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SUMMARY
An understanding of how humans and robots can successfully
interact to accomplish specific tasks is crucial in creating
more sophisticated robots that may eventually become an
integral part of human societies. A social robot needs to be
able to learn the preferences and capabilities of the people
with whom it interacts so that it can adapt its behaviors for
more efficient and friendly interaction. Advances in human–
computer interaction technologies have been widely used in
improving human–robot interaction (HRI). It is now poss-
ible to interact with robots via natural communication means
such as speech. In this paper, an innovative approach for
HRI via voice-controllable intelligent user interfaces is
described. The design and implementation of such interfaces
are described. The traditional approaches for human–robot
user interface design are explained and the advantages of the
proposed approach are presented. The designed intelligent
user interface, which learns user preferences and capabilities
in time, can be controlled with voice. The system was suc-
cessfully implemented and tested on a Pioneer 3-AT
mobile robot. 20 participants, who were assessed on spatial
reasoning ability, directed the robot in spatial navigation tasks
to evaluate the effectiveness of the voice control in HRI.
Time to complete the task, number of steps, and errors were
collected. Results indicated that spatial reasoning ability and
voice-control were reliable predictors of efficiency of robot
teleoperation. 75% of the subjects with high spatial reasoning
ability preferred using voice-control over manual control.
The effect of spatial reasoning ability in teleoperation with
voice-control was lower compared to that of manual control.

KEYWORDS: Human–robot interaction; Mobile robots; Speech
recognition; Intelligent user interfaces.

1. Introduction
One of the overarching goals of robotics research is that
robots ultimately coexist with people in human societies as
an integral part of them. In order to achieve this goal, robots
need to be accepted by people as natural partners within the
society. It is therefore essential for robots to have human-like
perception and interaction capabilities that can be utilized for
effective human–robot interaction (HRI).
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A social robot is defined as “an autonomous or semi-
autonomous robot that interacts and communicates with
humans by following the behavioral norms expected by the
people with whom the robot is intended to interact.”1 A
social robot needs to be able to learn the preferences and
capabilities of the people with whom it interacts so that
it can adapt its behaviors for more efficient and friendly
interaction. Social Robotics focuses on the development of
robots that operate with people to meet or address some
social needs.2 One active area of research in Social Robotics
is investigating specifically how to socially equip robots to
respond to the needs of the people. These needs can include
social companionship or entertainment, which try to elicit
social responses from people, such as Honda humanoid,
Kismet,3 and Sony Aibo.4 The continuum continues toward
the development of systems that draw upon social attitudes
to address specific needs of people, such as care-giving
in healthcare;5 autonomous systems such as in response
to AAAI Robotics Challenge,6 and “human-like” personal
assistance systems such as ISAC and Cog.7,8 This area
utilizes studies in interpersonal interaction for application
to interactions between people and systems. Studies have
shown that people respond to artificial systems with an
unconscious similarity to similar interpersonal situations,
including a tendency to anthropomorphize or attribute human
qualities.9,10

In some critical (social or nonsocial) applications, a human
user interacts with a robot via Graphical User Interfaces
(GUIs) and controls the robot with joystick, mouse, or
similar devices. GUIs usually contain standard components
considering a large number of users. Some of these user
interface components may be redundant and sometimes con-
fusing for some of the users depending on the user’s prefer-
ences, capabilities, and the context in which robots are used.
In addition, the users may sometimes need to control robots
without any physical effort. For example, it may be hard for a
disabled person to control a robot; a manual pointing device
and vocal interaction might be more convenient.

Spatial reasoning ability might be important in mobile
robot teleoperation, especially if the robot is at a distant
location from its operator.11,12 GUIs sometimes may create
heavy information load depending on the nature of the task
and the user’s skills such as his/her spatial reasoning ability.
For example, sonar range information may be extremely
useful for people with high spatial-reasoning ability to
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navigate a mobile robot while it may be not beneficial for
low spatial-reasoning ability people. People with low spatial-
reasoning abilities may make use of a detailed status report
while people with high spatial-reasoning abilities may not.13

Intelligent User Interface (IUI) design has been studied
in different areas including educational systems, intelligent
support systems, and information filtering.14–16 IUIs should
be able to employ intelligent techniques. User adaptivity
and user modeling are two of such important techniques.17

In this research, we make use of user adaptivity and user
modeling techniques. We define an adaptive user interface
for robotics systems as: “A knowledge-based interface that
changes its contents to accommodate individual differences,
preferences, and to reflect the mission robots are used for.”
An IUI adapts itself and makes communication decisions
dynamically at run-time.18,19 An IUI differs from direct
manipulation interfaces, where the former takes decision
on behalf of the user and latter represents the case where
the graphical objects are presented to the user for direct
manipulation.20 The architecture of IUIs includes learning
the user model and inferring from the model to make
decisions. The user models are extracted from the knowledge
bases. Knowledge bases are structures that represent the
intelligence of these interfaces. In the work of Cook and
Kay the user model is displayed as a graph.21 Each node is
marked as known/not known or believed/not believed and
thereby the node probabilities are inferred from the model.

