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SUMMARY
Cyclic coordinate descent (CCD) inverse kinematics
methods are traditionally derived only for manipulators
with revolute and prismatic joints. We propose a new
numerical CCD method for any differentiable type of joint
and demonstrate its use for serial-chain manipulators with
coupled joints. At the same time more general and simpler
to derive, the method performs as well in experiments as
the existing analytical CCD methods and is more robust
with respect to parameter settings. Moreover, the numerical
method can be applied to a wider range of cost functions.
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1. Introduction
The inverse kinematics (IK) of a manipulator determines
the joint values for which the end-effector reaches a given
position and orientation. A kinematic modeling framework
may support serial-chain manipulators with any number
of joints of built-in and user-defined types. Revolute and
prismatic joints are common, but special wrist joints and
curved-track gantry systems are also used in practical
applications. Further complicating the kinematics, joints can
be coupled, so that a single-joint variable controls multiple-
joint actuators. The framework may solve the inverse
kinematics of its manipulators by a variety of analytical
as well as numerical methods for more general classes of
manipulators.

Most industrial manipulators have standard designs
with known closed-form IK solutions.1 The solutions for
manipulators with six or fewer revolute or prismatic joints
can, in general, be determined by symbolic elimination
methods.2 Manipulators with seven or more degrees of
freedom (dof) have infinitely many solutions; special cases,
such as the 7-dof human-arm-like design,3 have been known
for closed-form solutions. A closed-form solution for a part
of the kinematic chain can be helpful to find solutions
for the full chain. Xin et al.4 give a numerical method to
determine the values for the sixth joint for which a closed-
form IK expression for the remaining five revolute joints has
a solution. In the context of motion planning for closed-chain
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systems, Han and Amato5 randomly sample joint values for
part of the chain and verify by the closed-form solution if the
remaining joints can close the loop.

The general numerical IK methods include pseudo-
inverse or Gauss–Newton methods,6, 7 damped pseudo-
inverse methods,8 and Jacobian-transpose-based gradient
descent methods.9 Chin et al.10 compare a selection of
quasi-Newton methods and other optimization methods
and recommend the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method18 as a general purpose IK solver.

The cyclic coordinate descent (CCD) family of IK
methods11–16 are iterative methods that optimize for one
joint variable at a time. The CCD methods are simple
to implement, converge to a solution for most start
configurations, and have few parameters to tune. The
combination of CCD with a method with fast convergence
near the goal can be faster than either of the methods in
isolation.13 The existing CCD IK methods (Section 4) give
closed-form expressions for the optimal joint variable update
for revolute and prismatic joints; other expressions must be
derived for other types of joints and joint couplings.

In this paper, we propose replacing the optimal update
with a numerical approximation (Section 5). The resulting
numerical CCD method is easy to extend with new types
of joints and can support coupled joints in general. The
numerical approximation requires only that end-effector
velocities can be computed as function of the velocities for
each joint variable. End-effector velocities must be supported
for the pseudo-inverse method and other algorithms, and the
numerical CCD method can therefore be implemented on
top of the kinematic framework with little extra work. In the
experiments (Section 6) the numerical CCD method does not,
on average, use more iterations or computer time to reach the
goal than the existing CCD methods and retains the strengths
of CCD also for manipulators with coupled joints, where the
existing CCD methods do not apply.

2. Preliminaries
Let SE(3) be the set of homogeneous transformation
matrices. The identity transformation is denoted I4. The
transformation XA ∈ SE(3) of a coordinate frame A consists
of the translation vector pA ∈ R

3 and the rotation matrix RA.
The ith column of RA is RA

i . The velocity of A has the vector
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representation

VA =
[

ωA

κvA

]
, (1)

where ωA ∈ R
3 is the angular velocity, and vA ∈ R

3 is the
positional velocity. The scaling constant κ adjusts for the dif-
ference in units of position and orientation; it plays the same
role in the cost functions of Section 3. The above naming con-
ventions apply to all coordinate frames throughout the paper.

The configuration q ∈ C of the manipulator is a vector
of n joint values that uniquely determine the transformation
of every link. The configuration space C is the set of valid
configurations. The manipulators that we consider have
fixed upper and lower joint limits. The configuration space is
scaled by constants ρi , so that the joint value qi corresponds
to the real world value ρiqi that has a unit like meter or radian.
The performance of most numerical IK methods, other than
the CCD methods, depends on the choice of the constants ρi .

