewhat unusual way. Consider

�̃L = {(q, v) ∈ �̃ : q ∈ 0L},

the part of the collision space restricted to the vertical left side of D0 (recall that the
velocity vectors v always point intoD0). Then the map F̃ induces the first return (Poincaré)
map F̃L : �̃L → �̃L, which preserves the measure µ (restricted to �̃L) and is ergodic.

Furthermore, given z ∈ �̃ we denote by

N (z)= min{n ≥ 1 : In(z)= 1},

the first collision when the original particle starting in D0 crosses from D0 to D1. We call
the mapR : �̃L → �̃L defined by

R(z)= F̃N (z)(z),

the advance map, as its iterations correspond to the instances when the original particle
advances one cell further to the right. Observe that for every m ≥ 1

Rm(z)= F̃Nm (z)(z) where Nm(z)= min{n ≥ 1 : In(z)= m};

also note that Nm(z)=
∑m−1

i=0 N (Ri z).
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It follows from the statistical properties of the map F̃ that the function N (z), and
thus the map R(z), are defined almost everywhere on �̃L (with respect to the Lebesgue
measure). Moreover, due to large deviations, for any proper standard family G in �̃ we
have an exponential tail bound

PG(N (z)≥ n)≤ PG(Nan(z)≥ n)≤ c1θ
n
1 . (4.1)

Unlike F̃L, the map R is not one-to-one. For example, a point z ∈ �̃L may leave 0L,
enter D0, then (before crossing 0R) bounce back to 0L, move into D−1, then bounce back
to 0L again, cross it at some other point z′

6= z, move into D0 and then keep moving to
the right and cross 0R; in that case R(z)=R(z′). Thus the inverse map R−1 may be
multiple-valued. For a similar reason, many points x ∈ �̃ have no preimages underR.

Still the action of R agrees with the hyperbolic structure in �̃L in two important
ways. First, N (z) is constant on stable manifolds of the map F̃ , thus R maps stable
manifolds into stable manifolds. Second, R maps every unstable manifold onto a finite
or countable union of (whole) unstable manifolds; thus the restriction of R−1 onto any
unstable manifold W u has several branches, each of which takes W u into another unstable
manifold.

Next we consider a decreasing sequence of subsets �̃L ⊃31 ⊃32 ⊃ · · · defined
by3n =Rn(�̃L) and the ‘attractor’3=

⋂
n 3n . Observe that each3n (as well as3) will

be a union of (whole) unstable manifolds of the map F̃ . We denote by (3∗,R∗) the natural
extension of (3,R), i.e. the set of sequences Z = {zi }, i ≤ 0, such that zi =R(zi−1)

and z0 ∈3, on which the map R : 3→3 induces the left shift R∗
: 3∗

→3∗. We
endow 3∗ with a metric ρ∗(Z , Z ′)=

∑
∞

i=0 λ
i dist(z−i , z′

−i ) for some fixed λ ∈ (0, 1).
Similarly, for each n ≥ 1 we denote by 3∗

n the set of finite sequences Z = {zi },
−n ≤ i ≤ 0, such that zi =R(zi−1) for i >−n and z0 ∈3n . We endow 3∗

n with a metric
ρ∗

n (Z , Z ′)=
∑n

i=0 λ
i dist(z−i , z′

−i ).
For each m < n we have a natural projection π∗

m from 3∗
n (and 3∗) into 3∗

m , which
is defined by discarding all coordinates zi , i <−m. Then {π∗

m(3
∗
n)}

∞
n=m is a decreasing

sequence of sets shrinking to π∗
m(3

∗); moreover π∗
m(3

∗
n) lies in a O(λn)-neighborhood

of π∗
m(3

∗). Note that [π∗
m]

−1ρ∗
m is a pseudo-metric on 3∗ that uniformly converges

to ρ∗. Every unstable manifold W u
⊂3m (or W u

⊂3) can be naturally lifted to finitely
or countably many unstable manifolds in 3∗

m (respectively, in 3∗).
Next we establish a (weaker) analog of the first part of the growth lemma (Proposition 4)

for the map R. Given a standard family G on �̃, we denote by Lm(x) the distance
fromRm(x) to the closer endpoint of the corresponding component ofRm(γα).

PROPOSITION 5. (Weak growth lemma)
(a) There exists a constant C2 such that for all ε > 0 for any proper standard family G

and m ≥ 1 we have PG(Lm < ε)≤ C2ε
0.9.