Run-time adaptation of information is the key in designing
IUIs. An algorithm for run-time adaptation is proposed by
Gorniak and Poole.22 This algorithm predicts future action by
observing the length of the sequences of actions, the actions
themselves, and the frequency of actions for predicting the
future user behavior. The Incremental Probabilistic Action
Modeling (IPAM)23 is another algorithm that predicts the
next element in a sequence based on detection of action
patterns. Gajos et al. implemented three GUIs and evaluated
them by comparing to a nonadaptive base. They employed
recency-based and frequency-based algorithms.24

Speech is the main communication means for human
beings. When people lack a common language, cooperation
is often greatly reduced. Stating this fact, we believe users
would interact with voice-controllable GUIs more efficiently
than with the traditional ones. In addition, a user may
need to control robot(s) without any physical effort. For
example, a soldier may not be in a suitable position to
command soldier robots manually or a disabled person
might find vocal communication more convenient. Oviatt
et al. discusses adaptive conversational (social) interfaces
and compares them to command interfaces.25

This paper describes the design, implementation, and
testing of a voice-controllable adaptive user interface for
a mobile robot in navigational tasks. The interface offers
different GUI components for a group of users depending
on their capabilities, preferences, and the part of the task
that they are interested in. The interface learns the users’
capabilities and preferences in time as they interact more
with the robot.

This paper is organized as follows: Section 2 describes
the development platform and the GUI used for HRI.
The voice-controllable IUI design and implementation is

Fig. 1. Pioneer with a laptop computer attached.

explained in Section 3. The experimental procedure to
assess the effectiveness of the IUI is given in Section 4.
The experimental results are presented in Section 5. Some
conclusions are given and the future work is motivated in
Section 6.

2. System Architecture
The Pioneer 3-AT produced by ActivMedia is shown in
Fig. 1. It has 16 sonar sensor range finders, a laser
range finder, a pan-tilt-zoom camera, bumpers, and optical
encoders. Fuzzy logic-based behaviors have been developed
and converted into Microsoft’s Component Object Model
(COM) components so that they can be easily integrated.
Some of the behaviors are emulating, tracking, following
wall, following center, move to point, and shadowing.
Figure 2 displays a simple GUI that is developed for
voice-controllable or nonvoice-controlled (manual control)
interaction with the robot. It provides drive commands,
camera display with pan-tilt control, sonar and laser range
finding visual displays, robot behavior controls, and status
reports. Figure 3 illustrates the system architecture. The user
can interact with the interface by speaking. The speech is
converted to commands that are understood by the robot.
The interactions of the user with the interface are recorded
in a database. When the database collects sufficient metrics,
the learning algorithm (described in the next section) forms a
tree-structured user model. The interactions of the user with
the interface are queried against the model and the system
predicts the future actions based on the model.

3. Intelligent User Interfaces
An interface is made intelligent by inferring from the user
model. One of the ways of developing the model is to
collect the metrics of users’ interaction with the interface.
The metrics are saved into a database and can be retrieved
when the application starts. After collecting the metrics, a
user model is developed using the learning algorithms of
Bayesian networks from data. Heckermen et al. combined the
prior knowledge of user with the incoming (statistical) data
to generate one or more Bayesian networks.26 Cheng et al.
employed an information theoretic dependency analysis for
learning Bayesian network structure.27 A message-passing
algorithm for inference in Bayesian networks was developed
by Pearl.28,29
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Fig. 2. Graphical user interface.

