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The effects of large-scale mechanical forcing on the dynamics of rotating turbulent
flows are studied by means of direct numerical simulations, systematically varying
the nature of the mechanical force in time. We find that the statistically stationary
solutions of these flows depend on the nature of the forcing mechanism. Rapidly
enough rotating flows with a forcing that has a persistent direction relative to the axis
of rotation bifurcate from a non-helical state to a helical state despite the fact that the
forcing is non-helical. We demonstrate that the nature of the mechanical force in time
and the emergence of helicity have direct implications for the cascade dynamics of
these flows, determining the anisotropy in the flow, the energy condensation at large
scales and the power-law energy spectra that are consistent with previous findings and
phenomenologies under strong and weak turbulence.

Key words: rotating turbulence, turbulent flows

1. Introduction

The effects of the Coriolis force on a turbulent fluid flow become important at
sufficiently high rotation rates, altering its dynamics (Tritton 1988). Experiments and
simulations reveal that fast rotation renders the flow quasi-two-dimensional (quasi-2D),
since fast rotation suppresses the velocity gradients along the axis of rotation as
shown by the Taylor–Proudman theorem (Proudman 1916; Taylor 1917). Under such
conditions, the flow sustains inertial waves that have a frequency proportional to the
rotation rate (Lighthill 1965; Greenspan 1968).

The interplay between inertial waves and eddies in rotating fluids makes the
problem of rotating turbulence very rich. Many experimental studies over a wide range
of parameters have elucidated the dynamics of such flows (Hopfinger & Heijst 1993;
Ruppert-Felsot et al. 2005; Davidson, Staplehurst & Dalziel 2006; Bewley et al. 2007;
van Bokhoven et al. 2009; Moisy et al. 2011). Many numerical studies have also
been carried out on rotating turbulence. The need for a regime that features both fully
developed turbulence (large Reynolds number) and fast-rotating flow (small Rossby
number) puts strong restrictions on the scale separation requirements in simulations.
Therefore, most of the early numerical investigations were focused on decaying
rotating turbulence (Bartello, Métais & Lesieur 1994; Hossain 1994; Cambon,
Mansour & Godeferd 1997; Morinishi, Nakabayashi & Ren 2001; Teitelbaum &
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Mininni 2011; Yoshimatsu, Midorikawa & Kaneda 2011). More recent studies have
been performed on forced rotating turbulence both at large (Yeung & Zhou 1998;
Mininni & Pouquet 2010; Mininni, Rosenberg & Pouquet 2012) and small scales, the
latter to study the dynamics of the inverse cascade (Smith, Chasnov & Waleffe 1996;
Pouquet et al. 2013; Deusebio et al. 2014). The computational costs generally prevent
the exhaustive coverage of the parameter space, with most numerical studies reaching
either large Reynolds numbers and moderate Rossby numbers or moderate Reynolds
numbers and small Rossby numbers. Note that these simulations, with the exception
of a very recent study which reached steady states and extensively covered a fairly
large portion of the parameter space (Alexakis 2015), have not reached statistically
stationary solutions because very long integration times are required.

Although these studies are numerous and an adequate portion of the parameter space
has been covered, there are still disparate results in different cases – for example,
different power-law spectra with E(k) ∝ k−5/3, k−2 and k−5/2, supported theoretically
by strong and weak-wave turbulence phenomenologies (Kolmogorov 1941; Zhou 1995;
Galtier 2003; Pouquet & Mininni 2010). Moreover, a recent investigation has shown
sensitivity to forcing, in that different results were found for the large scales of a flow
that was forced at intermediate scales (Sen et al. 2012) when energy was injected
exclusively into the quasi-2D component of the flow, compared with when it was
injected solely into the inertial waves. The injection of helicity into the flow has
also shown alterations in the behaviour of the cascade (Pouquet & Mininni 2010).
Forcing-dependent dynamics have been observed in various other systems such as in
2D turbulence (Bracco & McWilliams 2010; Boffetta & Ecke 2012), in beta-plane
turbulence (Maltrud & Vallis 1991) and in magnetohydrodynamic turbulence (Dallas
& Alexakis 2015).