The forward kinematics function f : C �→ SE(3) maps
a configuration q to the corresponding end-effector
transformation XE. Given a goal transformation XG ∈ SE(3),
the IK problem asks for solutions q to the equation f (q) =
XG.

The Jacobian J ∈ R
6×n of f maps joint velocities q̇ to

end-effector velocities VE:

VE = Jq̇. (2)

Consider, for example, a joint variable qi for a revolute or
prismatic joint. Let the joint axis pass through the z-axis of
the joint transformation XJ,i . The ith column of the Jacobian
is

Ji =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
ρiz

ρiκ (z × d)

]
if revolute,[

0

ρiκ z

]
if prismatic,

(3)

where z = RJ,i
3 and d = pE − pJ,i . Note the scaling by κ and

ρi .
Joints are coupled if they are controlled by the same joint

variable qi . In this case Ji is a linear combination of the
contributions from the individual joints.

Represent the distance from XE to XG by

�x =
[

eaa(RG(RE)−1)

κ(pG − pE)

]
, (4)

where eaa(·) is the equivalent angle axis of a rotation matrix,
i.e. a vector v = eaa(R), ‖v‖ < π , such that a rotation about
v with magnitude ‖v‖ is equivalent to the rotation R.

The pseudo-inverse IK method iterates toward the goal
with steps �q of the form �q = αJ†�x, where J† is the
pseudo-inverse of J. The value of α can be found by a line
search, or α = 1 is used by default.

The Jacobian-transpose IK method is a gradient descent
method for the cost function 1

2‖�x‖2 and has steps of the
form �q = αJT �x. Buss17 suggests choosing α such that the

distance between �x and the prediction J�q is minimized:

�x′ = JJT �x, (5)

α = �x · �x′

‖�x′‖2
. (6)

Like α = 1 for the pseudo-inverse method, the step must be
followed by a line search to guarantee a reduction in the
distance to the goal.

3. Cyclic Coordinate Descent
CCD or the method of alternating variables18 is a general
optimization method for minimization of a nonlinear
cost function g : R

n �→ R. The method repeatedly iterates
through all variables and for each variable adjusts its value
to minimize the cost.

CCD suits the IK problem well, because the structure of
the forward kinematics function allows the sweep through
the variables to be implemented efficiently. Consider a serial-
chain manipulator with forward kinematics function of the
form

f (q) =
n∏

i=1

fi(qi). (7)

The function fi : R �→ SE(3) gives the transformation of
joint i relative to joint (i − 1) and XJ,k = ∏k

i=1 fi(qi) is
the transformation of the kth joint. The cost function g(q)
measures the amount of displacement between the desired
end-effector frame XG and the current end-effector frame
XE = f (q). Since the functions fi are independent, the cost
g(q) can be optimized for qi in isolation without knowledge
of any of the joint transformations except XJ,i . Examples of
cost functions g are given in Section 4.

Figure 1 shows one sweep of the CCD method through the
variables in the order n, . . . , 1 and 1, . . . , n. In CCD-N-TO-
1() the frames XJ,k = ∏k

i=1 fi(qi) are computed including
the end-effector frame XE. The CCD-STEP() procedure is
called to perform the optimization of g for each variable qi

and subsequently the end-effector frame is updated to take
account for the new value of qi . Having swept through all
joint variables, the new joint configuration and end-effector
frame is returned, so that the caller can determine if the goal
has been reached (or reuse XE in the call to CCD-1-TO-N()).
Either sweep makes 4n transformation multiplications and
calls each forward kinematic function fi twice.