(b) Moreover for proper standard family G = {`α} for any m and any m(α) such
that m/2 ≤ m(α)≤ 3m/2 we have

PG(Lm(α) < ε)≤ C2ε
0.9,

for all ε > 0.
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Proof. Clearly it suffices to prove (b). We consider two cases.

Case I. m ≤ ε−0.1. By bound (4.1) we have PG(Nm ≥ ε−0.1)≤ c1θ
ε−0.1

1 � ε0.9, and by
Proposition 4 we have

PG
(

min
k≤ε−0.1

Lk ≤ ε

)
≤ C1εε

−0.1
= C1ε

0.9,

thus PG(Lm < ε)≤ (C1 + 1) ε0.9.

Case II. m > ε−0.1. Our goal is to find proper standard pairs `β = (γβ , ρβ) such that:
(a) each γβ is a component of F̃nβ (G) for some nβ > 0, with density ρβ induced

by F̃nβPG ;
(b) their preimages F̃−nβ (γβ) are disjoint pieces of the family G;
(c) their total PG-measure is ≥ 1 − ε0.9; and
(d) on each F̃−nβ (γβ) we have Nm(α) > nβ and m(α)− Inβ ∈ [0, ε−0.1

].
Then we can apply the argument of Case I to each proper standard pair `β , sum up the
resulting estimates, and obtain PG(Lm(α) < ε)≤ (C1 + 2) ε0.9.

Our construction of {`β} has inductive character. At the first step, we put m1 = m(α)
and n1 = m1/1̄. It follows from Proposition 3 that

PG(|In1 − m1|> n0.6
1 )=O(θn0.2

1
2 )� ε0.9, (4.2)

and

PG(|Nm1 − n1|> n0.6
1 )=O(θn0.1

1
2 )� ε0.9, (4.3)

Due to (3.3), there is a family of proper standard pairs `′β = (γ ′
β , ρ

′
β), each being a

component of F̃nβ (G) for some

nβ ∈ [n1 − n0.65
1 , n1 − n0.6

1 ], (4.4)

whose preimages under F̃−nβ are disjoint, and whose total PG-measure is at least

1 − c3θ
n0.65

1 −n0.6
1

3 .
Observe that Inβ is constant on the preimage γ ′′

β = F̃−nβ (γ ′
β) of every γ ′

β (because Inβ
is the cell number where Fnβ (γ ′′

β ) lies). Curves on which Nm1 ≤ nβ can be discarded
due to (4.3); then we have Inβ < m1 on every (not yet discarded) curve. Curves on
which Inβ < m1 − 2n0.65

1 can be discarded due to Proposition 3 and (4.4); then we
have m1 − Inβ ∈ [0, 2n0.65

1 ]. Now curves on which m1 − Inβ ∈ [0, ε−0.1
] are ‘good’; we

include them in our ‘target’ family `β = (γβ , ρβ). On the remaining curves m1 − Inβ ∈

[ε−0.1, 2n0.65
1 ], and we will deal with them next.

At the second step we apply the above procedure to each remaining proper standard
pair `′β = (γ ′

β , ρ
′
β) (which was not discarded or added to the ‘target’ family). Precisely,

on each `′β we denote m2 = m1 − Inβ (observe that 0< m2 ≤ C3m0.65
1 for some

constant C3 > 0), put n2 = m2/1̄, and then repeat our procedure word for word, only
changing index 1 to index 2. In the course of this construction, some images of `′β will be
discarded, some added to our ‘target’ family, and some will remain for the third step; the
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latter will start by setting m3 = m2 − Inβ (note again, as before, that m3 ≤ C3m0.65
2 ), then

setting n3 = m3/1̄, etc.
In finitely many steps we arrive at 2n0.65

k < ε−0.1, thus no curves will be left, and our
construction will stop (observe that k =O(ln ln m)). The total measure of all discarded

curves will be O(θn0.1
1

3 )� ε0.9. This completes the proof of Proposition 5. 2

COROLLARY 6. Let A and B be the constants of Proposition 4. Then for any standard pair
`= (γ, ρ) and m > 2A|ln length(γ )| + 2B we have P`(Lm < ε)≤ C2ε

0.9 for all ε > 0.

Proof. Let m0 = A|ln length(γ )| + B. By Proposition 4, G = F̃m0` is a proper standard
family and so we can apply Proposition 5(b) with m(α)= m − Im0 (observe that the last
expression depends only on which curve in G our points land on). 2

In other words, short unstable curves grow under the iterations of R exponentially
fast into standard families that consist of predominantly long unstable curves. Such
properties are instrumental in the construction of SRB measures for hyperbolic maps with
singularities. We turn to that next.