The present work focuses on the effects of the mechanical force on the dynamics of
rotating flows by means of numerical simulations, varying systematically the memory
time scale of the mechanical force (i.e. the time scale on which the phases of the
force are randomised). The behaviour of different mechanical forcing mechanisms on
the flows is also considered for different rotation rates. To the best of the authors’
knowledge this is the first study of forced rotating flows in the steady-state regime
in which the effects of a large-scale external force on the dynamics are studied
extensively.

The paper is structured as follows. All the necessary details of the formulation
of our direct numerical simulation (DNS) of forced rotating turbulence are provided
in § 2. Section 3 analyses the dynamics of the flows with different memory time scales
of the forcing mechanism for a given Rossby number. Here, we also focus on the
spontaneous emergence of helicity in our flows and its influence on the anisotropy and
spectral dynamics. In § 4 we describe the Rossby number dependence on flows with
different types of forcing mechanisms and we justify the spontaneous mirror-symmetry
breaking in our flows even though net helicity is not injected directly. Finally, in § 5,
we conclude by summarising our findings and discussing the implications of our work.

2. Numerical simulations
In this study, we consider the three-dimensional (3D) incompressible Navier–Stokes

equations in a rotating frame of reference

∂tu+ω× u+ 2Ω × u=−∇P+ ν∇2u+ f , (2.1)

where u is the velocity field, ω = ∇ × u is the vorticity, P is the pressure, ν is
the kinematic viscosity and f is an external mechanical force. In a Cartesian domain,
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we choose the rotation axis to be in the z direction with Ω =Ωez, where Ω is the
rotation frequency. In the ideal case of ν = 0 and f = 0, equation (2.1) conserves the
energy E = 〈|u|2〉/2 (where | · | stands for the L2-norm) and the helicity H = 〈u · ω〉
with the angular brackets denoting a spatial average unless indicated otherwise.

The external mechanical forcing in (2.1) is given by

f = f0

∑
kf

sin(kf y+ φy)+ sin(kf z+ φz)

sin(kf x+ φx)+ sin(kf z+ φz)

sin(kf x+ φx)+ sin(kf y+ φy)

 , (2.2)

where φx, φy, φz are phases, randomised every τm, of the so-called memory time
scale, which is one of the control parameters in our study. The forcing is applied
at wavenumber amplitudes |k| = kf = 2, 3 and 4, where kf denotes the forcing
wavenumber. The random phases are specific to a kf mode and the random change
of phases is done instantaneously for all phases. In the limit of τm → 0 we have
essentially a random delta correlated in time forcing with the phases randomised at
each time step, whereas when we choose τm =∞ we randomise the phases only at
t = 0 in the duration of the runs, and hence apply a time-independent forcing. For
all the runs the forcing amplitude is normalised such that f/|f | = f0 = 1. Note that
our forcing mechanism has f · ∇ × f 6= 0 pointwise in space but it is non-helical on
average 〈f · ∇ × f 〉 = 0, unlike an ABC forcing (Dombre et al. 1986) which is fully
helical.

Now, if we write the wavenumbers in the 3D Fourier space using cylindrical
coordinates, we have k = (k⊥, k‖), with k⊥ =

√
k2

x + k2
y and k‖ = |kz|. Then, the 2D

modes (i.e. independent of z) in Fourier space can be denoted as u(k⊥) and the 3D
or wave modes as u(k). Then, in this setting the time-independent forcing (τm =∞)
excites two 2D modes (in the kx and ky axis of the Fourier space) and one 3D mode
(in the kz axis) in the Fourier shell for each wavenumber kf . The random-in-time
forcing (τm→ 0) excites also the same modes but since the phases are random, this
mechanism is isotropic in contrast to the time-independent forcing. By isotropic, we
mean that the forcing vector of the driving mechanism with the short memory time
scale samples all phase space assuming ergodicity.