4. Analytical Cyclic Coordinate Descent
CCD for IK was popularized by Wang and Chen,13 but
earlier11, 12 and later14–16 versions have been presented also.
The CCD methods analytically solve for the joint value qi that
minimizes the cost function g. The closed-form expression
for qi is determined by solving

∂g(q)

∂qi

= 0 (8)

for each type of joint (revolute or prismatic). If the optimal
joint value is outside the joint range, the joint limit for
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CCD-N-To-1(q, XG)
XJ,0 ← I4

for i ← 1 to n
do XJ,i ← XJ,i−1fi(qi)

XE ← XJ,n

for i ← n to 1
do qi ← CCD-Step(i, qi, XJ,i, XE, XG)

XE ← XJ,i−1fi(qi)(XJ,i)−1XE

return (q, XE)

CCD-1-To-N(q, XE, XG)
XJ,0 ← I4

for i ← 1 to n
do XTmp ← XJ,i−1fi(qi)

qi ← CCD-Step(i, qi, XTmp, XE, XG)
XJ,i ← XJ,i−1fi(qi)
XE ← XJ,i(XTmp)−1XE

XE ← XJ,n

return (q, XE)

Fig. 1. Sweeps of the CCD method from end-effector to base and base to end-effector.

which the cost is the lowest is selected. This joint range
policy is valid even if the joint limits depend on the current
configuration. We will see in the following that most of the
CCD methods use equivalent cost functions.

4.1. Frobenius norm cost functions
Llinares and Page,11 Kazerounian,12 Wang and Chen,13

Regnier et al.,15 and From and Gravdahl16 measure the cost
by a function of the form

g(q) = wpgFrob
p (q) + wog

Frob
o (q) + c, (9)

where

gFrob
p (q) = ‖pG − pE‖2, (10)

gFrob
o (q) = ‖RG − RE‖2, (11)

and ‖ · ‖2 is the squared Frobenius norm, which for an m × n

matrix A (including column vectors) is given by ‖A‖2 =∑m,n
i,j=1 |Aij |2. The cost functions differ only in the values

of wp, wo, c ∈ R, but their common form can be easy to
overlook. From and Gravdahl,16 for example, represent the
orientation by a unit quaternion but convert the quaternion
to a rotation matrix to implement gFrob

o . Wang and Chen13

maximize the orientation measure

gWang
o (q) =

3∑
i=1

RE
i · RG

i , (12)

but this is equivalent to minimization of gFrob
o , since

gWang
o (q) = −1

2
gFrob

o (q) + 3 . (13)

Wang and Chen13 and Kazerounian12 give heuristics for
adaptively selecting the scaling factors wp and wo. Llinares
and Page11 do not discuss scaling, but implicitly let wp =
wo = 1. For the tests of Section 6, we define wo = 1 and
wp = κ2.

4.2. Point attachment cost functions
In robot motion planning, one common metric measures the
distance between configurations by the displacement of a set
of control points attached to the mechanism.19 Ahuactzin and
Gupta14 give a CCD IK method for a metric in this style. Let
{v1, . . . , vk} be the control points given relative to the end-
effector frame, and let their displacement relative to the goal
be measured by

g(q) =
k∑

i=1

‖(XE − XG)v̂i‖2, (14)

where p̂ ∈ R
4 is the point p represented in homogeneous

coordinates. The metric of Ahuactzin and Gupta14

corresponds to vi = ei for i = 1, 2, 3 where ei is the
ith column of the identity matrix I3. To weigh the
errors of position and orientation, we define instead
vi = ei/κ .

Consider k = 6 points: vi = ei/κ and vi+3 = −ei/κ for
i = 1, 2, 3. Insertion into Eq. (14) shows that the point
attachment cost function becomes equivalent to the Frobenius
norm cost function. Although three points are sufficient
and appear natural, the experimental results of Section 6
show that the Frobenius norm gives a better CCD method.
More than three points might also work the best for other
applications20–22 of point attachment metrics.

5. Numerical Cyclic Coordinate Descent
Instead of analytically solving for the optimal joint value,
an approximate solution can be found by one or more
steps of a numerical method. We consider a single step
of the pseudo-inverse method for the joint variable qi . Let
Ji be the ith column of the Jacobian. The step �qi ∈ R

should minimize the least square error ‖�x − Ji�qi‖2,
hence

�qi = �x · Ji

‖Ji‖2
. (15)
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f1 f2 f3,4

q1 q2 q3 q4

A1 A2 A3 A4 A5 A6 A7

Fig. 2. A kinematic chain with coupled joints.