For a standard family G, we denote by Gn =Rn(G) its image and by PGn =Rn(PG)
the corresponding measure on Gn ⊂3n . The latter naturally induces a measure P∗

Gn
on the

‘extended set’ 3∗
n as follows: let 5n be the map 3→3∗

n defined by [5n(z)]i =Ri+nz;
then we set P∗

Gn
=5n(PG). All these measures have absolutely continuous distributions

on unstable manifolds. Lastly note that each R-invariant measure ν on 3 can be naturally
lifted to aR∗-invariant measure ν∗ on 3∗.

PROPOSITION 7. For every proper standard pair G, the Cesaro averages (1/n)
∑n−1

i=0 PGi

weakly converge, as n → ∞, to a unique R-invariant SRB measure ν on 3. It is ergodic.
It is either mixing or cyclically permutes K ≥ 2 components so thatRK is mixing on each
one. Moreover, for each fixed m ≥ 1 the Cesaro averages (1/n)

∑n−1
i=0 π

∗
m(P∗

Gi
) weakly

converge to the measure π∗
m(ν

∗).

Proof. Our first observation is that the map F̃L : �̃L → �̃L is ergodic since it is a first
return map of an ergodic transformation. It may not be mixing, though, but due to general
results [17, 21] it is either mixing or cyclically permutes K ≥ 2 components of �̃L (each
has measure 1/K ), and then F̃K

L is mixing on each component.
Furthermore, a useful coupling lemma proved for dispersing billiards in [9, Appendix A]

(see also [13, Ch. 7]) can be easily adapted to the map F̃L and give valuable extra

information. Namely, for any two standard pairs ˜̀ = (γ̃ , ρ̃) and ˜̃
`= ( ˜̃γ, ˜̃ρ) in �̃L there

is a measure-preserving map (coupling map)

ζ : (γ̃ × [0, 1], P ˜̀ × Leb)→ ( ˜̃γ × [0, 1], P ˜̃
`
× Leb),

and a measurable map
ϒ : γ̃ × [0, 1] → N,

(called coupling time map) such that, if ζ(x̃, s̃)= ( ˜̃x, ˜̃s), then there is m = m(x̃, ˜̃x) ∈

[0, K − 1] such that the two points

F̃ϒ(x̃,s̃)+m
L x̃ and F̃ϒ(x̃,s̃)L

˜̃x, (4.5)
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belong to the same stable manifold of the map F̃L (if F̃L is mixing, then m is always
equal to 0).

This allows us to show that, for any standard pairs ˜̀,
˜̃
` and a continuous function A

on �̃L,
1
n

n−1∑
j=0

∫
A(F̃ j

L x) dP ˜̀(x)−
1
n

n−1∑
j=0

∫
A(F̃ j

L x) dP ˜̃
`
(x)→ 0. (4.6)

Observe that, since the two points (4.5) belong to the same stable manifold, the pointsRm̃ x̃

and R ˜̃m ˜̃x belong to the same stable manifold (of the map F̃L) for some m̃, ˜̃m ≥ 0. Thus
the argument proving (4.6) also shows that

1
n

n−1∑
j=0

∫
A(R j x) dP ˜̀(x)−

1
n

n−1∑
j=0

∫
A(R j x) dP ˜̃

`
(x)→ 0. (4.7)

In turn, (4.7) implies that, for any two standard families G̃ and ˜̃G,

1
n

n−1∑
j=0

∫
A(R j x) dPG̃(x)−

1
n

n−1∑
j=0

∫
A(R j x) dP ˜̃G

(x)→ 0. (4.8)

Now take any standard family Ḡ and let ν be a limit point of Cesaro averages
(1/n)

∑n−1
i=0 Ri (PḠ). Then ν is invariant under R and absolutely continuous with respect

to unstable leaves, hence it corresponds to a standard family G(ν). Now let G be a standard

family. Applying (4.8) with G̃ = G and ˜̃G = G(ν) we prove that in fact

1
n

n−1∑
j=0

∫
A(R j x) dPG(x)→ ν(A). (4.9)

In particular, ν is a uniqueR-invariant measure with smooth densities on unstable leaves.
Moreover, using the fact that the image of an unstable curve is a union of unstable

curves, it is not difficult to deduce from (4.9) that

1
n

n−1∑
j=0

∫
φ(x)A(R j x) dPG(x)→ PG(φ)ν(A), (4.10)

first for any piecewise constant function φ, and then for any bounded measurable
function φ. In particular,

1
n

n−1∑
j=0

∫
φ(x)A(R j x) dν(x)→ ν(φ)ν(A),

and thusR is ergodic with respect to ν.
Lastly, we address the mixing properties of the map R. It will be mixing if Rk is

ergodic for every k ≥ 2 (see [21]), otherwise the return times to the base of Young’s
tower will have a common multiple K (see [21, Lemma 5]), and then R will cyclically
permute K components, on each of whichRK will be mixing. This proves the first part of
Proposition 7.

