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Abstract

Binary logic programs can be obtained from ordinary logic programs by a binarizing

transformation. In most cases, binary programs obtained this way are less efficient than

the original programs. (Demoen, 1992) showed an interesting example of a logic program

whose computational behaviour was improved when it was transformed to a binary program

and then specialized by partial deduction. The class of B-stratifiable logic programs is defined.

It is shown that for every B-stratifiable logic program, binarization and subsequent partial

deduction produce a binary program which does not contain variables for continuations

introduced by binarization. Such programs usually have a better computational behaviour

than the original ones. Both binarization and partial deduction can be easily automated. A

comparison with other related approaches to program transformation is given.

KEYWORDS: logic programming, binarization, transformation, partial deduction, continu-

ation

1 Introduction

Binary programs – programs consisting of clauses with at most one atom in the body

– appear quite naturally when simulating computations of Turing machines by logic

programs. Tärnlund (1977) introduced the concept of binary clauses. Since then

various binarizing transformations have been defined (Maher, 1986; Štěpánková

and Štěpánek, 1989; Sato and Tamaki, 1989; Tarau and Boyer, 1990). It is not

difficult to show that the last three transformations produce programs with identical

computational behaviour.

While in the beginning binarization was a rather theoretical issue, later, with

the advent of Prolog compilers for programs consisting of binary clauses, it found

important applications. Tarau (1992) built a Prolog system called BinProlog that

makes use of binarization. In a preprocessing phase, the Prolog program is binarized

(see Tarau and Boyer (1990)), and the binary program is compiled using BinWAM, a

specialized version of the Warren Abstract Machine for binary programs. BinWAM

is simpler than WAM and the size of the code of the binary program is reduced.
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Hence, it is of practical use to investigate transformations changing a logic

program to an equivalent binary logic program. It turned out that on some programs,

binarization and partial deduction produce programs with a better performance,

whereas on others, programs with a worse performance are produced. The goal of

this paper is to describe a class of programs for which binarization followed by partial

deduction produces programs with a better computational behaviour.

The paper is organized as follows. Section 2 presents the above mentioned trans-

formation of logic programs to binary logic programs. Section 3 deals with the prob-

lem of computational efficiency of binarized programs. In section 4, B-stratifiable

programs are introduced, and it is proved that the transformation consisting of

binarization and partial deduction succeeds on these programs. This transformation

usually leads to a computationally more efficient program. Section 5 gives results

and conclusions.

We shall adopt the terminology and notation of Apt (1996). Let H be an atom,

and let

AA ≡ A1, A2, . . . , Am and IB ≡ B1, B2, . . . , Bn, m, n � 0

be (possibly empty) sequences of atoms. We restrict our attention to definite logic

programs, that is programs consisting of clauses H← IB with the atom H in the head

and a sequence IB of atoms in the body. If IB is empty, we write simply H← . A clause

is called binary if it has at most one atom in the body. A program consisting of

binary clauses is called binary.

A query is a sequence of atoms. Queries are denoted by Q with possible subscripts.

The empty query is denoted by �. A computation of a logic program starts from

a non-empty query and generates a possibly infinite sequence of queries by SLD-

resolution steps. Maximal sequences of queries generated by this way are called SLD-

derivations. Finite SLD-derivations are successful if they end with the empty query,

otherwise they are failed.

In what follows, by an LD-resolvent we mean an SLD-resolvent with respect to the

leftmost selection rule, and by an LD-derivation we mean an SLD-derivation w.r.t.

the leftmost selection rule. Similarly, an LD-tree is an SLD-tree w.r.t. the leftmost

selection rule. By continuation we mean a (possibly empty) list of terms representing

goals (Štěpánková and Štěpánek, 1989; Tarau, 1992).

2 A transformation to binary logic programs

We shall describe the transformation (Štěpánková and Štěpánek, 1989) of definite

logic programs to programs consisting of binary clauses. We define the operator BS

transforming the queries and the clauses of the input program. The resulting binary

program is completed by an additional clause cS .

