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Parametrically forced stably stratified flow in a
three-dimensional rectangular container
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The dynamics of a stably and thermally stratified fluid-filled cavity harmonically forced in
the vertical direction, resulting in a periodic gravity modulation, is studied numerically.
Prior simulations in a two-dimensional cavity showed a myriad of complex dynamic
behaviours near the onset of instabilities, and here we address the extent to which
these persist in three dimensions. Focusing on a parameter regime where the primary
subharmonic mode is resonantly driven, we demonstrate comprehensive qualitative
agreement between the dynamics in two and three dimensions; the quantitative difference
is due to the larger forcing amplitudes needed in three dimensions to overcome the
additional viscous damping from the spanwise walls. Using a small detuning of the forcing
frequency, together with a relatively large forcing amplitude, leads to a wave-breaking
regime where the qualitative agreement between two and three dimensions breaks down.
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1. Introduction

Parametrically driven instabilities in continuously stratified flows have drawn much
attention due to their potential importance in dynamical processes in the ocean
and atmosphere. They have been extensively studied at a fundamental level in
laboratory experiments (e.g. Thorpe 1968; McEwan 1971; McEwan & Robinson 1975;
Bouruet-Aubertot, Sommeria & Staquet 1995; Benielli & Sommeria 1998; Staquet &
Sommeria 2002; Joubaud et al. 2012; Sutherland 2013; Dauxois et al. 2018). The
experiment of Benielli & Sommeria (1998), where a rectangular cavity filled with a
uniformly stratified solution of brine was oscillated vertically, is a particularly clean
set-up. With the forcing being due to a modulation of the effective gravity, the state of
zero relative velocity with linear stratification loses stability when the secular growth
of a parametrically forced standing internal wave mode is faster than the rate at which
it dissipates viscously. In contrast, when the system is forced by oscillating plungers
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or paddles (Thorpe 1968; McEwan 1971), the static stratified state is not a solution as
wave beams from the oscillating plungers and paddles are always generated, complicating
the analysis of the response flow. Nevertheless, Thorpe (1968) was able to interpret his
experimental results in terms of two-dimensional (2-D) intrinsic standing wave modes of
the inviscid 2-D rectangular cavity. This was possible so long as the plunger amplitude
was not too large, so that the response flow (or at least the density variations) remained
invariant in the spanwise direction. McEwan (1971) also noted that the flow remained 2-D
for paddle oscillation amplitudes that were not too large.

The experiments of Benielli & Sommeria (1998) using modulation of the effective
gravity were conducted in a container with an approximately square cross-section (26.1 cm
wide and filled to a height of 25 cm) and a span of 9.6 cm. Only the 2-D modes were
resonantly excited by the forcing in parameter regimes near the centre of their resonant
tongues; the short span width resulted in the three-dimensional (3-D) modes that could
fit in the container being viscously damped. This motivated our prior 2-D studies using
a square container with gravity modulation. In Yalim, Lopez & Welfert (2018), the linear
stability of the forced viscous problem, using temperature stratification, was determined
via Floquet analysis over a large range of buoyancy-to-viscous time-scale ratios and forcing
amplitudes and frequencies. Temperature rather than salt was used for stratification, as
the fixed temperature boundary conditions on the top and bottom endwalls result in
the state of zero relative velocity and stable linear temperature stratification being an
equilibrium solution that exists for all parameter values. The Floquet analysis determined
the stability of this equilibrium. Those results were used to develop a reduced model
to quickly determine instability regimes (Yalim, Welfert & Lopez 2019a). The Floquet
analysis, however, does not provide any indication as to what the response flow is when
the equilibrium is unstable. Yalim, Welfert & Lopez (2019b) addressed this by studying the
fully nonlinear 2-D problem, uncovering a wealth of complex dynamics. Restricting the
simulations to two dimensions allowed for a very detailed exploration of the nonlinear
dynamics, particularly near the tip and centre of the broadest resonance tongue, the
subharmonic 1 : 1 tongue. The observed dynamics involved a symmetry-breaking flip
bifurcation, which was either supercritical to the high-frequency side of the tip of the
tongue or subcritical to the low-frequency side, resulting in a subharmonic limit cycle
L1:1. This limit cycle undergoes both pitchfork and Neimark–Sacker bifurcations, resulting
in symmetry conjugate limit cycles and quasi-periodic 2-tori in different parts of the tip.
All of these states undergo secondary bifurcations, resulting in a multiplicity of unstable
saddle states. Gluing bifurcations and various heteroclinic cycles, including a complex
homoclinic-doubling sequence which has some similarities to the dynamics of the logistic
map, were found.

