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The onset of convection in a rotating cylindrical annulus with parallel ends filled with
a compressible fluid is studied in the anelastic approximation. Thermal Rossby waves
propagating in the azimuthal direction are found as solutions. The analogy to the case
of Boussinesq convection in the presence of conical end surfaces of the annular region
is emphasised. As in the latter case, the results can be applied as an approximation for
the description of the onset of anelastic convection in rotating spherical fluid shells.
Reasonable agreement with three-dimensional numerical results published by Jones,
Kuzanyan & Mitchell (J. Fluid Mech., vol. 634, 2009, pp. 291–319) for the latter
problem is found. As in those results, the location of the onset of convection shifts
outwards from the tangent cylinder with increasing number Nρ of density scale heights
until it reaches the equatorial boundary. A new result is that at a much higher number
Nρ the onset location returns to the interior of the fluid shell.
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1. Introduction
The tendency of fluid motions in rapidly rotating systems to develop nearly

two-dimensional structures has often been exploited to simplify the theoretical
analysis. The description of convection flows in systems where the gravity vector
and the rotation axis are not parallel provides a typical example (Busse 1970, 2002).
In applications of convection problems to rotating planets and stars, the tendency
towards two-dimensionality is partly obscured by the strong variation of fluid density
as a function of radius in the nearly spherical systems. It is thus of interest to
investigate the extent to which the quasi-geostrophic two-dimensional description can
still provide an approximation for three-dimensional convection in rapidly rotating
systems with strong variations of density.

In the case of the Boussinesq approximation, in which the density is regarded as
constant except in connection with the gravity term, the results derived from the two-
dimensional quasi-geostrophic analysis of the onset of convection in rotating spherical
fluid shells compare well with the results of the three-dimensional numerical analysis
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(Simitev & Busse 2003). In this paper the two-dimensional model was based on the
problem of convection in a rotating cylindrical annulus with conical end boundaries
(Busse 1970, 1986). For a more detailed discussion of the role of the quasi-geostrophic
model in relationship to more accurate three-dimensional solutions for convection in
rotating spherical fluid shells, we refer to the paper of Gillet & Jones (2006).

In recent years the anelastic approximation (Gough 1969) has been widely used to
obtain more realistic descriptions of convection in the atmospheres of planets and stars
with strong variations of density. In the paper by Busse (1986, hereafter B86), the
analogy between the effect of changing height induced by the conical boundaries of
the cylindrical annulus and the effect of a radial variation of density has already been
pointed out. In the present paper we intend to demonstrate quantitatively that the two-
dimensional analysis of the annulus model provides a reasonable approximation for the
onset of convection in the presence of strong anelastic density variations in rotating
spherical fluid shells.

The analysis of the present paper resembles to some extent the two-dimensional
analysis of anelastic convection pursued by Evonuk & Glatzmaier (2004, 2006); see
also Glatzmaier, Evonuk & Rogers (2009). Because of the high computational cost
of three-dimensional simulations of convection in the presence of density variation
over many scale heights, these authors restricted their attention to two-dimensional
numerical simulation of convection close to the equatorial plane. Evonuk & Glatzmaier
were interested in the nonlinear properties of two-dimensional convection, including
zonal flows in the presence of strong density variations. In contrast, our analytical
model focuses on the linear problem of the onset of convection at high values of the
rotation parameter.

The main purpose of this paper is not the demonstration of a high accuracy of
the two-dimensional approximation. Instead, we wish to emphasise the insights into
anelastic convection in rotating spheres gained from the analytical quasi-geostrophic
model. In the next section we first introduce the narrow-gap cylindrical annulus
with parallel ends as shown in figure 1(a) and derive the two-dimensional solution
describing anelastic convection. In § 3 the model is modified for applications to the
onset of anelastic convection in rotating spherical shells as indicated in figure 1(b).
Detailed comparisons with numerical solutions are evaluated in § 4. Some nonlinear
aspects are discussed in the final section of the paper.

2. Mathematical description of two-dimensional anelastic convection
We consider a cylindrical annulus with parallel ends rotating about its axis with the

angular velocity Ω as shown in figure 1(a). The gap width d in the radial direction of
the annular region is small in comparison with its inner radius ri such that a Cartesian
system of dimensionless coordinates x, y, z in the radial, azimuthal and axial directions,
respectively, can be used for a local description of convection. The corresponding unit
vectors are i, j and k. The annular gap is filled with an ideal gas, the state of which
differs little from an isentropic reference state in the presence of gravity pointing in
the negative x direction. The small deviation from the isentropic state is described
by the small positive excess entropy 1s by which the entropy at the inner cylinder
exceeds the entropy at the outer cylindrical boundary. In experimental realisations,
gravity could be replaced by the centrifugal force. The dynamical problem would then
be identical if a negative value of 1s is assumed.