Definition 2.1

Given a logic program P , let q be a new unary predicate symbol,

(i) for a query

Q ≡ A1, A2, . . . , An
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to P , let

BS (Q) ≡ q([A1, A2, . . . , An])

in particular, for the empty query, we put BS (�)≡ q([ ]).
(ii) for a clause

C ≡ H ← B1, B2, . . . , Bn

let

BS (C) ≡ q([H |Cont])← q([B1, B2, . . . , Bn|Cont])
where Cont is a continuation variable. In particular, if C is a unit clause, then

BS (C)≡ q([H |Cont])← q(Cont).
(iii) the clause cS is q([ ])←
(iv) for a program P , we put

BS (P ) ≡ {BS (C)|C ∈ P } ∪ {cS}

Note that cS is the only unit clause of the binarized program that provides the

step BS (�)⇒� in successful SLD-derivations.

Example 2.2

Transformation of a program to its binary form

a :- b,c. q([a|Cont]) :- q([b,c|Cont]).

b :- d. q([b|Cont]) :- q([d|Cont]).

c. q([c|Cont]) :- q(Cont).

d. q([d|Cont]) :- q(Cont).

q([]).

Note that

• we use a different syntax for Prolog programs and for the theory of logic

programs, and
• continuation variables have been introduced for binarized programs. In what

follows, we will use the term continuation variable also for variables in binary

programs obtained by partial deduction of binarized programs containing

clauses such as

q_b([a(X,1)|Cont]) :- q_e([b(X),c(1)|Cont]).

Lemma 2.3 Let P be a program and Q a query. Then BS (P )∪ {BS (Q)} has a successful

LD-derivation with computed answer θ iff P ∪ {Q} does.

This follows from the fact that for every step of any LD-derivation of P ∪ {Q},
there is a corresponding step of a corresponding LD-derivation of BS (P )∪ {BS (Q)}.

3 Transformations and binarization

Binarization can lead to more efficient programs

Contrary to a natural expectation – that binarization can only slow down the

computations of a program because extra arguments and extra computation steps are

involved in the transformed program – binarization followed by partial deduction can
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in some cases speed the computation of a program up significantly. Demoen (1992)

was the first to present a case study of such behaviour.

Transformation steps (1)

We consider the following steps of transformation:

1. Binarization.

2. Partial deduction with the empty continuation [ ] (i.e. the empty list) in the

top-level call (see section 4).

3. Further partial deduction with final optimization steps such as removing

duplicate variables (Leuschel and Sørensen, 1996; De Schreye et al., 1999).

We show in Example 3.1 how the above transformation steps are applied to

the SAMELEAVES program from Demoen (1992). We investigate programs for which

this transformation gives more efficient programs when applied to programs with

certain syntactical features, and why it leads to programs with identical or worse

performance if applied to other programs. First, we recall the SAMELEAVES program.

Example 3.1

The program SAMELEAVES tests whether two binary trees have the same sequence of

leaves. The trees with the same sequence of leaves need not be isomorphic.

Program SAMELEAVES

sameleaves(leaf(L),leaf(L)).

sameleaves(tree(T1,T2),tree(S1,S2)):-

getleaf(T1,T2,L,T),

getleaf(S1,S2,L,S),

sameleaves(S,T).

getleaf(leaf(A),C,A,C).

getleaf(tree(A,B),C,L,O):-getleaf(A,tree(B,C),L,O).

As the first step of transformation, we apply the binarizing operator BS from

section 2 and obtain the following program:

q([sameleaves(leaf(L),leaf(L))|Cont]):-q(Cont).

q([sameleaves(tree(T1,T2),tree(S1,S2))|Cont]):-

q([getleaf(T1,T2,L,T),

getleaf(S1,S2,L,S),

sameleaves(S,T)|Cont]).

q([getleaf(leaf(A),C,A,C)|Cont]):-q(Cont).

q([getleaf(tree(A,B),C,L,O)|Cont]):-

q([getleaf(A,tree(B,C),L,O)|Cont]).

q([]).

Then we perform Steps 2 and 3. Using an automated partial deduction system

Mixtus (Sahlin, 1993), we partially deduce the binarized program with the goal

q([sameleaves(Tree1,Tree2)])

where the continuation is empty (i.e. [ ]).
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Applying steps 1 and 2, we obtain the following program:

sameleaves1(leaf(A), leaf(A)).

sameleaves1(tree(A,B), tree(C,D)) :-

getleaf1(A,B,C,D).

getleaf1(leaf(C),D,A,B) :-

getleaf2(A,B,C,D).

getleaf1(tree(A,D),E,B,C) :-

getleaf1(A,tree(D,E),B,C).

getleaf2(leaf(C),A,C,B) :-

sameleaves1(A,B).

getleaf2(tree(A,D),E,B,C) :-

getleaf2(A,tree(D,E),B,C).