A primary goal of the present study is to determine to what extent the 2-D results (Yalim
et al. 2019b) persist in three dimensions. To this end, we study the nonlinear dynamics
in a container with a square cross-section and a spanwise aspect ratio corresponding to
that of the container used in the experiments of Benielli & Sommeria (1998). This is
done via numerical simulations of the 3-D Navier–Stokes equations using the Boussinesq
approximation and thermal stratification.

2. Governing equations, symmetries and numerics

Consider a fluid of kinematic viscosity ν, thermal diffusivity κ and coefficient of volume
expansion β contained in a cavity of square cross-section with sides of length L and
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Parametrically forced stably stratified flow
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T = 0.5

T = –0.5

1 + αf  cos(ωf t)

FIGURE 1. Schematic of the vertically oscillating cavity. The perspective is of the clipped
(boundary layers removed) spanwise vorticity ωy for an L1:0:1 response at Rn = 2 × 104, αf =
0.15 and ωf = 1.41.

spanwise width W. The four sidewalls are thermally insulated, whereas the top and bottom
endwalls are held at constant temperatures, with the temperature difference between the
top and bottom walls ΔT = TT − TB > 0. Gravity g is aligned in the downward vertical
direction. In the absence of any other external force, the fluid is linearly stratified and
at rest. The system is non-dimensionalized using L as the length scale and 1/N as
the time scale, where N = √

gβΔT/L is the buoyancy frequency. The non-dimensional
temperature is T = (T∗ − TB)/ΔT − 0.5. A Cartesian coordinate system fixed to the
cavity is used with its origin at the centre of the cavity; z is the vertical direction and
y is the spanwise direction, such that x = (x, y, z) ∈ [−0.5, 0.5] × [−W/2L, W/2L] ×
[−0.5, 0.5]. The velocity is u = (u, v, w) and the vorticity is ω = ∇ · u = (ωx, ωy, ωz).
The cavity is subjected to harmonic oscillations in the vertical direction of angular
frequency f and vertical displacement �. Figure 1 is a schematic of the set-up.

Under the Boussinesq approximation, the non-dimensional governing equations in the
cavity frame are

∂u/∂t + u · ∇u = −∇p + Rn−1∇2u + (1 + αf cos ωf t)Tez, ∇ · u = 0,

∂T/∂t + u · ∇T = (Pr Rn)−1∇2T,

}
(2.1)

where p is the reduced pressure. There are five non-dimensional parameters:

buoyancy number Rn = NL2/ν,

Prandtl number Pr = ν/κ,

spanwise aspect ratio γ = W/L,

forcing frequency ωf = f /N,

forcing amplitude αf = f 2�/g.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

The no-slip boundary condition in the cavity frame is u = 0 on all six walls.
The temperature boundary conditions are Tx(±0.5, y, z) = Ty(x, ±0.5γ, z) = 0 and
T(x, y, ±0.5) = ±0.5. The governing equations and boundary conditions are equivariant
to reflections about the three midplanes, Kx, Ky and Kz. Their composition is a reflection
through the origin, known as a centrosymmetry, whose action is

C : [u, v, w, T](x, y, z, t) �→ [−u, −v, −w, −T](−x, −y, −z, t). (2.3)

900 R3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

54
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.543


J. Yalim, J. M. Lopez and B. D. Welfert

Owing to the periodic forcing, the system is also invariant to a time translation,

Pτ : [u, v, w, T](x, y, z, t) �→ [u, v, w, T](x, y, z, t + τ), (2.4)

where τ = 2π/ωf is the forcing period. The basic state,

ub = 0, Tb = z and pb = 0.5z2(1 + αf cos ωf t), (2.5a–c)

is both C and Pτ invariant. It exists for all values of the governing parameters, but loses
stability as these are increased above critical levels. Instabilities are typically associated
with symmetry breaking.