Using d as length scale, d2/κ as time scale and 1s as the scale of the entropy, we
obtain the dimensionless form of the anelastic equations as used in Jones, Kuzanyan
& Mitchell (2009) and in the benchmark paper (Jones et al. 2011) based on the
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FIGURE 1. Sketch of geometric configurations. (a) The rotating cylindrical annulus with
parallel ends considered in § 2 as a model of the effect of background density variation.
(b) The rotating cylindrical annulus with conical ends inscribed in a spherical shell. The
sketches are not to scale with the asymptotic limit assumptions.

formulation introduced independently by Braginsky & Roberts (1995) and Lantz &
Fan (1999),

∂u
∂t
+ u · ∇u+ τk× u=−∇π + i

R
Pr

s+ F, (2.1a)

∇ · u= ρ̄u · ∇
1
ρ̄
, (2.1b)

Pr
(
∂s
∂t
+ u · ∇s

)
=∇2s+∇s ·

1
κρ̄ T
∇κρ̄ T + Q̂, (2.1c)

where F denotes the force of viscous friction divided by the density, and all terms
in the equation of motion that can be written as gradients have been combined into
∇π . The Rayleigh number R, the Prandtl number Pr and the Coriolis number τ are
defined by

R= gd31s
κνcp

, Pr= ν
κ
, τ = 2Ω

d2

ν
. (2.2a–c)

Here κ is the entropy diffusivity, ν is the kinematic viscosity and cp is the specific
heat at constant pressure. For simplicity we have assumed that material properties are
constant except for ρ̄(x), which represents the x-dependent density of the isentropic
reference state made dimensionless through division by its average value, and T(x) is
the temperature profile of that state. The constant gravity vector is given by g=−gi,
and the entropy s can be separated into two parts,

s=−x+ s̃, (2.3)

such that the boundary condition s̃= 0 holds at x=±1/2.
We now consider two-dimensional solutions of (2.1) that are independent of z and

thus satisfy the Proudman–Taylor condition. Assuming u= (1/ρ̄)∇ψ(x, y, t)× k, we
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obtain for the z component of the vorticity of (2.1a)

∂ζ

∂t
+ 1
ρ̄

(
∂ζ

∂x
∂ψ

∂y
− ∂ζ
∂y
∂ψ

∂x
− (τ + ζ ) 1

ρ̄

dρ̄
dx
∂ψ

∂y

)
=− R

Pr
∂ s̃
∂y
+∆2ζ , (2.4)

where ζ = k · ∇ × ((∇ψ × k)/ρ̄) is the z component of the vorticity and ∂2/∂x2 +
∂2/∂y2 has been denoted by ∆2. Following Evonuk & Glatzmaier (2004), the friction
term has been reduced to its main contributor. Assuming that ρ̄ varies slowly such
that the absolute value of

ηρ ≡− 1
ρ̄

dρ̄
dx

(2.5)

is a small constant, we find that the absolute value of

η∗ρ ≡ ηρτ (2.6)

is a parameter of the order of unity or larger for τ� 1. In fact, later we shall consider
the limit of η∗ρ tending to infinity.

We thus have arrived at the same equations as in the case of Boussinesq convection
in the annulus with conical end boundaries (see figure 1b) given by (4.1) of B86,
with the only difference that the second and third terms on the right-hand side of
(2.1c) are missing in the latter case. In the following we shall neglect these two terms,
anticipating that they become negligible in the asymptotic solution of the problem for
τ tending to infinity.

The linearised versions of (2.1c) and (2.4) thus assume the forms

∂ζ

∂t
+ η

∗
ρ

ρ̄

∂ψ

∂y
= − R

Pr
∂ s̃
∂y
+∆2ζ , (2.7a)

Pr
∂ s̃
∂t
− Pr
ρ̄

∂ψ

∂y
= ∆2s̃. (2.7b)

After elimination of s̃, neglecting terms of the order of ηρ , and multiplication of the
equation of motion by ρ̄, we obtain(

Pr
∂

∂t
−∆2

) [(
∂

∂t
−∆2

)
∆2 − η∗ρ

∂

∂y

]
ψ = R

∂2

∂y2
ψ. (2.8)