If qi + �qi is outside of the joint range, the value is
clamped to the nearest joint limit. A revolute joint can be
wrapped around to qi + �qi + 2kπ/ρi for some k ∈ Z to
move the value into the joint range or as close to a joint limit
as possible.

Apart from numerically finding the solutions during the
iterations, the main difference between this numerical CCD
method and the analytical CCD methods is that the numerical
CCD method may use any cost function depending on
joint angles only through the forward kinematics, whereas
analytical CCD methods rely on subsets of these cost
functions that can be solved for analytically. Here we use
the cost function also used in connection with the pseudo-
inverse method as this in our opinion is the most natural
choice. For this cost function, it can easily be seen that no
analytical CCD method exists even for robots only consisting
of uncoupled revolute joints.

The numerical CCD method can support any type of
joint of the kinematic software framework (e.g. curved-track
gantry systems, helical joints, or special wrist joints such
as the ABB FlexiWrist), as long as the joint implements an
interface for its Jacobian. Couplings between the joints can
also be supported in general, as discussed in Section 5.1.
Analytical CCD solutions, by contrast, can be much harder
to express or even nonexistent.

The numerical CCD method may optionally monitor the
cost ‖�x‖2 and perform a line search for �qi to assure that
the cost decreases at each step. The line search (Nocedal,18

pp. 56–59, to be precise) was omitted in the tests of Section
6, with no effect other than a lower running time per iteration.

5.1. Numerical CCD for coupled joints
The joint variable for a coupled joint controls multiple
actuators located separate places in the kinematic chain. The
forward kinematics function therefore cannot, in general, be
split into independent functions f1, . . . , fn as assumed in
Eq. (7) and the CCD sweeps of Fig. 1.

As a model of the forward kinematics for coupled joints,
let A1, . . . ,AN , N ≥ n, be the actuators in order from
base to end-effector. The variable qi controls the set of
actuators ACT(qi) and the actuator Aj is controlled by
the single variable VAR(Aj ). The transformation of the kth
actuator is XA

k = ∏k
i=1 f A

i (qA
i ), where qA

i = VAR(Ai) and
f A

i (qA
i ) is the relative transformation of the ith actuator.

We assume that only XE and XA
k are needed to compute

the contribution of f A
k to the Jacobian J. Consequently, XA

k

must be known for each Ak ∈ ACT(qi) to compute Ji in
isolation.

Figure 2 illustrates a kinematic chain with 4-dof and seven
actuators. The chain has dependencies such as VAR(A3) =
q2 and ACT(q3) = {A4,A6}. The sets ACT(q1) and ACT(q2)
cover consecutive ranges of actuators that can be grouped
into independent forward kinematics function f1 and f2 as
usual. Such independent functions do not exist for ACT(q3)
and ACT(q4). If the CCD sweep, for example, adjusts q3

before q4, then XA
5 must be recomputed to find the Jacobian

for q4.
To avoid the recomputation, groups of variables can be

updated simultaneously. In Fig. 5, the CCD step may treat
(q3, q4) as a single variable for the forward kinematics
function f3,4 for the actuators ACT(q3) ∪ ACT(q4). The CCD
step then updates (q3, q4) by

�q3,4 = J†3,4�x, (16)

where J3,4 is the Jacobian of f3,4. Except that multiple
variables are updated in one step, the CCD sweep of Fig. 1
need not change. The algorithm of Fig. 3 groups the variables.
The larger the groups, the more the CCD sweep resembles
the pseudo-inverse method.

Most manipulators have only few couplings and couplings
only between nearby or adjacent actuators; therefore, if the
variables are updated simultaneously, the groups of variables
will usually be small, and if the variables are updated
individually, only a few transformation recomputations are
needed. For the tests of Section 6, we prefer to individually
update the variables. The variables are sorted in reverse order
by the position of the first actuator that the variable controls,
resulting in a sweep from the end-effector toward the base.

6. Experimental Results
The tests compare the performance of the analytical and
numerical CCD methods and the Jacobian-transpose and
pseudo-inverse methods. The Jacobian-transpose and CCD
methods have a low convergence rate, so near the goal
the pseudo-inverse method or another method should be
preferred. Wang and Chen,13 for example, found that CCD
followed by BFGS was faster than the either method alone.
The tests therefore iterate each method until an approximate
IK solution is reached.