3.1. Learning algorithm
In this research, the polytree construction algorithm proposed
by Rebane and Pearl is used.30 The overall learning system
is illustrated in Fig. 4. This algorithm creates polytrees
from statistical data. Polytrees are singly connected networks
where a child can have more than one parent, but there are
no loops in the network. The dependency between the nodes
with the highest score forms the link first. In this way the links

between the nodes are formed in the descending order. Two
kinds of data structures are considered to represent the node
information. The first holds the node name and values of
different calculations performed in the learning algorithm.
The second holds the metrics of user’s interactions with
the interface. Each interaction such as opening and closing
different windows of the interface is considered a metric
and incremented accordingly. The different GUI components

Fig. 3. System architecture.
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Fig. 4. Learning system.

of the interface are referred as nodes. A total of 10 nodes
(pioneer, sonar, laser, odometer, video, follow-wall, follow-
center, mapping, trace, and tracking) are declared. Each node
has two states, open (O) and close (C). The states correspond
to whether the elements on the user interface are open or
closed. For example, if sonar and laser are open together,
then the sonar/laser metric “OO” would be incremented.
If sonar is open and laser is closed then the metric “OC”
is incremented, where “OC” stands open, close. If sonar is
closed and laser is open then the metric “CO” is incremented,
where “CO” stands for close, open. If both sonar and laser
are closed then the metric “CC” is incremented, where “CC”
stands for close, close.

Once the Bayesian network is formed, the interface infers
from the network when the variables are instantiated. The
process of instantiating the network is by entering evidence
from the interface. Evidence is the truth about a particular
interface component. Supposing that the user opens the sonar
form and starts sonar, then it is a true event and it is sent as
evidence to the network, with a probability of 1 and sonar
is said to be instantiated. If the user stops sonar, then it is
sent to the network as evidence with a probability of 0. Once
a node is instantiated it has to inform some of its parents
and children, and the entire network is updated with the
information. After the information is updated, the posterior
probability of all the nodes in the network is recalculated and
the node with the highest posterior probability is predicted
as the users’ next action.

3.2. Speech recognition
Speech is a natural communication mechanism for humans
and it is hypothesized that integration of voice-control into
HRI interfaces would make humans more comfortable during
the interaction. In fact, voice-based interaction can be a
particularly important accessibility option for some people
with limited manual dexterity. In this research, Microsoft
Speech Software Development Kit (SDK) 5.1 was used to
develop a voice-control mechanism for HRI. The Microsoft
Speech Application Programming Interface (API) provides
some useful functions that are easy to integrate into the

component-based software architecture as described before.
All of the user interface components are COM components
that are suitable to be combined with other COM components
provided by Microsoft Speech SDK.

The first step for integrating speech processing is to create
a speech library in eXtensible Markup Language (XML)
format. The following is a sample XML file written for speech
recognition:

<RULE NAME="Form"1ID="RID Form1"TOPLEVEL="ACTIVE">

<P> Pioneer </P>

<L>

<P> Top Right </P>

<P> Start </P>

<P> Stop </P>

<P> Top Left </P>

</L>

</RULE>

The name of the form to be recognized is placed in the
<P> and </P> tags. Then the control to be performed on
the form is placed within list tags <L>. The list tags are
used when the commands are many. Before recognizing any
of the commands within the list tags, the command within
the first <P> tags must be recognized. Thus the user has
to say “Pioneer Start” to start the robot and “Pioneer Top
Right” to place the robot on the top right corner. Using the
above procedure, a single form can be placed at six different
positions on the interface. The positions are the top right,
left, and middle, as well as the bottom right, left, and middle.
The text recognized from the speech recognition is passed to
this procedure. The form is placed in the position specified by
the user. Other options include closing, opening, maximizing,
and minimizing the forms. The procedure checks for the word
“Top” or “Bottom” first. Then it searches for the words like
“Right,” “Left,” or “Middle”. If a match is found, then the
form is placed in that particular position. Thus the form can
be placed in six different positions. While placing the form
in one of the positions, the width and height of the form is
specified so that the form does not occupy most of the space
on the interface.

4. Experimental Procedure

4.1. Design
There are two conditions in the experiment: the manual
control and the speech control of the interface. Spatial
abilities of all the participants were assessed before the
experiments and used as a continuous variable. Independent
measures are the spatial ability and the number of actions to
complete the given task. Dependent measures are the number
of steps to complete the route and time to complete the
task. There were 10 participants in each condition, randomly
assigned to one of the two groups.

4.2. Participants
A total of 20 volunteers participated in the study. All
volunteers are graduate/undergraduate students from the
College of Engineering, Technology, and Computer Science
at Tennessee State University. All participants have the same
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Fig. 5. Task given to the users for training.

prior knowledge of the environment in which they have to
navigate the robot. To ensure this, they were asked to walk
from an initial point to multiple target points until they can
do it under a certain amount of time. They were then asked
to draw a simple map of the environment.