The relevant dimensionless control parameters of our problem are defined based on
the forcing amplitude. So, the Reynolds number is given by Ref =U/(kminν) and the
Rossby number by Rof =Ukmin/(2Ω) where U = ( f0/kmin)

1/2. Using these definitions
Re2

f is essentially the Grashof number and Rof the ratio of the rotation period τw ∝
Ω−1 to the eddy turnover time τNL = (Ukmin)

−1. Note that Ref and Rof are control
parameters in that they do not require knowledge of the solution to be evaluated and
are useful for comparison with body-forced numerical simulations or experiments. All
the control parameters of our DNS are listed in table 1.

Using the pseudo-spectral method, we numerically integrate (2.1) in a periodic
box of size 2π, satisfying the incompressibility condition ∇ · u = 0. The time
derivatives are estimated using a third-order Runge–Kutta scheme. Aliasing errors are
removed using the 2/3 dealiasing rule and as a result the minimum and maximum
wavenumbers are kmin = 1 and kmax = N/3, respectively, where N is the number of
grid points in each Cartesian coordinate. For more details on the numerical code see
Gómez, Mininni & Dmitruk (2005).
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FIGURE 1. (Colour online) Time series of (a) the energy E for the flows with different
memory time scales τm of the forcing and of (b) the rates of energy dissipation ε and
injection 〈u · f 〉 for the flows with τm/τNL = 0.5 and ∞ at Rossby number Rof = 0.1 and
Reynolds number Ref = 333.

τm/τNL 0.5 0.5 0.5 0.5 0.5 0.5 4.0 32.0 128.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
Rof 0.01 0.05 0.1 0.1 0.2 0.5 0.1 0.1 0.1 0.01 0.05 0.1 0.1 0.2 0.33 0.5
Ref 333 333 333 714 333 333 333 333 333 333 333 333 714 333 333 333
Ω 50.0 10.0 5.0 5.0 2.5 1.0 5.0 5.0 5.0 50.0 10.0 5.0 5.0 1.0 1.5 1.0
ν

(×10−3)
3.0 3.0 3.0 1.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.4 3.0 3.0 3.0

N 256 256 256 512 256 256 256 256 256 256 256 256 512 256 256 256

TABLE 1. Numerical control parameters of the DNS.

3. Forcing-dependent dynamics
3.1. Time evolution

Figure 1(a) shows the temporal evolution of the energy E for flows with Rof = 0.1
and different memory time scale τm of the forcing. As τm increases, we observe a
gradual increase of the amplitude of the energy up to an order of magnitude. The
time-series for τm/τNL > 4 are characterised by large signal variations, which require
extremely long time-integrations, restricting our runs to moderate Reynolds numbers.
Note that even for low τm a steady state is reached after a transient that lasts for about
50 to 100τNL turnover times, indicating how expensive computationally it is to reach
a steady-state regime in rotating flows forced at large scales.

The temporal evolution of the energy dissipation rate ε = ν〈|ω|2〉 and the energy
injection rate 〈u · f 〉 are presented in figure 1(b). For clear illustration purposes we
choose to plot only the two extreme cases of the flows with highly random-in-time
forcing (τm/τNL = 0.5) and time-independent forcing (τm/τNL = ∞) at Rof = 0.1. At
relatively early times the two flows reach a steady state (see figure 1a) and therefore
the balance ε = 〈u · f 〉 is satisfied with both flows having the same rates of energy
injection and dissipation. However, after a very long time period (∼600τNL turnover
times) the flow with the time-independent forcing deviates eventually to a new
statistically steady state. This happens when u becomes correlated with f and then
the flow adjusts its dissipation rate such that a new steady state is achieved.
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FIGURE 2. (Colour online) (a) Time series of relative helicity ρH and (b) probability
density function (PDF) of the absolute value of ρH for flows with different forcing memory
time scales at Rossby number Rof = 0.1 and Reynolds number Ref = 333.