The IK methods are tested for pairs (XG, qstart) of
random goal transformations and start configurations.
The goal transformation XG = f (qrand) is the end-effector
transformation for a random configuration qrand. The
configurations qrand and qstart are selected uniformly at
random from C. For each pair the number of iterations to
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Var-Groups(A1, . . . , AN )
result ← {}
open ← {}
group ← {}
for i ← 1 to N

do q ← Var(Ai)
if q /∈ group

then group ← group ∪ {q}
open ← open ∪ Act(q)

open ← open ∩ {Ai}
if open = ∅

then result ← result ∪ {group}
group ← {}

return result

Fig. 3. Variable grouping for coupled joints.

reach the goal is counted. If more than 100 iterations are
needed, the attempt is counted as a failure. The goal is
defined to be reached, if the errors in position and orientation
are below 0.05 m and 5◦. The success rate (SR) and the
average number of iterations (IC) for the successful attempts
are computed for 10,000 pairs. If 1/SR attempts are needed
to find an IK solution for a goal, and each attempt, whether
it succeeds or not, costs IC iterations on average, then the
expected number of iterations per solution is IC/SR. We
measure the performance of the IK methods by this ratio.

The cost functions depend on the scaling constant κ . Let

κ = 1

σW
, (17)

where W is the length of the manipulator and σ > 0 is a
scaling factor. The length W can be read from the data
sheet of the manipulator or estimated from the forward
kinematics description. The smaller the value of σ , the more
the cost function is dominated by the error in position.
The performance for each manipulator is computed over
an interval 0 < σ < 1 to assure that the IK methods are
compared for their optimal values of σ .

The Jacobian-transpose and pseudo-inverse methods
additionally depend on the scaling parameters ρi for C. We
choose

ρi =
{

π if revolute,

2W if prismatic.
(18)

While not optimal, this choice gave better performance than,
for example, scaling every joint range to unit length.

Most of the manipulators of the tests (see Table II) have
standard kinematic designs and only revolute joints. P-LWA3
and SCARA have prismatic joints, and F200i and K443L
have coupled joints. Joint 2 of F200i is coupled like q2 of
Fig. 2 and joints 4–5 of K443L are coupled like q3 and q4.

The IK implementations are listed in Table I. The CCD
implementations (N-CCD, F-CCD, and P-CCD) follow
Section 3, but Section 2 only partially outlines the Jacobian-
transpose (JT) and pseudo-inverse (JP) implementations. The
JT step is set to �q = 0.75αJT �x, where α is given by Eq.
(6). This step size gave a lower IC/SR ratio than even a perfect

Table I. Inverse kinematics methods of the tests.

Name Description Section

JT Jacobian-transpose with step size prediction 2
JP Pseudo-inverse method with line search 2
N-CCD Numerical CCD method 5.1
F-CCD Frobenius norm CCD method 4.1
P-CCD Point attachment CCD method for k = 3 points 4.2

Table II. Manipulators of the tests.

Name Description dof W (m)

EC240B Volvo EC240B excavator 4 10.47
F200i Fanuc LR Mate 200i 6 0.70
F710i Fanuc M-710i 6 1.71
IA20 Motoman IA20 7 1.34
K320L Kobelco KRE320L, 3-roll wrist 6 2.72
K443L Kobelco KRE443L, coupled 3-roll wrist 6 2.95
KR16 Kuka KR16 6 1.80
Katana Katana (Neuronics AG) 5 0.33
LWA3 Schunk LWA3 7 0.95
P-LWA3 Schunk LWA3 on 2 m rail 8 1.08
SCARA Panasonic SCARA 4 0.86

line search for α. The JP step is of the form �q = αJ†�x.
If the cost does not sufficiently decrease for α = 1, then α

is found by one step of a line search that approximates the
cost function by a quadratic (Nocedal,18 pp. 56–59). The
JT and JP implementations clamp joint values outside of
the configuration space to the joint limits. Only JT allows the
revolute joints to wrap around, since this technique decreased
the performance for JP.