Linearizing (2.1) about the basic state (2.5a–c), neglecting thermal and viscous diffusion
(taking Rn → ∞), and in the absence of gravitational modulations (αf = 0), leads to an
eigenvalue problem for the inviscid intrinsic modes of the stratified cavity. These modes
are periodic in all three directions, satisfy no-penetration boundary conditions and can
be obtained via separation of variables. They vary harmonically in time with frequency
σm:k:n ∈ (0, 1), given in terms of integer half-wavenumbers m, k and n in the x, y and z
directions by the dispersion relation

σ 2
m:k:n = m2 + (k/γ )2

m2 + (k/γ )2 + n2 . (2.6)

The spatial harmonics all have the same temporal frequency, σ 2
m:k:n = σ 2

jm:jk:jn for any
positive integer j. When k = 0 or γ → ∞, the modes reduce to the 2-D eigenmodes
determined by Thorpe (1968), with v = 0 and independent of y.

Space is discretized via spectral collocation with Chebyshev polynomials of degree nc in
barycentric form, and time evolution uses the fractional-step improved projection scheme
of Mercader, Batiste & Alonso (2010). We have implemented this method previously in
related problems (Lopez et al. 2017; Wu, Welfert & Lopez 2018; Yalim et al. 2018, 2019b).
Most of the results presented in this study were obtained with Chebyshev polynomials of
degree nc = 48 in the x, y, and z directions and up to 200 time steps per forcing period.
Converged quasi-periodic flows were run for at least 50 000 forcing periods. Flows driven
by large-amplitude forcing with wave breaking require much greater spatio-temporal
resolution; for these cases nc = 384 and 4000 time steps per forcing period were used.

The flows are visualized using isotherms and spanwise vorticity contours at the spanwise
midplane in order to allow for direct comparisons between 2-D and 3-D solutions, and

QN = ‖R‖2 − ‖S‖2

‖R‖2 + ‖S‖2 = |ω|2 − Φ

|ω|2 + Φ
, QN ∈ [−1, 1], (2.7a,b)

where R = (J − J T)/2 is the rate-of-rotation tensor and S = (J + J T)/2 is the
rate-of-strain tensor, which are respectively the skew-symmetric and symmetric
components of the velocity gradient tensor J = ∇u, Φ = 2‖S‖2 is the viscous dissipation
and ‖ · ‖ denotes the Frobenius norm. For incompressible flows, QN = 2Q/‖J‖2 is a
normalization of the Q-criterion of Hunt, Wray & Moin (1988), measuring the relative
strengths of R and S. On no-slip boundaries QN = 0, and regions in space with QN > 0
are where R dominates over S. The isosurface level QN = 0.04 (corresponding to level
(1 + QN)/2 = 0.52 of the related Ω-criterion of Liu et al. (2016)) provides a remarkably
good visualization of the flow’s vortex structure in three dimensions.
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Parametrically forced stably stratified flow

3. Dynamics in the 1 : 0 : 1 subharmonic resonance tongue

Benielli & Sommeria (1998) experimentally investigated the responses in a short
spanwise cavity (γ ≈ 0.4) at forcing frequency ωf ≈ 2/

√
2, corresponding to the middle

of the 1 : 0 : 1 subharmonic resonance tongue (the natural frequency of the 1 : 0 : 1 intrinsic
mode is σ1:0:1 = 1/