The adjustment of the dissipation rate by the flow owing to the increase of the
correlation between the external mechanical force and the velocity field explains why
the energy increases as we increase the memory time scale of the forcing. This is a
very interesting property of rotating flows from a practical point of view if one wants
to minimise or maximise the energy dissipation rate in a potential application such as
in turbomachinery.

We should point out here that the energy dissipation rate remains small for the flow,
with τm/τNL= 0.5 throughout the duration of the simulation, for two reasons. The first
reason is the short memory time scale of the forcing that keeps the 〈u · f 〉 correlation
small, and the second reason is the low Rossby number, resulting in a weak turbulent
cascade as we show later on.

3.2. The role of helicity
Helicity is common in real flows and it can be created, for example, in planetary
atmospheres in the presence of rotation and stratification (Moffatt 1978; Tobias 2009;
Marino et al. 2013). In homogenenous non-rotating turbulence it is expected that the
helicity spectrum cannot develop if it is initially zero (André & Lesieur 1977) or if an
external mechanism does not inject net helicity (Dallas, Fauve & Alexakis 2015). In
our runs zero net helicity is injected into the flow. Nevertheless, for a given rotation
rate (i.e. Rof = 0.1) we observe that the relative helicity ρH =H/(|u| |ω|) increases as
the memory time scale of the forcing increases (see figure 2).

It is apparent from figure 2 that the mirror-symmetry breaking depends on the value
of τm. Figure 2(a) shows ρH to be almost zero at early times for all the flows, and as
τm increases the mirror symmetry breaks at later times only for long enough τm. We
observe that helicity emerges in the flow as soon as τm becomes of the order of the
eddy turnover time, i.e. τm/τNL ∼ O(1). To analyse further this behaviour of ρH we
plot the probability density function (PDF) of the time series of the absolute value
of relative helicity in figure 2(b). This plot shows an increase in the mean value of
|ρH| and also a broadening of the tails of the PDFs for longer memory time scales.
So, unlike in homogeneous turbulence, helicity can be created in rotating flows by an
external force with a sufficiently long memory time scale, even though net helicity is
not injected directly into the flow.
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FIGURE 3. (Colour online) Visualisations of the relative helicity ρH for the flows at
Rossby number Rof = 0.1 and Reynolds number Ref = 714 with (a) τm/τNL = 0.5,
ρH =−0.018 and (b) τm/τNL =∞, ρH = 0.45.

To determine whether the breaking of mirror-symmetry, which distinguishes flows
with highly random-in-time and time-independent forcings, remains at higher Reynolds
numbers we carried out simulations for the two extreme cases of τm/τNL = 0.5 and
∞ at Ref = 714 and Rof = 0.1. Our numerical simulations confirmed the persistence
of this behaviour at higher Reynolds numbers. We therefore analyse these higher
Reynolds number runs in order to gain further insight into the effects of helicity on
the flow.

Visualisations of the relative helicity of the flows with Ref = 714 are presented in
figures 3(a) and 3(b) with the average value of ρH = −0.018 for τm/τNL = 0.5 and
ρH = 0.45 for τm/τNL =∞. The red and blue colours in figure 3 indicate right-hand
(positive helicity) and left-hand (negative helicity) circularly polarized helical waves,
respectively. An instructive way to explain this further is to decompose the velocity
field into circularly polarised helical waves (Constantin & Majda 1988; Waleffe 1992)

u(x, t)= h±(k)ei(k·x−ω±t), (3.1)
where ik, h+ and h− are the linearly independent eigenvectors of the curl operator,
i.e. ik× h± =±|k|h±. These complex eigenvectors are orthogonal to each other and
are fully helical. So, now û(k) can be expressed as a linear combination of the
eigenvectors h+ and h− only as follows

û(k, t)= u+(k, t)h+(k)+ u−(k, t)h−(k) (3.2)

since k · û(k) = 0. Then, the helicity can be separated into modes of positive and
negative helicity, viz.