This equation is easily solved when stress-free conditions at the boundaries x=±1/2
are assumed,

ψ = sin(π(x+ 1/2)) exp(iαy− iωt), s̃= −iαψ
−iωPr+ α2 +π2

. (2.9a,b)

This solution yields the dispersion relation

Rα2 = (−iωPr+ α2 +π2)[(−iω+ α2 +π2)(α2 +π2)+ iαη∗ρ]. (2.10)

The real and imaginary parts of this equation determine the neutral curve R(α) and
the frequency ω(α) of the thermal Rossby wave,

ω= αη∗ρ
(1+ Pr)(α2 +π2)

, R= (α2 +π2)3α−2 +

(
η∗ρPr

1+ Pr

)2

α2 +π2
. (2.11a,b)
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220 F. H. Busse and R. D. Simitev

The angular frequency ω resembles that of ordinary Rossby waves from which
it differs only through the appearance of Pr in the denominator. The Rayleigh
number is determined by two terms. The first is the familiar expression from
Rayleigh–Bénard convection, which is independent of the Coriolis number. The
second term is introduced by the density variation caused by the compressibility.

The critical value Rc and the corresponding wavenumber αc are obtained through
minimising R(α) with respect to α, which yields in the limit of high values of |η∗ρ|

αc = η1/3
P (1− 7

12π
2η
−2/3
P + · · · ), Rc = η4/3

P (3+π2η
−2/3
P + · · · ), (2.12a,b)

where ηP is defined by

ηP ≡
|η∗ρ|Pr√

2(1+ Pr)
. (2.13)

As in the Boussinesq case of the cylindrical annulus with conical axial boundaries,
the onset of convection becomes independent of the gap width d in the limit of high
|η∗ρ| and the Rayleigh numbers for modes with sin(lπ(x+ 1/2)) with l= 2, 3, 4, . . .
hardly differ from that for l= 1. The neglected second term on the right-hand side of
(2.1c) would contribute only a negligible amount in the limit of high αc. The other
neglected term Q̂ does not enter the linear problem, of course.

The fact that the asymptotic relationship Rc=3αc
4 holds independently of the choice

of length scale for a given entropy gradient is essential for the following analysis. In
other words, the only remaining physical length scale in the limit

η
1/3
P � 1 (2.14)

is the dimensional azimuthal wavelength λD of convection, which must be small
compared to any radial length scale of the problem. In terms of dimensional quantities,
the condition (2.14) translates into the condition that the asymptotic expression for
λD,

λD ≡ 2π

κ
√

2(1+ Pr)ρ

2Ω
(

d
dxD

ρ

)


1/3

(2.15)

is small compared to any radial length scale of the problem, where xD denotes the
dimensional length on which ρ varies.

3. Application to three-dimensional geometries

In applying the two-dimensional solution to a three-dimensional configuration, we
follow the corresponding analysis (Busse 1970) in the case of Boussinesq convection.
In particular, we shall consider the case of a rotating spherical fluid shell as shown
in figure 1(b). Since we are using only the asymptotic results of § 2, which are
independent of the radial length scale d in the formulation of the problem, we are
free to interpret d from now on as the thickness of the spherical shell. Accordingly
the inner and outer radii, ri and ro, are given by β/(1−β) and 1/(1−β), respectively,
where β is defined by β = ri/ro.

Simitev & Busse (2003) have demonstrated that a good approximation for the onset
of convection in rotating spherical shells can be obtained by solutions of the form
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(3.8)–(3.10) in B86 found from the model of the rotating annulus with conical ends.
In the spherical case the parameter η∗ is defined by

η∗ ≡ τ tan θ
ro cos θ

= τx
r2

o − x2
. (3.1)

where θ is the colatitude on the spherical surface with respect to the axis of rotation
and x = ro sin θ represents the distance from the axis at which convection sets in.
Although the analysis leading to the results (2.11) and (2.12) with η∗ρ replaced by
η∗ as shown in B86 is mathematically rigorous only in the limit of small θ , the
asymptotic expressions compare quite well with the numerical results at finite angles θ .
A further improvement may eventually be obtained following Calkins, Julien & Marti
(2013), who replaced the two-dimensional procedure by a three-dimensional one.