√
2). They had Rn ≈ 1.2 × 105 (N = 1.96 s−1, L = 25 cm, ν =

0.01 cm2 s−1) and a Schmidt number of order 700 (corresponding to salt in water), which
are quite challenging for an extensive numerical parametric study, even in two dimensions.
In our 2-D numerical study (Yalim et al. 2019b), we used Rn = 2 × 104 and Pr = 1 for
an extensive study in the forcing frequency and amplitude, considering ωf ∈ (0, 2.5) and
αf ∈ (0, 1). In the present 3-D numerical study, we use the same geometry as Benielli &
Sommeria (1998), with γ = 0.4, and also consider the response in the 1 : 0 : 1 subharmonic
resonance tongue, with ωf = 1.41 ≈ 2/

√
2 and αf ∈ (0, 0.3]. We keep Rn = 2 × 104 and

Pr = 1 as in the 2-D study in order to make direct comparisons between the response flows
in the two studies.

Figure 2 presents bifurcation diagrams from simulations in two dimensions (reproduced
from Yalim et al. (2019b)) and in three dimensions with γ = 0.4, both at Rn = 2 × 104,
Pr = 1 and ωf = 1.41. The state measure in both is the variance in the u velocity at
a point, Σ2

2D and Σ2
3D. The point in two dimensions is (x, z) = (1/

√
8, 1/

√
8) and in

three dimensions it is at the corresponding point on the spanwise midplane (x, y, z) =
(1/

√
8, 0, 1/

√
8). The two bifurcation diagrams are qualitatively similar; the basic state

(2.5a–c) loses stability to a limit cycle whose period is twice that of the forcing period; its
spatial structure matches that of the 1 : 1 mode in two dimensions and the 1 : 0 : 1 mode in
three dimensions, and the intrinsic frequencies of the modes are σ1:1 = σ1:0:1 = 1/

√
2 ≈

0.5ωf . The critical forcing amplitudes at onset of instability differ: αf ≈ 0.066 in two
dimensions versus αf ≈ 0.143 in three dimensions. The larger forcing in three dimensions
is needed to overcome the viscous damping from the spanwise walls at y = ±0.5.
A snapshot of the spanwise vorticity ωy at forcing phase π/2 and the isotherms at forcing
phase 3π/2 of the 2-D limit cycle L1:1 and that of the 3-D limit cycle L1:0:1 in the
spanwise midplane y = 0 are shown in the first column of figure 3. The states are a little
beyond onset, at αf = 0.07 for the 2-D and αf = 0.15 for the 3-D cases. They are very
similar. At the subharmonic bifurcation, both the centrosymmetry C and the τ periodicity
Pτ are broken; however, the cycles retain a spatio-temporal symmetry consisting of the
composition CPτ (a half-period-flip symmetry). Furthermore, Pτ conjugates are also
spawned, Pτ (L1:1) in two dimensions and Pτ (L1:0:1) in three dimensions. All have
invariance to the combined reflections in x and z, KxKz (but not to just one or the other
reflection), and L1:0:1 is also spanwise reflection Ky invariant.

The limit cycles undergo a pitchfork bifurcation, at αf ≈ 0.101 in two dimensions
and αf ≈ 0.167 in three dimensions, breaking the half-period-flip symmetry CPτ and
spawning two subharmonic limit cycles, LL2D and LR2D in two dimensions and LL3D and
LR3D in three dimensions (along with their Pτ conjugates). These states are symmetrically
related by a reflection either in x or in z: Kx LL = LR and Kz LL = LR, in both two and
three dimensions. The second and third columns of figure 3 show snapshots of these. The
fourth column of figure 3 shows snapshots of another limit cycle, L2:2 in two dimensions
and L2:0:2 in three dimensions; these are spatial harmonics of L1:1 and L1:0:1. They are
unstable in the full space, but stable in the C-invariant subspace in which they were
computed. All these limit cycles have the same frequency, 0.5ωf .
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FIGURE 2. Bifurcation diagrams at Rn = 2 × 104, Pr = 1 and ωf = 1.41 for (a) the 2-D study
and (b) the 3-D study with γ = 0.4. In both panels, the primary subharmonic limit cycles are
denoted in red, the symmetric-conjugate limit cycles in blue, quasi-periodic states of two or three
frequencies in yellow, and a myriad of complex states, including chaos, in green.