The resulting program is binary and has two specialized predicates for the two

calls of getleaf. Demoen showed that it is faster by approximately 40%.

The SAMELEAVES example is interesting for yet another reason. If we skip binariza-

tion and perform only partial deduction on the original non-binary program, we get

only an identical copy of the logic program. On the other hand, by binarization and

partial deduction w.r.t. continuation [ ], that is by adding no information, we get a

computationally more efficient binary program by partial deduction.

The program FRONTIER below computes the frontier, i.e. list of leaves of a binary

tree. It serves as an example where the above described steps of binarization and par-

tial deduction do not give any significant improvement.

Example 3.2 FRONTIER

frontier(leaf(X),[X]).

frontier(tree(Left,Right),Res):-

frontier(Left,L1),

frontier(Right,R1),

append(L1,R1,Res).

If we perform the above steps on this program, we do not get a computationally

more efficient program. Its performance is worse in terms of time and space. The

length of the program obtained by binarization and partial deduction is significantly

larger. It is so due to the fact that the partial deduction system cannot remove calls

with a free continuation variable such as

q1([append([],B,B)| Cont]):- q(Cont).

Definition 3.3

We say that the binarization and partial deduction transformation consisting of

Steps 1–3 succeeds if it terminates and eliminates all continuation variables in Steps

1 and 2.
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4 B-stratifiable programs

In this section, we define the class of B-stratifiable programs, and prove that for

this class of programs the transformation consisting of steps 1 and 2 succeeds (i.e.

it eliminates continuation variables.)

Definition 4.1

We say that a program P is B-stratifiable if there is a partition of the set of all

predicates of P into disjoint sets

S0, S1, . . . , Sn (2)

called strata, such that

(i) if there is a clause C such that a predicate symbol p, p∈ Si occurs in the head

of C and a predicate q, q ∈ Sj occurs in the body of the same same clause C ,

then i� j, i.e. q belongs to a lower or the same stratum, and

(ii) in any clause H← IB of P where the predicate symbol p belongs to Si from

the head H there is at most one predicate symbol q from the same stratum Si
in the body IB. In this case, q is the predicate symbol of the rightmost atom

in IB.

Then the set of strata (2) is called a B-stratification of P .

Example 4.2

Program

p :- q,p.

q :- r,r. (3)

r.

r :- q. (4)

is not B-stratifiable because q,r are mutually dependent, and hence in the same

stratum, but in the body of (3) there are two calls to r. If we remove the clause

(4), the program becomes B-stratifiable. It suffices to take the B-stratification

S1 = {r}, S2 = {q}, S3 = {p}. It is easy to check that the program SAMELEAVES is

B-stratifiable while the program FRONTIER is not.

Note that the notion of B-stratifiable programs includes several classes of pro-

grams. It can be proved, for example, that non-recursive and binary programs

are B-stratifiable. As for tail-recursive programs, in the literature we found no

mathematical definition, but the notions of “tail-recursive” and “B-stratifiable” are

similar.

We shall show that on B-stratifiable programs, the transformation consisting

of binarization and partial deduction succeeds. B-stratifiable programs can be

transformed with binarization and partial deduction into binary programs that

are free of continuation variables – and usually more efficient. This is due to the

fact that the number of terms representing goals in continuations is bounded.
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Elimination of continuation variables

We shall show that for every B-stratifiable program P and a query Q, a there is

partial deduction of BS (P ) w.r.t. BS (Q) such that the resulting program does not

contain any continuation variables.

To do this we introduce a simple partial deduction alogorithm, and prove that it

terminates on B-stratifiable programs, giving a new program without continuation

variables. Intuitively, we shall compute a partial deduction of BS (P ) w.r.t. a set

S . As the program BS (P ) is binary, we can use an instance of the general partial

deduction (Lloyd and Shepherdson, 1991) to remove the continuation variables. To

this purpose, it is sufficient to compute (incomplete) LD-trees to the depth one. (A

similar technique has been used in Gallagher and Bruynooghe (1990) and Sagonas

and Warren (1995)).