The second part (involving natural extensions) follows from the first, because for every
continuous function A the convergence of averages (1/n)

∑
j EG(A ◦R j ) implies the

convergence of (1/n)
∑

j EG(A ◦R j−m) for every m ≥ 0. 2
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We note that, if K ≥ 2, then all periodic points of R have periods proportional to K
(see [21]) and this fact can be used to check mixing of R. Given a cell D0, if one can find
two periodic points for the map R with incommensurate (mutually prime) periods then R
is in fact mixing. We believe that this fact can be used to prove that the advance map for
the BGR channel is in fact mixing but we do not pursue this point here since mixing is not
used in the proof of our main result.

In fact the foregoing analysis gives more precise conclusions. Namely, if the measure ν
is mixing, we can replace Cesaro averages with just iterations of PG . If K ≥ 2, we first
need to average the first K iterations of our measure: PḠ = (1/K )

∑K−1
i=0 PGi ; this gives

us a ‘well-balanced’ initial measure whose iterations will converge to ν. (It is clear that the
average measure is also supported by a standard family, which we denote by Ḡ.)

COROLLARY 8. For every proper standard pair G the measure PḠn
weakly converges,

as n → ∞, to ν, and for each fixed m ≥ 1 the measure π∗
m(P∗

Ḡn
) weakly converges

to π∗
m(ν

∗).

Lastly, it is easy to generalize (4.1) as follows. For any proper standard family G and
any m, n ≥ 1, we have

PG(N (Rm z)≥ n)≤ PG(Nan(Rm z)≥ n)≤ c4θ
n
4 , (4.11)

and due to Proposition 7 we also have

ν(N (Rm z)≥ n)≤ ν(Nan(Rm z)≥ n)≤ c4θ
n
4 . (4.12)

(Here c4 and θ4 do not depend on m because the estimate in Proposition 5 is uniform.)

5. Proof of Theorem 1
First, for every initial point z ∈D0 × S1 denote by τ̂ (z) the first time the trajectory 8t (z)
crosses �̃L and by π̂(z)=8τ̂ (z)(z) the crossing point. Then

|q(8T (z))− q(8T (π̂(z)))| ≤ ψ(z),

where ψ(z) does not depend on T . Thus the limit distribution of q(T )/T will not be
affected if we replace each z with π̂(z); therefore we replace the initial uniform distribution
on D0 × S1 with its image on �̃L, i.e. with a smooth probability distribution, µ0, on �̃L.
Similarly, given a k ≥ 1, we have

|q(8T (z))− q(8T (Rk(z)))| ≤ ψk(z),

where ψk(z) does not depend on T . Hence the limit distribution of q(T )/T will not be
affected if we replace each z withRk(z); thus we can replace µ0 with the average

µ̄0 =
1
K

K−1∑
i=0

Ri (µ0).

This is also a smooth probability distribution on �̃L, so it can be represented by a proper
standard family G in the usual way (e.g. one can foliate �̃L with unstable manifolds of the
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map F̃), hence µ̄0 = PG . Now, due to Corollary 8, the measure Rn(µ̄0)= PGn converges
to the SRB measure ν.

Next consider the similarity transformation Sr of the phase spaceM defined by

Sr (q, v)= (q∞ + (q − q∞)r, v),

cf. (3.1); observe that Sr ◦8t
=8r t

◦ Sr . We can always choose the coordinate frame so
that q∞ = 0; this will simplify our formulas.

For z ∈ �̃L and n ≥ 1, let τn(z) denote the continuous time elapsed between the points z
and FNn(z)(z), i.e. the time it takes the trajectory8t (z) to reach the left side of the cellDn .
Observe that

τn(z)=

n−1∑
i=0

τ1(Ri z)r i
= rn

n∑
k=1

r−kτ1(R−kRnz).