H =
∑

k

û(k) · ω̂∗(k)

=
∑

k

k(|u+(k)|2 − |u−(k)|2)

= k(E+ − E−)=H+ −H−, (3.3)

where ∗ denotes the complex conjugate.
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FIGURE 4. The two-dimensional energy spectrum E2D(k⊥, k‖) for the flows at Rossby
number Rof = 0.1 and Reynolds number Ref = 714 with (a) τm/τNL = 0.5, ρH = −0.018
and (b) τm/τNL =∞, ρH = 0.45.

The nature of the forcing is clearly imprinted on the flow structure in figure 3. The
flow with the highly random-in-time forcing (see figure 3a) gives a quasi-2D flow
with two large columnar vortices, typical at low Rossby numbers due to the Taylor–
Proudman theorem. These two vortices are governed by helical waves of opposite
polarity. On the other hand, the flow with the time-independent forcing is characterised
by helical waves of opposite polarity that travel within the flow, breaking the quasi-2D
behaviour at small and intermediate scales that is imposed by rotation (see figure 3b).
Note that the two large-scale vortices are still present but this time they have the same
sign of helicity on average. Similar effects of helicity have also been observed on a
previous study of decaying rotating turbulence (Morinishi et al. 2001).

In order to quantify the level of anisotropy of these two runs we consider the 2D
energy spectrum, which is defined as

E2D(k⊥, k‖)=
∑

k‖6|k·ez|<k‖+1
k⊥6|k×ez|<k⊥+1

|ûk|2. (3.4)

The sum is restricted here at energy in cylinders of radius k⊥ and energy in planes k‖.
Figures 4(a) and 4(b) show the 2D energy spectrum for the flows with τm/τNL = 0.5
and ∞, respectively. The contours of the 2D energy spectrum for an isotropic flow
are represented by concentric circles centred at the origin of the axes. Any deviation
from the circular pattern indicates the level of anisotropy in the flow. By comparing
the two contour plots of E2D, it becomes clear that in figure 4(b) the intermediate and
small scales are closer to isotropy, implying that the flow with the time-independent
forcing is overall less anisotropic than the flow with the highly random-in-time forcing.
This observation is in agreement with the visualisation of figure 3, which prompts us
to postulate that the helicity plays a central role in the suppression of anisotropy in
the flow.

3.3. Spectral behaviour
In this section we present the spectra of the energy E(k) and the energy flux ΠE(k).
The energy spectrum was spherically averaged using the following expression:

E(k)=
∑

k6|k|<k+1

|ûk|2 (3.5)
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FIGURE 5. (Colour online) (a) Energy spectra E(k) compensated by k5/2 and (b) the
energy flux spectra ΠE(k) normalised with the dissipation rate εE for flows with different
forcing memory time scale at Rossby number Rof = 0.1 and Reynolds number Ref = 333.

and the spectrum of the energy flux was obtained as

ΠE(k)=
K∑

k=1

∑
k6|k|<k+1

û∗(k) · ̂(u×ω)(k). (3.6)

The energy flux is a measure that illustrates the direction of the energy cascades.
These spectra were time-averaged after the flows had reached a steady-state
solution. Note that the flow with the time-independent forcing (τm/τNL = ∞) was
time-averaged only after ∼800τNL turnover times, when the new steady state was
reached (see figure 1b).

Note that we did not observe any differences to the scalings of the spectra when
averaging over spheres and over cylinders. This has also been shown clearly by
Mininni, Alexakis & Pouquet (2009), who performed simulations at low Rossby
numbers and of similar resolutions to ours. So, the scalings of the spectra that we
present are also valid for energy spectra as a function of k⊥. However, significant
differences in the scalings are observed in the k‖ direction.