Figure 4 shows a 3-D perspective of the same 3-D states from figure 3 (supplementary
movie 1, available at https://doi.org/10.1017/jfm.2020.543, animates the four limit cycles
over two forcing periods). The temperature deviation is maximal a half-forcing-period (a
quarter period of the subharmonic response) after the maximal response in the spanwise
vorticity. When the magnitude of vorticity (which is pointing almost entirely in the
spanwise direction) is small in the interior, the QN = 0.04 isosurface retracts to the
boundary layer regions where dissipative effects dominate.

So far, we have found direct, albeit qualitative, correspondence between the response
flows in two and three dimensions. Further increasing αf beyond αf ≈ 0.110 in two
dimensions and αf ≈ 0.193 in three dimensions, LL and LR (and their conjugates
Pτ LL and Pτ LR) lose stability via a Neimark–Sacker bifurcation. Following the
Neimark–Sacker bifurcation, a pair of symmetrically related quasi-periodic solutions
QL3D and QR3D (along with their Pτ conjugates) are spawned. These quasi-periodic
solutions are characterized by two frequencies and exist on 2-tori in phase space. The first
frequency is inherited from the progenitor subharmonic limit cycles (LL3D and LR3D),
while the second frequency is lower and corresponds to slow drifts to and from the L2:0:2
saddle limit cycle. Supplementary movie 2 shows an animation of the QN-criterion at
isolevel QN = 0.04 of QR3D at α = 0.234 strobed every two forcing periods at forcing
phase π over 176 forcing periods. This movie illustrates the slow drift in the QR3D
heteroclinic dynamics between the saddle states L1:0:1, LR3D and L2:0:2.

Increasing αf beyond 0.234, QL3D and QR3D (along with their Pτ conjugates) undergo
a period-doubling cascade. Strobing the phase portrait of the flow every two forcing
periods, the period doubling is illustrated for several αf in figure 5. The last computed
QR3D prior to period doubling is illustrated at αf = 0.234; the strobed phase portrait
is a single-loop cycle corresponding to the low frequency in the quasi-periodic QR3D.
Quasi-statically increasing the forcing amplitude to αf = 0.235, the low frequency is
observed to halve (period double) as the strobe map now consists of a two-loop cycle. The
period-doubling sequence continues: by αf = 0.238 the strobe map cycle has four loops
and 16 loops at αf = 0.239. Increasing αf further reveals the classic period-doubling route
to chaos, culminating at αf ≈ 0.247 where the KxKz symmetry is broken. The spanwise
Ky symmetry is preserved throughout this cascade.
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Parametrically forced stably stratified flow

L1:1 at αf  = 0.07 LL2D at αf  = 0.105 LR2D at αf  = 0.105 L2:2 at αf  = 0.105

L1:0:1 at αf  = 0.15 LL3D at αf  = 0.17 LR3D at αf  = 0.17 L2:0:2 at αf  = 0.17
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(b)

(a)

FIGURE 3. Snapshots of subharmonic limit cycle response flows for Rn = 2 × 104, Pr = 1 and
forcing frequency ωf = 1.41 at forcing amplitude αf as indicated: (a) spanwise vorticity ωy and
isotherms of 2-D flows from Yalim et al. (2019b); (b) ωy and the isotherms of 3-D flows in the
spanwise midplane y = 0, but at different αf as indicated. The isotherms and ωy are shown a
half-forcing-period apart.