To make sure that the conditions of so-called S-closedness and independence of

S hold to guarantee termination, and that the partially deduced program computes

the same set of answer substitutions, we use the following generalization operator.

Definition 4.3

We define a generalization operator G. Let

Q ≡ p1(t1, t2, . . .), p2

(
tj2 , tj2+1, . . .

)
, . . . pn

(
tjn , . . .

)

be a general (non-binary) query and

BS (Q) ≡ q
([
p1(t1, t2, . . .), p2

(
tj2 , tj2+1, . . .

)
, . . . pn

(
tjn , . . .

)])

be the respective binarized query. We put

G(BS (Q)) ≡ q
([
p1(X1, X2, . . .), p2

(
Xj2 , Xj2+1, . . .

)
, . . . pn

(
Xjn , . . .

)])

where Xi are new variables. In particular, G(q([ ]))≡ q([ ]).

Note that BS (Q) is an instance of G(BS (Q)). Furthermore, we extend G so that

it will be applied to sets of binarized queries and atoms. If S is a set of binarized

queries, we put G(S)≡{G(Q)|Q∈ S}.

Algorithm 1

Input: binarized program BS (P ) and the set {G(BS (Q))}, where P is a program and

Q a query.

Output: a program New Prog with no continuation variables, a set S , a new query

Q′.

I. S := { },
To be evaluated := {G(BS (Q))},
Prog := { }

II. While To be evaluated �= { } do

(a) take an atom a∈To be evaluated ; S := S ∪ {a};
(b) compute partial deduction of BS (P )∪ {a} obtaining an incomplete LD-tree

of depth 1 (i.e. perform one unfolding step)
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R := the set of resultants.

B := the set of bodies of resultants from R.

It follows from the fact that the program BS (P ) is binary that all elements

of B are atoms.

(c) Prog := Prog∪R;

To be evaluated := (To be evaluated ∪ G(B))− S .

III. Renaming We define an operator Ren which renames each atom

q
([
p1(t1, t2, . . .), p2

(
tj2 , tj2+1, . . .

)
, . . . , pn

(
tjn , . . .

)])

in Prog to

q p1 p2 . . . pn
(
t1, t2, . . . , tj2 , tj2+1, . . . , tjn , . . .

)

obtaining the program New Prog and the new query Q′ :=Ren(BS (Q)). �
We can see that the continuation variables have been eliminated by Algorithm 1.

To show that, we can verify that the following invariant holds during the computation

of Algorithm 1, and that Algorithm 1 will terminate.

Invariant 4.4

No clause in Prog contains a free continuation variable.

Now we come to the main result of this section:

Theorem 4.5

Let P be a B-stratifiable program and Q a query. Then

1. Algorithm 1 terminates on the input BS (P ), {G(BS (Q))}.
2. Let New Prog be the output program of Algorithm 1. Then New Prog∪
{Ren(BS (Q))} has an LD-derivation with a computed answer θ iff P ∪ {Q}
does.

Proof

We need a definition and two lemmas that will enable us to prove termination of

the algorithm.

Definition 4.6

Let P be a logic program, A an atom and let

A1, . . . , An

be a sequence of atoms. Let

A, IB⇒ A1, . . . , An, IBθ

be an LD-resolution step of P ∪ {A}, where IB denotes a (possibly empty) conjunc-

tion. We say that each atom Ai ∈AA, 1 � i� n is an immediate successor of A, and

write A	Ai. Let 
 be the reflexive and transitive closure of the immediate successor

relation 	. If A
B, we say that B is a successor of A.

Lemma 4.7 Let P be a B-stratifiable logic program, let

S0, S1, . . . , Sn (5)
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be a B-stratification of P , and let m be the maximum number of atoms in the

body of a clause from P , and let Q≡A1, . . . , Al be a query and ξ be an arbitrary

LD-derivation of P ∪ {Q}. Then

(i) each atom Ai, i= 1, . . . , l, has at most n ∗ (m− 1) + 1 successors in every LD-

resolvent of ξ;

(ii) for each query Q′ of at most l atoms, the number of atoms in any LD-resolvent

of P ∪ {Q′}is at most n ∗ (m− 1) + l. Hence there is a bound on the number of

atoms in LD-resolvents of P ∪ {Q}.