In the presence of density variation, the contribution η∗ρ as defined in the preceding
section must be added. Since the density in the spherical configuration varies not only
with distance from the axis, but also parallel to the axis, an average over the latter
dimension must be taken. The same procedure must be applied to gravity. In order to
compare our analytical results with the direct numerical results of Jones et al. (2009),
we shall use the following explicit expressions defined in Jones et al. (2009, 2011):

ρ̄ ≡ ξ n with ξ = c0 + c1/r, (3.2)

and with
c0 = 2ξo − β − 1

1− β , c1 = (1+ β)(1− ξo)

(1− β)2 , (3.3a,b)

where
ξi = β + 1− ξo

β
and ξo = β + 1

β exp(Nρ/n)+ 1
(3.4a,b)

are the values of ξ at the inner and outer boundaries. Here Nρ is the number of density
scale heights, Nρ = n ln(ξi/ξo), and n is the gas polytropic index.

The definitions (2.5) and (2.6) thus become modified to

η∗ρ = −
τ√

r2
o − x2

∫ √r2
o−x2

0

d
dx

ln
(
ρ̄
(√

x2 + z2
))

dz

= nτ√
r2

o − x2

∫ √r2
o−x2

0

c1x dz

(c0
√

x2 + z2 + c1)(x2 + z2)
. (3.5)

An analytical expression for this integral can be obtained, but it is lengthy and will not
be given here. The parameters η∗ and η∗ρ are displayed as functions of x in figure 2(a)
in the special case n= 2, β = 0.5.

In order to apply the two-dimensional approximation to the three-dimensional
formulation used by Jones et al. (2009, 2011), we must take into account that the
entropy gradient of the purely conducting state is spatially dependent and that the
same holds for the gravity term, which in Jones et al. (2009, 2011) is assumed
to vary in proportion to r−2. For the cylindrical approximation, only the component
perpendicular to the axis of rotation is relevant. For this component in the formulation
of Jones et al. (2009, 2011), we get in place of R in (2.8)

Ra
x
r
1s
r2

[
nc1x

r3ξ n+1

1
ξ−n

o − ξ−n
i

]
, (3.6)
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1.2 1.4 1.6 1.8 2.01.0 1.2 1.4 1.6 1.8 2.01.0
x

100

101 100

101

103

102

(a)

x

10–1

Ra/R

(b)

FIGURE 2. (a) The functions η∗/τ given by (3.1) (solid line) and η∗ρ/τ given by (3.5)
(dashed lines), and (b) the factor Ra/R given by (3.7) as functions of x in the case n= 2,
β = 0.5 and Nρ = 1, 2, . . . , 25 increasing in the direction of the arrows, with the thicker
dashed lines corresponding to Nρ = 5, 10, 15, 20, 25.

where the term inside the square brackets denotes the negative x derivative of the
entropy in the motionless purely conducting state. The average of expression (3.6) over
the cylindrical surface intersecting the spherical shell at distance x from the axis thus
leads to the ratio between the Rayleigh number R of the cylindrical model and the
Rayleigh number Ra introduced by Jones et al. (2009, 2011) in the spherical case:

R
Ra
= nc1x2√

r2
o − x2

∫ √r2
o−x2

0

dz

(x2 + z2)3(c0 + c1/
√

x2 + z2)n+1(ξ−n
o − ξ−n

i )
. (3.7)

The reciprocal of this function, which is independent of τ and Pr, has been plotted
in figure 2(b) in the special case n= 2, β = 0.5.

4. Comparison of the asymptotic results with numerical data
In this section the asymptotic results derived above will be compared with numerical

data found in the literature for the onset of anelastic convection in rapidly rotating
spherical shells. The goal of this comparison is not to demonstrate an optimal
quantitative agreement, but to show that the asymptotic expressions reflect all
qualitative properties of the numerical results quite well and can thus be used
for explorations of regions of the parameter space that may not be easily accessible
to direct numerical integrations.

Combining the effect of the density stratification (3.5) and that of the boundary
inclination (3.1) at the spherical surface, we find

ηP(x)≡
|η∗ρ + η∗|Pr√

2(1+ Pr)
, (4.1)

yielding the asymptotic critical values for the azimuthal wavenumber αc and for the
Rayleigh number Rc(x),

αc(x)= η1/3
P (x), Rc(x)= 3η4/3

P (x). (4.2a,b)
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1.2 1.4 1.6 1.8 2.01.0
x

107

109

108

107

109

108

Ra

(a)

1.999 1.990 1.900 1.000
x

(b)

FIGURE 3. Critical Rayleigh number as a function of position x in the cases β = 0.5,
Pr = 1, τ = 105, n = 2 and Nρ = 1, 2, . . . , 25 increasing in the direction of the arrows.
The black dots indicate the position of the minimum on each curve. Panels (a) and (b)
are identical; only the x axis is scaled differently to reveal the structure near the outer
boundary.