Now recall that Theorem 1 assumes that ln Tn = n ln r + ρ ln r + o(1), i.e. Tn =

rn+ρ+o(1). Therefore

q(Tn(z))/Tn = r−ρq(S−n
r (8Tn (z)))+ o(1)

= r−ρq(8r−n(Tn−τn(z))(S−n
r (FNn(z)(z))))+ o(1),

because 8τn(z)(z)= FNn(z)(z). Since S−n
r (FNn(z)(z))=Rn(z), we have

q(Tn(z))/Tn = r−ρq(8rρ (8−r−nτn(z)(Rn(z))))+ o(1). (5.1)

Now a change of variableRn(z) 7→ z transforms (5.1) into

q(Tn ◦R−n)/Tn = r−ρq(8rρ
◦8−wn )+ o(1), (5.2)

where

wn(z)=

n∑
k=1

r−kτ1(R−k z), (5.3)

is a function defined on 3∗
n (we recall that 3∗

n consists of sequences Z = {zi }
∞

i=−n , but
here for ease of notation we identify Z with z = z0). Note also that our change of variable
transforms PG into P∗

Gn
on 3∗

n .
Next, due to our finite horizon assumption and (4.11),

PG(τ1(Rm z)≥ M)≤ c′

4θ
M
4 , (5.4)

for all m, M > 0 and some constant c′

4 > 0, and a similar estimate holds if we replace PG
with ν, according to (4.12). Thus the terms in the sum (5.3) decay exponentially in k, so the
value of wn(z) is mostly determined by the first few preimages of z. In fact (5.4) implies
an exponential tail bound

P∗

Gn
(wn(z)≥ M)≤ c5θ

M
5 , (5.5)

uniformly in n, and a similar bound holds if we replace P∗

Gn
with π∗

n (P∗

Gk
) for any k > n,

or with π∗
n (ν

∗).
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Also consider the ‘limit’ function

w(z)=

∞∑
k=1

r−kτ1(R−k z),

which is well defined almost everywhere on 3∗. Our tail bounds imply

ν∗(|w − wn ◦ π∗
n | ≥ r−n M)≤ c6θ

M
6 ,

for all M > 0 and n ≥ 1, and a tail bound similar to (5.5):

ν∗(w ≥ M)≤ c7θ
M
7 .

Theorem 1 immediately follows from the next proposition.

PROPOSITION 9. Let A be a continuous function on R2 with compact support. Then, as
n → ∞, we have

EG(A(q(Tn)/Tn))→

∫
3∗

A(r−ρq(8rρ−w)) dν∗. (5.6)

The integral here determines the limit distribution of q(Tn)/Tn ; observe its explicit
dependence on ρ.

Proof. According to (5.2),

EG(A(q(Tn)/Tn))=

∫
3∗

n

A(r−ρq(8rρ−wn )) dP∗

Gn
+ o(1). (5.7)

Observe that the function wn is piecewise continuous, has countably many domains of
continuity, and may be unbounded. We will construct a nicer approximation to wn as
follows.

Our tail bounds imply that for any ε > 0 there is m ≥ 1 such that

ν∗(|w − wm ◦ π∗
m |> ε) < ε and P∗

Gn
(|wn − wm ◦ π∗

m |> ε) < ε,

uniformly for all n > m. Furthermore, there exists m0 ≥ 1 (which may depend on m)
such that

ν∗(Nm ◦R−m > m0) < ε and P∗

Gn
(Nm ◦R−m > m0) < ε,

uniformly for all n > m. Now define a new function on 3∗
m :

ŵm(z)=

{
wm(z) if Nm(R−m z)≤ m0,

0 if Nm(R−m z) > m0.

The above estimates show that we can replace bothw andwn in (5.6) and (5.7) with the new
function ŵm ◦ π∗

m , and the errors committed by this replacement can be made arbitrarily
small by choosing an appropriate ε > 0.

Lastly, observe that the function ŵm is bounded and has finitely many domains of
continuity; more precisely, their coordinatewise projections onto �̃L are domains with
piecewise smooth boundary consisting of singularity lines of the map F̃±m0 ; thus the
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ν∗-measure of the boundary of these domains is zero. Now the weak convergence claimed
in Corollary 8 implies that∫

3∗
n

A(r−ρ q(8rρ−ŵm◦π∗
m )) dP∗

Gn
→

∫
3∗

A(r−ρq(8rρ−ŵm◦π∗
m )) dν∗,

(note that 8rρ is always continuous). This proves Proposition 9. 2

This completes the proof of Theorem 1.
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