Proof

(i) In general, if A is an atom with a predicate symbol from a stratum Sk , 1 � k � n,

then A has at most k ∗ (m− 1) + 1 successors in every LD-resolvent in ξ. Hence

n ∗ (m− 1) + 1 is a bound on the number of successors of an arbitrary atom in

every LD-resolvent in ξ.

(ii) follows from (i).

�

Note that the number of elements of a continuation in any LD-resolvent of

the binarized program BS (P )∪ {BS (Q)} is equal to the number of atoms of the

corresponding LD-resolvent of P ∪ {Q} minus 1 because for any LD-resolvent

A1, A2, . . . An of P ∪ {Q}, the corresponding continuation in the binarized program is

[A2, . . . , An].

Lemma 4.8

Let P be a program and let Q be a query. Assume that there is a bound on the

number of atoms in all continuations in computations of BS (P )∪ {BS (Q)}. Then

there is a bound on the number of sequences of predicate symbols in continuations

that occur in computations of BS (P )∪ {BS (Q)}, too.

Proof of termination of Algorithm 1

Algorithm 1 terminates if the set To be evaluated of goals for partial deduction

is empty. The elements of this set are atoms obtained by application of the

generalization operator G. To guarantee the so called S−closedness condition of

partial deduction (see Lloyd and Shepherdson (1991)), each goal evaluated by partial

deduction is removed from To be evaluated and is put to S . The goals from the set

G(B)− S are added to To be evaluated , where B is the set of goals from the bodies

of resultants obtained by partial deduction. It follows from the definition of G that it

maps any two goals with the same sequence of predicate symbols to the same atom.

It follows also that S is independent. We assumed that P is a B−stratifiable program,

hence it follows from Lemmas 4.7 and 4.8 that there is a bound on the number of

sequences of predicate symbols in continuations that occur in any resultant obtained

by partial deduction of BS (P )∪ {G(Q′)}, where G(Q′) is a goal from To be evaluated .

It turns out that after a finite number of steps, To be evaluated is empty and the

computation of the algorithm terminates.
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Equivalence of computed answer substitutions

First, by Lemma 2.3 we can see that BS (P )∪ {BS (Q)} has a successful LD–derivation

with computed answer θ iff P ∪ {Q} does. Secondly, since Prog∪ {BS (Q)} is S-closed

and S is independent, it follows from Theorem 4.2 of Lloyd and Shepherdson

(1991) that the resulting program Prog∪ {BS (Q)} has the same computed-answer

substitutions as the binarized program BS (P )∪ {BS (Q)}.
Thirdly, it is easy to see that the same holds for the renamed New Prog∪
{Ren(BS (Q))}.

Once we have obtained a binary program without the continuation variables,

further partial deduction can be performed without a limitation on the depth of

LD trees. That partial deduction can improve performance of the program. Further

improvement may be obtained by the RAF procedure (De Schreye et al., 1999;

Leuschel and Sørensen, 1996).

A negative result

Now we discuss the question of whether B-stratifiable programs are exactly those on

which this transformation succeeds, i.e. whether for every non B-stratifiable program,

the binarization and partial deduction fail to eliminate continuation variables.

Due to the fact that Algorithm 1 abstracts w.r.t. predicate symbols only and

disregards terms, there are non-B-stratifiable programs for which the transformation

still succeeds. For example, if we add the following clause to the SAMELEAVES

program, we obtain a program which is not B-stratifiable but the transformation

described in Example 3.1 still may succeed when applied to it:

getleaf(1,2,3,4) :- getleaf(5,6,7,8), getleaf(9,10,11,12).

This clause, which caused the program to become non-B-stratifiable, is in fact never

used in LD-resolution for the query sameleaves(X,Y).

On the other hand, we give a sufficient condition for programs for which the

transformation does not succeed. We can show that for non-B-stratifiable programs

for which the continuation can grow arbitrarily, Algorithm 1 does not terminate. This

class of programs is large enough to include most of reasonable non-B-stratifiable

programs. The idea of this proposition is analogous to the idea of Theorem 4.5.