The symmetry-broken QL3D and QR3D states at αf ≈ 0.247 undergo intermittent drifts
to and from the KxKz-symmetry subspace. On increasing αf , the drifts away from
the KxKz-symmetry subspace increase in intensity and duration, resulting in the flow
momentarily visiting a sloshing state whose dynamics are reminiscent of the dynamics
of the 3-tori observed in the 2-D case (Yalim et al. 2019b).

One of the main findings in Yalim et al. (2019b) was the unravelling of the gluing
bifurcations of the 2-D left- and right-handed quasi-periodic flows into a single symmetric
quasi-periodic flow. Such dynamics are also observed here in three dimensions for αf ≥
0.247. An example of a glued solution at αf = 0.26 is shown in figure 6, which includes
a strobed (every two forcing periods) phase portrait of the flow along with a selection of
flow snapshots. This glued state is KxKz symmetric and experiences heteroclinic dynamics
between the saddle states L1:0:1, LL3D, LR3D and L2:0:2 (snapshots of the flow near these
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T

QN

ωy

L1:0:1 at αf  = 0.15 LL3D at αf  = 0.17 LR3D at αf  = 0.17 L2:0:2 at αf  = 0.17

FIGURE 4. Snapshots of subharmonic limit cycle response flows for Rn = 2 × 104, Pr = 1 and
forcing frequency ωf = 1.41 at forcing amplitude αf as indicated. The spanwise vorticity ωy and
the normalized Q-criterion QN are shown a half-forcing-period behind the isotherms T . The T
value is used to colour the QN = 0.04 isosurface. Supplementary movie 1 provides an animation
over two forcing periods.

0 1.0 2.0 3.0
0.88

0.90

0.92

0.94

104Ek 104Ek 104Ek 104Ek

ET

0 1.0 2.0 3.0 0 1.0 2.0 3.0 0 1.0 2.0 3.0

αf  = 0.234 αf  = 0.235 αf  = 0.238 αf  = 0.239

FIGURE 5. Strobe maps (every two forcing periods at forcing phase 0) of QR3D using the kinetic
energy Ek = 0.5

∫∫∫
V u2 dV and global temperature measure ET = 30

∫∫∫
V T2 dV at ωf = 1.41

and αf as indicated. Supplementary movie 2 animates the αf = 0.234 case.
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−0.01 0 0.01 0.02

0.88
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ET

nτ = 36 nτ = 70 nτ = 156 nτ = 386

(a)

(b)

(c)

(d )

(b)(a) (c) (d )

FIGURE 6. Strobe map (every two forcing periods at phase 0) of QR3D using up =
u(1/

√
8, 0, 1/

√
8, t) and ET at ωf = 1.41 and αf = 0.26. The snapshots of isosurface QN = 0.04

at the various forcing periods indicated are shown as coloured symbols in the strobed phase
portrait. A strobed animation over 688 forcing periods is shown in supplementary movie 3.

states are shown in figure 6). Supplementary movie 3 animates the strobed flow over 688
forcing periods. The complex gluing bifurcations are described in Yalim et al. (2019b)
for the 2-D parametrically forced flow, and here we have shown they persist in three
dimensions.

For αf > 0.26, the flow becomes increasingly complicated, with higher harmonics such
as L3:0:3 being observed transiently. This was also the case in the experiments of Benielli &
Sommeria (1998) as they increased the forcing amplitude. Such flows require substantially
increased resolution, in both space and time.

4. Wave breaking

The 3-D response flows described earlier were all driven at ωf = 1.41 ≈ 2σ1:0:1, and
even at the largest forcing amplitudes considered they remained quasi-2-D with spanwise
variation only found in their boundary layers and globally being spanwise Ky invariant.
In this section, we consider a forcing detuned away from the primary subharmonic modal
response, corresponding to ωf = 1.34 and forcing amplitude αf = 0.3. This is motivated
by the 2-D study in Yalim et al. (2017), where the response flow was observed to undergo
violent wave breaking when forced at a frequency a little lower than that of the primary
subharmonic mode and forced at a relative high amplitude. Likewise, the experiments of
Benielli & Sommeria (1998) observed secondary instability and wave breaking in this
regime.