The dependence of Rc(x) on the fourth power of αc demonstrates again that it is
independent of the chosen length scale d. The characteristic length of convection is
given by its azimuthal wavelength, which does not depend on any radial length scale
in the asymptotic limit. This property is also evident from figure 2 of Jones et al.
(2009) in which the radial extent of the convection columns does not reflect any
connection with the thickness d of the spherical fluid shell.

The value Ra(x) is obtained through application of relationship (3.7). This function
is plotted in figure 3 for various values of Nρ in the case β = 0.5, τ = 105, n = 2
for the Prandtl number Pr = 1. For Pr = 0.1 the same plots are obtained except
that the Rayleigh number is decreased by the factor (0.2/1.1)4/3 as follows from
the asymptotic dependence (Pr/(1 + Pr))4/3 of the Rayleigh number on the Prandtl
number. While the values indicate some quantitative discrepancies with the data
displayed in Jones et al. (2009), the plots show the same qualitative features. The
most notable feature is that the location of initial instability as given by the minimum
value of the critical Rayleigh number gradually changes position from near the inner
boundary to near the outer boundary with increasing Nρ as shown in Jones et al.
(2009) and also in Gastine & Wicht (2012). However, for values larger than Nρ = 17
at Pr= 1, the location of initial instability abruptly jumps inside the fluid layer. This
prediction of our analysis has not been observed previously, as values of Nρ > 10,
even though physically relevant, are beyond the range of direct numerical simulations.

As is already evident from figure 2(a), the dependence of the minimum value of
Ra on x is mainly governed by the variation of the density described by η∗ρ . The
contribution η∗ from the inclination of the outer spherical boundary provides a minor
supplement. But since this latter contribution diverges at the equator, it prevents x= 2
from being a location of the onset of convection. Note that a grid step of 0.001 in x
has been used for the computation of figure 3.

The general dependence of the position of initial instability as a function of
the value of Nρ is illustrated in figure 4(a) in the case n = 2. Analogous curves
for different values of n are also shown there in order to demonstrate the strong
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FIGURE 4. (a) The position of the minimum critical Rayleigh number, Rac, as a function
of Nρ for the case β = 0.5, Pr = 1, τ = 105 with n as indicated in the plot. (b) The
minimum critical Rayleigh number, Rac, as a function of Nρ for β = 0.5, τ = 105, n= 2
and Pr = 0.1, 1, 10 as indicated in the plot. The crosses show values obtained by Jones
et al. (2009) from direct numerical solution of the linearised spherical problem with n= 2.

dependence on the polytropic index n of the shift in the onset location from the outer
boundary to the interior. Figure 4(b) shows the minimum critical Rayleigh number
as a function of Nρ and figure 5 shows the critical frequency ωc and wavenumber,
mcrit, as functions of Nρ . The curves exhibit a remarkable qualitative agreement with
the results shown in figures 1, 3, 5 and 7 of Jones et al. (2009) that were obtained
by direct numerical solution of the linearised spherical problem. For instance, in
figure 6 the values of Rac, mcrit and ωc as functions of Nρ obtained from our model
are compared with the corresponding values as shown in figure 1(a) of Jones et al.
(2009) that were obtained by these authors in direct numerical simulations. While the
curves for Rac and mcrit compare well, the agreement of the frequencies ωc is less
satisfactory. This discrepancy is discussed further below. The dependences on other
values of Pr and τ can easily be inferred from the general relationships

Rac ∼
(
τPr

1+ Pr

)4/3

, ωc ∼
(

τ√
Pr(1+ Pr)

)2/3

, mc ∼
(
τPr

1+ Pr

)1/3

. (4.3a–c)

The fact that in the above-mentioned figures of Jones et al. (2009) the relatively low
value of τ =104 has been used may be responsible for parts of the deviations from the
asymptotic results. The asymptotic dependences (4.3) on τ are indicated in the case
of Pr= 1 in figure 6 of Jones et al. (2009), but significant deviations of the slope of
the numerical results are still noticeable in the range 104 < τ < 105.