4.3. Procedure
The experiment procedure involves two phases. In the
first phase, the subjects were trained in using the robot.
They gained experience in navigating the robot from the
manual control interface. The interface has different robotic
components, such as drive functions, sonar, laser, odometer,
and camera. The subjects were given an environment where
they have to navigate the robot using the various robotic
components and behaviors. The subjects did not see the

environment directly as they were only shown a map of the
environment of the task. Figure 5 represents the navigation
task that was used to train the subjects. 10 subjects for
each control were randomly selected among 20 subjects and
were provided with experiences walking around in the space
in which they would later be asked to navigate the robot.
Following their familiarization visit they were asked to draw
a map of the space to make sure that they have equal amount
of prior knowledge.

In the second phase, the subjects were given a navigation
task as shown in Fig. 6. They did not see the environment
directly and they were only shown a map of the environment
in which they had to navigate the robot. The data collected
from the task includes the number of steps (movement
actions by the robot), number of actions (e.g., number

Fig. 6. Navigation task.
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of mouse clicks), and time taken for the completion of
task. 10 subjects were asked to use the manual control of
the robot from the interface. The other 10 subjects were
asked to control the robot using speech commands. In this
experiment, the subjects that used the speech control had
to undergo training with the speech recognition software.
The GUI that was provided to the subjects is shown in
Fig. 2.

Before the subjects started navigating the robot, the
Vandenberg Mental Rotation (MRT) test (revised version)
was given to them to measure their spatial reasoning abilities.
The test has 20 multiple choice questions and each question
consists of a target figure and four possible figures two of
which represent the given figure when rotated. The subjects
are required to find the figures that match the target figure.
Unless two of the answers are correct, no score is given for
that multiple choice items. The test score can range from 0
to 100. The test involves mentally visualizing and rotating
images, a skill important for spatial reasoning. After the
tests, the subjects were asked to complete a brief survey of
10 questions. The survey has questions about the interface,
speech, and manual control.

5. Results

5.1. Robot navigation
For each participant, we computed the mean number of steps
to the target location and the mean number of seconds per
navigational task over two trials. This data was modeled
using multiple regression techniques, with which we tested
various models to examine the combination of variables that
produced the best performance predictions.

Based on the data, the best fitting model for the speech
control and manual control of the robot were determined.
The best fitting model for the speech control is:

Steps = 180.11 + 0.99 × Number of Actions

− 1.54 × Reasoning

The best fitting model for the manual control is:

Steps = 133.41 + 5.55 × Number of Actions

− 1.76 × Reasoning

It is observed that with the decrease in the MRT test score
(between 0 and 100), i.e., the spatial reasoning, the number
of steps required to complete the given task increases. So,
the number of steps and the reasoning ability are inversely
proportional to each other. The effect of the number of
actions in the manual control is higher than that of the speech
control.

The best fitting model for the time in the speech control is
given by:

Time = 888.78 + 22.76 × Number of Actions

− 4.04 × Reasoning

The best fitting model for the time in the manual control
is given by:

Time = 1189.03 + 35.53 × Number of Actions

− 12.49 × Reasoning

It is observed that both the spatial reasoning ability and
number of actions play a more important role in the manual
control in terms of time spent.

5.2. Survey result
3 out of 4 subjects with spatial reasoning ability greater than
and equal to 80 (out of 100) preferred speech control of
the robot over the manual control. In other words, 75%
of students with spatial reasoning ability greater than 80
preferred speech over manual control of the robot. 90% of
subjects were not confused to see the sonar and laser together.
The sonar and laser provide similar range of information that
can be used to become aware of the surrounding objects. The
subjects were able to use the sensory data from those sensors
without getting confused. The laser has a sweep of 180 lines
and sonar has a discrete set of 16 lines representing the 16
sonar around the robot, which are placed 8 at the front and
8 at the back. 100% of the students feel that the interface is
not confusing to use. 40% of students changed their views on
speech recognition technology from “good” to “excellent.”
Most of the users felt that sonar, laser, and video are useful
components of the interface.

6. Conclusions
This research developed voice-controllable intelligent
interfaces and performed a user study to analyze and
compare two different control mechanisms—the manual and
speech controls—that can be used in a typical mobile robot
navigation task. The effects of spatial reasoning ability and
the number of actions were investigated. It has been found
that the spatial reasoning ability is an important factor in both
types of control. The number of actions has a higher impact
on the manual control compared to the speech control. In
addition, 75% of the high spatial reasoning ability subjects
preferred the use of speech control interface.
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