Proposition 4.9

Suppose that a program P is not B-stratifiable, C is a clause of P containing a

recursive call not in the last position in the body, and let there be an atomic query

Q such that there is a successful LD-derivation for P ∪ {Q} in which C is used at

least once. Then Algorithm 1 does not terminate with inputs BS (P ) and G(BS (Q)).

Proof

Let C ≡ p(t1, . . . , tn)←AA, p(s1, . . . , sn), IB be the recursive clause from the assumptions

of the Proposition and let AA and IB be sequences of atoms such that IB is not

empty. Assume that the conditions of Proposition 4.9 hold. We shall proceed by

contradiction. Assume that Algoritm 1 with inputs BS (P ) and G(BS (Q)) terminates.
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As there is a successful LD-derivation which uses the clause C , Algorithm 1 will

also use the binarized clause BS (C) and add the atom

A1 ≡ q([AA′, p(X1, . . . , Xn), IB
′, . . .])

to the set To be evaluated. Note that, due to the generalization operator, IB is an

instance of IB′ and AA is an instance of AA′.

It follows from the assumption that Algorithm 1 with the given inputs terminates

that it will make empty the set To be evaluated. Hence, after a finite number of

steps of Algorithm 1, an atom

A′1 ≡ q([p(X1, . . . , Xn), IB
′, . . .])

will be added to the set To be evaluated.

This atom will later be selected for unfolding and using the clause BS (C), an atom

A2 ≡ q([AA′, p(X1, . . . , Xn), IB
′, IB′, . . .])

will be added to the set To be evaluated. This process is repeated infinitely many

times, and Algoritm 1 does not terminate, a contradiction. This completes the proof

of Proposition 4.9. �

Example 4.10

For the program FRONTIER, its only recursive clause and the query front(X,Y)

which meet the assumptions of this proposition, the following atoms are added to

the set To be evaluated :

q([front(X1,X2)]),

q([front(X1,X2),front(X3,X4),append(X5,X6,X7)]),

q([front(X1,X2),front(X3,X4),append(X5,X6,X7),front(X8,X9),

append(X10,X11,X12)]),

q([front(X1,X2),front(X3,X4),append(X5,X6,X7),front(X8,X9),

append(X10,X11,X12),front(X13,X14),append(X15,X16,X17)])

........

Hence, the size of atoms that are added to the set To be evaluated grows indefinitely,

and Algorithm 1 does not terminate.

5 Results and comparison

We present the results of our experiments with binarization and partial deduction

and give some comparison. It may seem that the class of B-stratifiable programs

is relatively small. Nonetheless, some transformations transform programs into B-

stratifiable programs, improve the efficiency of the program significantly and allow

for further binarization and partial deduction. We have experimented with a set of

programs taken from Leuschel (1999), Leischel and Sørensen (1996), Demoen (1992)

and Apt (1996).1 We used Sicstus Prolog 3.8 running on a Linux workstation and

test data of a reasonable size. The first column of Table 1 gives the name of the

1 Listings of the programs can be found at http://kti.mff.cuni.cz/~hruza/binary/.
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Table 1. Speedups achieved

Program Binarized Algorithm 1 Final output

sameleaves 0.42 0.97 1.31

frontier1 0.17 1.03 1.16

permutation 0.62 0.90 1.22

double-append 0.54 0.86 1.01

applast 0.67 0.95 1.00

match-append 0.48 0.93 1.05

remove 0.45 0.82 0.92

contains.lam 0.56 1.02 1.21

Table 2. Memory usage data

Program Binarized Algorithm 1 Final program

sameleaves 1.31 1.22 0.91

frontier1 1.34 1.06 0.95

permutation 1.38 1.16 0.93

double-append 1.33 1.18 0.99

match-append 1.47 1.24 0.93

applast 1.75 1.41 1.24

remove 1.27 1.16 1.06

contains.lam 1.30 1.26 1.20

program, the second through fourth columns give the respective speedups induced

by binarization, partial deduction (Algorithm 1) and final optimization. (Speedup

greater than 1 means the transformed program was faster.)