The simulation with ωf = 1.34 and αf = 0.3 was initiated with a spatially uniformly
distributed perturbation with zero mean and small variance from the static linearly
stratified state. The parametrically excited subharmonic L1:0:1 mode undergoes exponential
growth in its kinetic energy over approximately 103 forcing periods, at which time it
reaches saturation. During the initial 103 forcing periods, the isotherms remain essentially
spanwise invariant, much like those shown in figure 4 at lower αf ∼ 0.17. Following
this initial growth phase, the flow begins to slosh back and forth about the spanwise y
axis. One salient feature of the isotherms in this regime is their large deviation away
from being horizontal. In the previous section, the deviation away from horizontal
isotherms was small. In contrast, in this wave-breaking regime, the zero-level isotherm
is advected approximately one-third of the way up and down the x = ±0.5 sidewalls,
while isotherms closer to the top and bottom endwalls have strong violent interactions
with the same sidewalls, reminiscent of splashing. Together with these splashing events,
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FIGURE 7. Snapshots of isotherms (a) and QN-criterion at isolevel QN = 0.04 coloured by the
temperature (b) at forcing periods nτ = 1, 2, 5 and 10 covering a transient wave-breaking event,
with forcing frequency ωf = 1.34 and forcing amplitude αf = 0.3. Supplementary movies 4 and
5 animate these over 10 forcing periods.

there are separations in the boundary layers and the formation of lambda and hairpin
vortices. Also in the interior, the sloshing results in overturning in the isotherm and a
violent wave-breaking event leading to the production of fine-scale intense 3-D structures
in the interior. All these structures are illustrated in supplementary movies 4–6 which
animate the isotherms and QN-criterion over the 10 forcing periods corresponding to this
wave-breaking event. Snapshots from these movies at forcing periods nτ = 1, 2, 5 and 10
are shown in figures 7 and 8. The views in figure 7 and supplementary movies 4 and 5
show 3-D perspectives of the isotherms and the QN = 0.04 isosurface (coloured by T),
whereas figure 8 and supplementary movie 6 are contour plots of T and QN in the three
midplanes x = 0, y = 0 and z = 0.

The snapshots in figures 7 and 8 show a range of small- and large-scale structures
in the cavity. These are correlated with hairpin and lambda vortices spawned near the
boundary. In the interior, there are also temperature inversions due to the sloshing motion
that vary in intensity over the 10 forcing periods and lead to small-scale vortical structures.
The localized vortical regions are identified by QN > 0 (shown in red), while localized
shear regions are identified by QN < 0 (shown in blue) and are correlated with strong
gradients in T . At nτ = 1, the flow is spanwise reflection symmetric Ky and invariant to
the combined x and z reflection symmetries KxKz. By nτ ≈ 5, the interior is undergoing
wave breaking and all the spatial symmetries have been broken. The broken symmetries are
more pronounced in the snapshots at nτ = 10. Symmetry breaking implies the existence
of conjugate states, and their presence may lead to heteroclinic dynamics with excursions
to and from the various states. This may be at play in the wave-breaking regime. In Yalim
et al. (2017), wave breaking was investigated using 2-D simulations over tens of thousands
of forcing periods, and intermittent excursions between various states that are typical of
heteroclinic dynamics were observed. The time scales involved in heteroclinic dynamics
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nτ = 1
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s
nτ = 2 nτ = 5 nτ = 10

QN

FIGURE 8. Snapshots of the isotherms and QN-criterion along the various vertical and
horizontal midplanes at the times indicated during a transient wave-breaking event at ωf = 1.34
and αf = 0.3. Each panel consists of the square vertical y = 0 midplane, with the horizontal
z = 0 midplane above it, and the vertical x = 0 midplane to its left. Supplementary movie 6
shows an animation over 10 forcing periods.

make a detailed investigation in three dimensions prohibitively expensive. Furthermore,
wave breaking in three dimensions is qualitatively different from wave breaking in two
dimensions; three dimensions involves intense temperature gradients in the spanwise
direction, which are absent in the 2-D idealization, and these are necessary for the
baroclinic production of the intense tube-like vortex structures that are clearly evident
throughout the container in figure 7. In two dimensions, the vorticity only has a single
component, resulting in spanwise-invariant vortex sheets.