The effects of the memory time scale of the forcing are also apparent on the
spectral dynamics of our flows. Figure 5(a) shows the energy spectra of the flows
with different memory time scales of the forcing compensated by k5/2. The spectra
of these flows obey different power laws which clearly depend on the memory time
scale of the forcing. The runs that are forced with the highly random-in-time forcing
seem to have a k−5/2 scaling. As τm increases the spectra start to deviate gradually
from the k−5/2 scaling towards a k−2 and finally reach a k−5/3 scaling for the flow
with the time-independent forcing. The k−5/3 energy spectrum can be interpreted from
the fact that the intermediate and small scales of the flow are closer to isotropy
(see figures 4b and 3b) and hence we expect the Kolmogorov phenomenology to
be valid in this case. All the exponents that we observe here could be related to
the various phenomenologies on strong and weak-wave turbulence in the literature,
where the interplay between τNL and the time scale of the inertial waves τw ∝Ω−1 is
central to obtain the different energy spectra. These spectral exponents have also been
observed in other studies of forced rotating flows (Yeung & Zhou 1998; Mininni &
Pouquet 2010; Alexakis 2015). Owing to the moderate resolution of these simulations,
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the statements about the exact spectral exponents are qualitative. In any case, our
results clearly show a dependence of the spectra on the nature of the forcing in
rotating turbulence. Simulations integrated for extremely long times with higher
Reynolds numbers but also lower Rossby numbers, falling in the same dynamical
regime of the two-dimensional parameter space, are necessary to verify whether our
results imply a lack of universality in these flows.

The corresponding spectra for the energy flux ΠE(k) normalised by the energy
dissipation rate εE = 2ν

∑
k k2E(k) are shown in figure 5(b). The positive flux in this

plot indicates a forward cascade while the negative flux indicates a transfer of energy
from the small to the large scales of the flow. In the case of negative flux we do not
talk about a cascade because we do not have enough scale separation between the
forcing scale and the box size. As the memory time scale of the forcing increases,
the forward cascade becomes stronger. On the other hand, the flux of energy towards
the large scales increases as the forcing becomes more random-in-time with the flow
reaching a quasi-2D state. These observations are in line with the visualisations of
figure 3.

We have already seen that as the forcing becomes less time-dependent, helicity
increases considerably in our flows, so these changes in the spectra can also be
related to the presence of strong net helicity in the flow. This is in agreement with
prior studies that have shown the influence of helicity on the energy spectrum by
directly injecting helicity into the flow (Mininni & Pouquet 2009, 2010). In contrast,
helicity does not seem to have any significant effect on the spectra in non-rotating,
homogeneous and isotropic helical turbulence (Dallas et al. 2015).

The fact that helicity is not a sign-definite quantity and because we do not inject
any net helicity, the sign of helicity in our flows undergoes changes in its inertial
range. Therefore, there is either no power-law or it is difficult to define one in our
helicity spectra. For this reason, we do not show any helicity spectra here. In the next
section, we examine the Rossby number dependence of the dynamics of the flows.

4. Rossby number dependence
4.1. Global behaviour

In the previous sections we saw that the dynamics depend on the nature of the forcing
for a given Rossby number. Here, we investigate the effects of the rotation rate on
the flows, focusing on the extreme cases of the forcing being highly random-in-time
(τm/τNL= 0.5) and time-independent (τm/τNL=∞) for fixed Ref = 333. Again here we
restrict ourselves to moderate Reynolds numbers because extremely long integration
times for the runs with time-independent forcing are inevitable.

For high Rossby number flows the effect of rotation is negligible and the energy
is expected to flow to scales smaller than the forcing scale. However, as the Rossby
number is decreased and the flow tends to become quasi-2D, there is more and more
energy transferred to scales larger than the forcing scale due to an inverse cascade
(Pouquet et al. 2013).

We examine the energy and the relative helicity for runs with different Rossby
numbers. The triangles and circles denote runs forced with a time-independent forcing
and random-in-time forcing, respectively. As the Rossby number is decreased we see
that energy increases as expected (see figure 6a). However, the rate of increase and the
values of energy for high enough rotation rates depend on the nature of the mechanical
force. Note that the flow with the time-independent forcing has much more energy at
small Rossby numbers.
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FIGURE 6. (Colour online) Rossby number dependence of (a) energy and (b) absolute
value of relative helicity for flows with Reynolds number Ref = 333. TheE andA denote
runs forced with τm/τNL = 0.5 and τm/τNL =∞, respectively.