We can see that binarization slows programs down (as expected). Subsequent

removal of continuation variables without optimization produces programs approx-

imately as fast as the original ones, and the final optimization leads to speedups

in some cases. On the other hand, in some cases, left-most selection rule (fixed by

binarization) does not allow for optimizations achievable with flexible selection rule

(e.g. double-append).

Table 2 shows the memory usage data for the programs, binarized programs and

subsequently partially deduced programs. Memory usage was measured in Sictus

Prolog 3.8.

This table gives relative usage of heap (global stack) space for the binarized

programs, partially evaluated programs and the programs transformed in Steps 1–3.

We can see an increase in heap usage of approximately 35% and a decrease for the

transformed programs to approximately 95%.

Binarization with partial deduction and other approaches

Aanother transformation using binarization is described in Proietti and Pettorossi

(1997). In their approach, continuations are introduced flexibly during transform-

ation, and that allows for transformation during binarization. Their approach
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can be understood as complementary to ours, as it transforms a program using

unfolding, folding and generalization producing a binary program which can be

further transformed. Our approach consits in using a straightforward binarization

which is followed by tranformation and partial deduction.

Another related approach to transformation is Conjunctive Partial Deduction

(CPD) (De Schreye et al., 1999). Unlike traditional partial deduction, which considers

only atoms for partial deduction, conjunctive partial deduction attempts to specialize

entire conjunctions of atoms. This approach is closely related to binarization

with partial deduction. There is a difference, however. In the present approach,

a program is first binarized, and hence does not contain any conjunctions. Then

standard partial deduction can be used. Unlike that, in conjunctive partial deduction

the conjunctions are left and the system decides on splitting conjunctions into

appropriate subconjunctions.

Another difference is given by the fact that once a program is binarized, the

selection rule is fixed, and no reordering of atoms can take place after binarization.

On some programs, conjunctive partial deduction profits from reordering of

atoms during partial deduction, as it treats clause bodies as conjuctions and not as

sequences of atoms.

It is a natural question as to whether on B-stratifiable programs binarization

followed by partial deduction always gives results similar to conjunctive partial

deduction. We shall show that it is not the case. We give an example of a program

on which transformation consisting of binarization and partial deduction cannot

give as good a result as conjunctive partial deduction.

Example 5.1

Program DOUBLEAPPEND

double_append(X,Y,Z,W) :-

append(X,Y,V),

append(V,Z,W).

append([X|Xs],Y,[X|Zs]) :- append(Xs,Y,Zs).

append([],Y,Y).

For this program, CPD uses flexible selection rule in the construction of SLD-trees,

eliminating a second traversal of the first list. Such an optimization is not achievable

using the standard leftmost selection rule in binarization with partial deduction, but

is possible in conjunctive partial deduction.

The CPD approach may be somewhat more difficult to control, but it gives greater

flexibility and applicability.

It follows from our experiments with the ECCE conjunctive partial deduction

system (De Schreye et al., 1999) that binarization with partial deduction and CPD

yields similar results when applied to the B-stratifiable programs, where optimization

is achievable without atom reordering. A summary of results can be found in Table 3,

where the first column gives the name of program, the second gives ratio of run–time

for the output of conjunctive partial deduction system ECCE and binarization with
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Table 3. Summary of results

Program Time of ECCE/bin + PD

sameleaves 1.00

frontier1 1.15

permutation 0.84

match-append 0.59

double-append 0.61

partial deduction (greater than 1 means that binarization with partial deduction

was faster). The output programs are similar yet not always identical (for the

SAMELEAVES program ECCE produced the same progragram as binarization with

partial deduction). For most programs, ECCE produced a faster output. In some

cases, this is because of its flexible computation rule (e.g. double-append).

In general, conjunctive partial deduction can do all that binarization and partial

deduction can. While classical partial deduction cannot handle conjunctions (as

needed, for instance, for the SAMELEAVES program), binarization followed by partial

deduction cannot use flexible selection rule (as in the DOUBLEAPPEND program) or

split a conjunction in more parts, conjunctive partial deduction is the strongest of

these transformation techniques.
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Tärnlund, S. Å. 1977. Horn clause computability. BIT 17, 215–226.

Wand, M. 1980. Continuation-based program transformation strategies. Journal of the ACM

27(1), 164–180.

https://doi.org/10.1017/S147106840300190X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300190X