SR and IC for the IK methods as a function of σ are shown
in Figs 4 and 5 for the manipulators IA20 and K443L. The
graphs are typical for the manipulators of the tests, except
that Fig. 5 has no graphs for F-CCD and P-CCD, because
K443L has coupled joints. Almost independent of σ , JP has a
low SR but a low iteration count also. The CCD methods have
high SRs; in most of the failed attempts the steps are blocked
by joint limits. F-CCD and N-CCD have similar SRs and
iteration counts for small values of σ , but the performance
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Fig. 4. Success rate and average number of iterations for IA20.

of F-CCD decreases more rapidly, and N-CCD is therefore
more robust with respect to σ . P-CCD and JT have higher
best-case iteration counts than F-CCD and P-CCD but SRs
are similar.

Table III lists SR and IC for all manipulators and IK
methods for the value of σ for which the performance was
the best. F-CCD and N-CCD perform fine even for very small
values of σ for the manipulators where the last three joint
axes intersect at the position of the end-effector, but overall
σ = 0.15 is a good default choice. JT performs the best near
σ = 0.35.
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Fig. 5. SR and IC for K443L: a manipulator with coupled joints.

The IC/SR ratio of the numbers of Table III is displayed
in Fig. 6. The ratios for F-CCD and N-CCD are similar
to each other and lower than the ratios for P-CCD and
JT. JP has slightly higher ratio than F-CCD and N-
CCD for most of the manipulators. In practice, these
two CCD methods outperform JP by an even greater
margin, since JP, with its line search and pseudo-inverse
computation, has a longer running time per iteration. The
F-CCD and N-CCD methods have similar running times
per iteration; in our implementation, N-CCD was slightly
faster.

Table III. SR (%) and IC for the value of σ that minimizes IC/SR.

JT JP N-CCD F-CCD P-CCD

ID σ SR IC σ SR IC σ SR IC σ SR IC σ SR IC

EC240B 0.23 86 27 0.28 83 6 0.07 94 12 0.02 91 11 0.10 91 14
F200i 0.47 72 22 0.12 26 9 0.04 72 9 – – – – – –
F710i 0.34 76 27 0.07 34 7 0.04 80 11 0.03 73 12 0.30 72 21
IA20 0.32 98 20 0.09 57 8 0.01 93 9 0.01 92 9 0.27 98 20
K320L 0.28 64 33 0.14 41 8 0.14 73 15 0.10 68 15 0.21 67 30
K443L 0.33 69 39 0.17 43 10 0.10 82 18 – – – – – –
KR16 0.27 75 26 0.10 41 8 0.06 77 10 0.03 79 9 0.23 79 19
Katana 0.52 73 14 0.18 44 5 0.02 84 6 0.03 85 5 0.34 77 13
LWA3 0.38 97 19 0.20 55 8 0.01 92 8 0.01 90 8 0.34 95 17
P-LWA3 0.40 97 18 0.20 69 8 0.20 99 8 0.16 99 8 0.32 97 14
SCARA 0.35 99 12 0.06 54 4 0.03 99 6 0.01 98 5 0.34 97 8
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7. Conclusion
In this paper, we have presented a new numerical CCD
method for the inverse kinematics problem. The proposed
method is simple to implement into any kinematic framework
having standard forward kinematics and Jacobians for each
joint available. We have compared our method to the
previously published analytical CCD methods by considering
11 different manipulators and range of parameter settings.
In order to obtain good statistics, we considered 10,000
inverse kinematics problems for each robot and parameter
setting. We found the numerical CCD method to be more
robust with respect to scaling of the positional and angular
displacements, and we have shown that the numerical
CCD method is at least as fast as existing analytical CCD
methods. Moreover, the numerical CCD method can be
easily applied to robots with coupled joints and other
special joint types, where the analytical CCD method is
unapplicable.

As discussed in Section 5, we have omitted to use a line
search to ensure descent in each of the steps as tests showed
that this had no impact at all on the success ratio, but only
the expected negative impact on computation time. For both
the analytical and numerical CCD methods, the success ratio
is not 100% because of the risk of being trapped in a local
minima or very slow convergence. Based on our experiments,
we may thus also conclude that the mathematical beauty of a
strict descent method is of negligible importance in practise
compared to these other risks.

The program code is written for the kinematic framework
“RobWork” (see www.robwork.dk) and is available by email
on request.
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