The relative helicity also behaves very differently for the two types of flows and this
is shown in figure 6(b). The flow with the random-in-time forcing has zero net helicity
for all Rof . However, the flow with the time-independent forcing bifurcates to a state
of non-zero helicity for small enough Rossby numbers. The value of |ρH| seems to
vary discontinuously as Rof is decreased with the flow bifurcating to a helical state
at the critical Rocrit

f ' 0.2. Thus, the transition from the non-helical to the helical state
is a jump bifurcation. In summary, net helicity emerges in the flow only for small
enough Rof and long enough τm.

Helicity is a pseudoscalar quantity and H 6= 0 only if it is directly injected into the
flow (i.e. u · (∇ × f ) 6= 0) by a helical mechanical force or if another pseudoscalar
quantity exists related to the pseudovector ∇ × f . In our work, we observe that
net helicity emerges in rapidly rotating flows with long enough memory time scale
forcings only. So, a pseudovector that relates the rotation vector with the forcing is
Ω × (∇ × f ) and hence the pseudoscalar quantity that will allow the generation of
helicity in a rotating flow is

H ∝ u ·Ω × (∇× f ). (4.1)

A similar expression was derived in a different way by Hide (1975) for a rapidly
rotating flow in geostrophic balance assuming that the nonlinear term is negligible.
Now, from (4.1) we can deduce that no net helicity will be generated for a short
memory time scale forcing since 〈∇ × f 〉t = 0 (with 〈·〉t denoting an average over
time), assuming isotropy and ergodicity. On the other hand, for a forcing with long
enough memory time scale 〈∇× f 〉t = g(x) 6= 0 and therefore H 6= 0 for long enough
integration time scales, in agreement with our observations.

Moffatt (1970) suggested that a random superposition of inertial waves will exhibit
a lack of mirror-symmetry if and only if there is a mechanical excitation in a
preferred direction in the propagation of the waves with respect to the axis of
rotation. Otherwise, the random superposition of inertial waves in equal proportions
would give zero net helicity. Based on (4.1), we conjecture that such a mechanism
is pertinent to our flows where the angle ϕ between Ωez and ∇ × f is fixed at time
t = 0 for a time-independent forcing, and hence such a forcing can add a preferred
direction of propagation to the inertial waves, inducing the mirror-symmetry breaking
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FIGURE 7. (Colour online) Energy spectra E(k) compensated by k5/2 for the flows with
(a) τm/τNL = 0.5 and (b) τm/τNL =∞ at different Rossby numbers and Reynolds number
Ref = 333.

in our flows. From the other side, a highly random-in-time forcing can excite inertial
waves in all directions in equal proportions since ϕ is random in time, and this is
why the net helicity remains zero for any value of Rof in this case.

4.2. Spectral behaviour
Here we analyse the energy spectra of the flows at different Rossby numbers. In
figure 7(a) we present the energy spectra E(k) compensated by k5/2 of flows with
highly random-in-time forcing. For Rof = 0.5 the energy spectrum is close to the
Kolmogorov k−5/3 scaling with the effects of the Coriolis force having no significant
influence on the dynamics of the flow. However, as the Rossby number decreases
τw ∝Ω−1 becomes the dominant time scale and then the spectrum is changed to the
weak-wave turbulence prediction of E(k)∝ k−5/2.

Similar behaviour is observed for the spectra of the flows with time-independent
forcing (see figure 7b) but with two different characteristics. The first is the
significant condensation of energy at large scales for small enough Rossby numbers
in comparison to the flows with random-in-time forcing. The second is the transition
from the Kolmogorov-like regime with τE� τw to the weak-wave turbulence regime
with τw� τE which occurs at lower Rossby numbers, showing the dependence of this
transition on the nature of the mechanical force.