5. Conclusions

We set out to determine the extent to which the 2-D results (Yalim et al. 2019b)
persist in three dimensions. Using the same geometry and protocol as in the experiments
of Benielli & Sommeria (1998) to explore the response flow for a forcing frequency
corresponding to the primary subharmonic modal response, and the Rn used in two
dimensions, we established excellent qualitative correspondence between the 2-D and 3-D
results, capturing the complex dynamics from onset of the subharmonic response through
the various symmetry-breaking and complex heteroclinic bifurcations, including gluing
bifurcations and heteroclinic period-doubling bifurcations as the forcing amplitude is
increased. The correspondence is not quantitative primarily because the forcing amplitude
at which these dynamics manifest is larger in three dimensions than in two dimensions.
Large forcing amplitudes are needed to overcome the added viscous damping in the
spanwise sidewall boundary layers in three dimensions. In the Rn regime considered, the
amplitude needed in three dimensions is very roughly twice that needed in two dimensions.
The qualitative correspondence between two and three dimensions was established up to
forcing amplitude αf ≈ 0.26.
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Establishing a correspondence between two and three dimensions is important because,
even in this simplified geometric setting, parametrically forced stratified flows in the
low-dissipation regime (large Rn) have very rich and complicated dynamics. To explore
this dynamics in three dimensions is currently prohibitively expensive, but quite do-able
in two dimensions. Keeping everything else the same, switching from a 2-D to a 3-D
simulation increases the cost by a factor at least equal to the number of collocation points in
the third direction. At the Rn = 2 × 104 used in this study, the 3-D simulations in regimes
where the response flow was quasi-2-D needed 493 collocation points in space and up to
200 time steps per period. When the response flow is fully 3-D rather than quasi-2-D, the
computational requirements to resolve the flow grow enormously. In the example studied
here, where the forcing frequency was reduced from ωf = 1.41 to 1.34 and the forcing
amplitude was increased to αf = 0.30, keeping the same Rn, spatial resolution had to be
increased to 3853 and the time steps per period increased to 4000. The increase in the cost
of computing a single forcing period of a fully 3-D case compared to the quasi-2-D case
is roughly (385/49)3 × (4000/200) ≈ 104.

In comparing 3-D and 2-D responses, we introduced a normalized Q-criterion, QN ,
which takes some of the guesswork out of selecting which Q isolevel to visualize. This
has a tighter connection with the standard Q-criterion used to identify regions of space
dominated by vortex structures than the Ω-criterion. Its relation to the Q-criterion is akin
to the relationship between correlation and covariance in statistics; both correlation and
QN varying in [−1, 1]. The QN-criterion provides a simple visualization of the transition
from quasi-2-D dynamics to fully 3-D responses.

In Yalim et al. (2019a), a small number of 2-D simulations were used to calibrate
a reduced model for the critical curve, where the linearly stratified base state becomes
unstable. This model is based on a modal approximation of viscous effects that bypasses
complications due to the non-commutativity of spatial differentiation operators resulting
from confinement and the imposition of associated boundary conditions. Such a modal
reduction can in theory be extended to the 3-D case, with a small number of 3-D
simulations determining fitting parameters, and facilitate the determination of where
in (ωf , αf ) parameter space specific modes are excited, an undertaking that would be
prohibitively expensive to do via 3-D simulations or even Floquet analysis. This could
also lead to a better understanding of the transition to fully 3-D, complicated responses
in terms of triadic resonances, as anticipated by McEwan (1971) and McEwan, Mander &
Smith (1972).
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