A direct numerical comparison with the results shown in figures 2 and 4 of Jones
et al. (2009) is provided in table 1. Here the x value of the position of the maximum
of the amplitude of convection as shown in figures 2 and 4 of Jones et al. (2009) has
been used in calculating the various parameters of the asymptotic theory. In comparing
the critical wavenumbers, a difficulty arises in that the asymptotic theory assumes that
the convection columns are aligned in the radial direction, such that their wavevector
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FIGURE 5. (a) The global critical frequency ωc and (b) the critical azimuthal wavenumber
mcrit as functions of Nρ for β = 0.5, τ = 105, n = 2 and Pr = 0.1, 1, 10 as indicated in
the plots. The crosses show values obtained by Jones et al. (2009) from direct numerical
solution of the linearised spherical problem.

0 1 2 3 4 5

20

40

60

80

100

120

FIGURE 6. Comparison with direct numerical results shown in figure 1(a) of Jones et al.
(2009). The values Rac× 10−5, mcrit and ωcrit× 10−1 reported by Jones et al. (2009) (solid
line, stars and plus signs, respectively) are plotted against the corresponding values of
Rac× 10−5, mcrit and 2/3×ωc× 10−1 obtained from our analysis (bold dots, circled stars
and circled plus signs, respectively). The factor 2/3 in front of the values of ωc obtained
from expression (4.4) has been introduced to facilitate the comparison of the shapes of
the two frequency curves. The values of the parameters are Pr= 1, τ = 104, n= 2, β= 0.5,
and Nρ varies along the abscissa.

is directed in the azimuthal direction. In the numerical analysis of Jones et al. (2009)
the convection columns are spiralling outwards such that the wavevector acquires a
radial component. This effect is caused by the radial derivative of the parameter ηρ ,
which is not taken into account in the asymptotic theory. Hence in the table the
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Pr= 1, x= 1.43 Pr= 0.1, x= 1.6
Equation Asymptotic Numerical Asymptotic Numerical

η∗ (3.1) 3.89× 104 4.17× 104

η∗ρ (3.5) 2.40× 105 2.79× 105

ηP (4.1) 8.482× 104 1.793× 104

αc (4.2) 43.9 42.4 (38.5) 26.2 22.6 (18.1)
Rc (4.2) 1.118× 107 1.408× 106

Rac (3.7) 3.366× 107 3.326× 107 3.761× 106 4.685× 106

ωc (4.4) 2723 1844 9688 6901

TABLE 1. Comparison of asymptotic results with the direct numerical results of Jones
et al. (2009) in the case τ = 105, β = 0.5, N = 2 and n= 2.

absolute value of the wavevector is indicated as estimated from figures 2 and 4 of
Jones et al. (2009). The azimuthal component of the wavevector corresponding to the
wavenumber m is indicated in brackets. The critical values of the Rayleigh numbers
R and Ra (as used in the formulation of Jones et al. (2009)) do not depend strongly
on the wavenumber and they exhibit a fairly close agreement between asymptotic and
numerical values. The discrepancy in the frequencies ωc as given by the asymptotic
expression

ωc =
η∗ρ + η∗
αc(1+ Pr)

(4.4)

still persists. This is caused to some extent by the strong dependence of ωc on αc.
The discrepancy may be reduced by taking into account the effect of convexly curved
rather than straight conical sloping endwalls of the annulus. This effect is considered
in Busse & Or (1986), where it is shown that a perturbation of opposite sign to that of
ωc results due to the curvature. Although this correction would reduce the discrepancy,
we have not calculated it since it cannot be expressed in a simple analytical form.

5. Concluding remarks
As should be expected, the comparison of the asymptotic expressions with the

numerical results does not show as good agreement in the anelastic case as in
the Boussinesq case studied by Simitev & Busse (2003). On the other hand, the
conceptional value of the approximate asymptotic theory increases in proportion to
the complexities introduced by anelastic density stratifications.

In the present paper only the linear local problem of the onset of convection has
been investigated. An extension could be considered in connection with the spiralling
nature of convection, which depends on the second derivative of the density variation
in the x direction. But since an analytical theory for this effect is not yet available,
even in the Boussinesq case of the cylindrical annulus with varying inclination of the
conical end surfaces, such an analysis will be deferred to future research.

The spiralling of the convection columns is an important feature since it is
associated with Reynolds stresses that generate a differential rotation. Such a
mechanism could eventually be described by an analytical theory based on an
expansion in powers of the amplitude of motion, as has been done by Busse (1983)
in the case of the Boussinesq version of the problem.

Finally the two-dimensional approximate analysis of the linear problem of anelastic
convection could be improved through a three-dimensional multiscale analysis as
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has recently been done by Calkins et al. (2013) in the limit of the Boussinesq
approximation.
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