Here, we should point out that weak-wave turbulence theory arguments, which
assume uniform and isotropic forcing, predict a k−5/2 spectrum but they do not
predict condensation of energy at large scales due to an inverse cascade in
unbounded domains. This is in agreement with figure 7(a) where there is some
energy condensation at large scales but it is not significant in comparison to
figure 7(b). However, the energy condensation at large scales in figure 7(b) suggests
that weak-wave turbulence theory is not necessarily valid for the small Rossby number
flows with time-independent forcing even though E(k)∝ k−5/2.

5. Discussion and conclusions
The dependence of the dynamics of rotating turbulence on the nature of the

large-scale mechanical force is studied by means of numerical simulations to shed
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light on the disparate results in the literature. For moderate Reynolds and low Rossby
number flows we systematically vary the memory time scale τm of the mechanical
force. As τm increases the forcing mechanism becomes less time-dependent and
essentially less isotropic. We are able to demonstrate that different steady-state
solutions will be reached if one is able to integrate for long enough time scales,
showing the dependence of the flows on the forcing mechanism. When τm ∝ τNL
we observe that mirror-symmetry spontaneously breaks in the flow even though
our mechanical force is non-helical. Moreover, as the forcing mechanism becomes
less time-dependent (long τm) the net helicity increases. This is also true for the
highest Reynolds number simulations that we carried out. We notice that helical
waves break the tendency of the small and intermediate scales of the flows with the
time-independent forcing to become 2D due to the imposed strong rotation. This
makes the flow less anisotropic in contrast with a flow with highly random-in-time
forcing where the net helicity appears to be negligible.

In addition, for moderate Ref and low Rof flows both the power laws for the energy
spectrum and the forward and inverse fluxes of energy depend strongly on the forcing
mechanism. Depending on the value of τm we obtain different scaling of the energy
spectrum with E(k)∝ k−5/3, k−2 and k−5/2 showing a clear dependence of the spectral
dynamics on the nature of the external driving force. Alexakis (2015) showed that no
matter how large the Reynolds number can be there is a small enough Rossby number
such that the flow exhibits a particular behaviour (e.g. weakly rotating turbulence,
quasi-2D condensates) provided that an appropriate α > 0 is considered in the scaling
Rof ∝ Re−αf (where α is expected to depend on the external driving force). So, lack
of universality seems plausible in forced rotating turbulent flows. To corroborate this
argument a large extent of the control parameter space should be covered with higher
Reynolds number and lower Rossby number simulations integrated for extremely long
times. However, this is beyond the reach of current computational capabilities.

The Rossby number dependence on the dynamics of flows with a highly
random-in-time and time-independent mechanical force is also investigated at
moderate Reynolds numbers. For weakly rotating turbulence (high Rof ) the total
energies of the two systems are comparable. Even so, for small enough Rof , even
though large-scale vortices are present in both systems, energy condensates at large
scales only for the flow with the time-independent forcing, as the energy spectra
demonstrate.

Moreover, for large Rof the net helicities of the two systems are zero but as Rof
becomes smaller there is a critical Rocrit

f at which the flow with the time-independent
forcing bifurcates discontinuously from a non-helical state to a helical state. On the
other hand, the helicity of the flow with the random-in-time forcing remains zero for
all values of Rof . Based on this observation we argue that the angle between Ωez and
∇ × f is important for the excitation of the inertial waves and consequently for the
generation of net helicity in rotating flows. Thus, a time-independent forcing adds a
preferred direction of propagation to the inertial waves inducing the mirror-symmetry
breaking in our flows, since this angle is fixed in time. From the other side, a highly
random-in-time forcing can excite inertial waves in all directions in equal proportions,
and this is why the net helicity remains zero for any value of Rof . Such a mechanism
has also been proposed for planetary dynamos (Moffatt 1970).

In the end, the lack of consistency of the results in the literature is attributed here
to the forcing-dependent dynamics of forced rotating turbulent flows. Experiments
should be able to show if this is true at higher Reynolds and lower Rossby numbers.
The spontaneous emergence of helicity in such flows is an important aspect with
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implications for cyclone persistence and intensity in supercell thunderstorms, a
phenomenon that defies weather forecasting (Markowski et al. 1998), and also for
planetary dynamos.
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