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We prove the existence of a function f : N → N such that the vertices of every planar

graph with maximum degree Δ can be 3-coloured in such a way that each monochromatic

component has at most f(Δ) vertices. This is best possible (the number of colours cannot

be reduced and the dependence on the maximum degree cannot be avoided) and answers a

question raised by Kleinberg, Motwani, Raghavan and Venkatasubramanian in 1997. Our

result extends to graphs of bounded genus.
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Secondary 05C10

1. Introduction

A proper vertex colouring of a graph G is an assignment of colours to the vertices of G

such that every colour class is a stable set. In other words, in each colour class, connected

components consist of singletons. In this paper we investigate a relaxed version of this

classical version of graph colouring, where connected components in each colour class,

called monochromatic components in the rest of the paper, have bounded size.

The famous HEX Lemma implies that in every 2-colouring of the triangular k × k-grid,

there is a monochromatic path on k vertices. This shows that planar graphs with maximum

degree 6 cannot be 2-coloured in such a way that all monochromatic components have

bounded size. On the other hand, Haxell, Szabó and Tardos [4] proved that every (not

necessarily planar) graph with maximum degree at most 5 can be 2-coloured in such a

way that all monochromatic components have size at most 20000. This bound was later

reduced to 1908 by Berke [2].
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As for three colours, Kleinberg, Motwani, Raghavan and Venkatasubramanian [7,

Theorem 4.2] constructed planar graphs that cannot be 3-coloured in such a way that

each monochromatic component has bounded size. However, their examples have large

maximum degree, which prompted them to ask the following question.

Question 1.1 ([7], Question 4.3). Is there a function f : N → N such that every planar

graph with maximum degree at most Δ has a 3-colouring in which each monochromatic

component has size at most f(Δ)?

A similar construction was given by Alon, Ding, Oporowski and Vertigan

[1, Theorem 6.6], who also pointed out that they do not know whether examples with

bounded maximum degree can be constructed. Question 1.1 was also raised more recently

by Linial, Matoušek, Sheffet and Tardos [9]. Our main result is a positive answer to this

question.

Theorem 1.2. There exists a function f : N → N such that every planar graph with max-

imum degree Δ has a 3-colouring in which each monochromatic component has size at most

f(Δ).

This theorem will be proved in Section 3. Let us remark that we prove Theorem 1.2

with a rather large function f, namely f(Δ) = (15Δ)32Δ+8, which is almost surely far from

optimal. We have attempted to make our proofs as simple as possible, and as a result we

have made no effort to optimize the various bounds appearing in the paper.

In Section 4, we extend Theorem 1.2 to graphs embeddable in a fixed surface. This

improves a special case of a result of Alon, Ding, Oporowski and Vertigan [1], who proved

that, for every proper minor-closed class of graphs G, there is a function fG : N → N such

that every graph in G with maximum degree Δ can be 4-coloured in such way that each

monochromatic component has size at most fG(Δ).

Finally, in Section 5 we conclude with some remarks and open problems.

2. Preliminaries

All graphs in this paper are finite, undirected, and simple. We let V (G) and E(G) denote

the vertex and edge sets, respectively, of a graph G. We use the shorthand |G| for the

number of vertices of a graph G and denote the maximum degree of G by Δ(G). We let

degG(v) denote the degree of vertex v in G.

The term ‘colouring’ will always refer to a vertex colouring of the graph under

consideration. For simplicity, we identify colours with positive integers, and we let a

k-colouring be a colouring using colours in {1, 2, . . . , k}. Note that we do not require a

colouring to be proper, that is, adjacent vertices may receive the same colour. Given a

colouring φ of G, a monochromatic component is a connected component of the subgraph

of G induced by some colour class. A monochromatic component of colour i is also called

an i-component. The size of a component is its number of vertices.
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3. Proof of the main theorem

We start with a brief sketch of the proof of Theorem 1.2. We consider a decomposition

of the vertex set of our planar graph G drawn in the plane into sets O1, O2, . . . , Ok , each

inducing an outerplanar graph. The set O1 is the vertex set of the outer face of G, and

for i = 2, . . . , k, the set Oi is the vertex set of the outer face of the subgraph of G induced

by V (G) \ (
⋃

1�j�i−1 Oj).

We colour the graph G with colours 1, 2, 3 in such way that for each i ∈ {1, . . . , k}, no

vertex of Oi has colour 1 + (i mod 3). This implies that each monochromatic component

is contained in the union of two consecutive sets Oi and Oi+1. Starting with Ok , we colour

the sets Oi one after the other in decreasing order of their index i. Given a colouring

of Oi+1, we extend this colouring to a colouring of Oi+1 ∪ Oi. This extension is done so

as to maintain the property that in one of the two colour classes of Oi, monochromatic

components are particularly small. Thus the two colours do not play symmetric roles: one

is ‘small’ and the other ‘large’. The small colour of Oi+1 then becomes the large colour of

Oi, while the large colour of Oi+1 does not appear at all in Oi.

While the above approach is natural, we found that making it work required careful

handling of a number of situations. In particular, we have introduced a technical lemma,

Lemma 3.1 below, whose proof might appear somewhat uninviting to the otherwise

interested reader. We hope the reader will bear with us until the main part of the

argument, which is provided by Theorem 3.10.

Lemma 3.1. Let G be a connected plane graph whose vertex set is partitioned into an

induced path P on at least 3 vertices, and a stable set S with a distinguished vertex r. Let

d be the maximum degree of a vertex in P , and let Δ := Δ(G). Assume further that:

• r is adjacent to the two endpoints of P and no other vertex of P ,

• the outer face of G is bounded by the chordless cycle G[V (P ) ∪ {r}],
• every vertex in S has degree at least 2,

• if u ∈ S has degree exactly 2, then the two neighbours of u on P are not adjacent, and

• every two consecutive vertices of P have at least one common neighbour in S .

Then there exists a 2-colouring of G in which the two endpoints of P and all the vertices in

S have colour 2, each 1-component has size at most 2d+ 1, and each 2-component has size

at most (3Δ)3d−4.

Proof. First we need to introduce a number of definitions and notations. We think of

the path P as being drawn horizontally in the plane with the vertices of S above P ; thus

the vertices of P are ordered from left to right. This ordering induces in a natural way a

linear ordering of every subset X ⊆ V (P ). Two vertices of such a subset X are said to be

consecutive in X if they are consecutive in this ordering. Let x and y denote the left and

right endpoint, respectively, of the path P .

For simplicity, the colour opposite to 1 is defined to be 2, and vice versa. Consider a

subset X ⊆ V (P ) with |X| � 2 and call a and b the leftmost and rightmost vertices of

X, respectively. If a and b are coloured, each either 1 or 2, but no vertex in X \ {a, b} is

coloured, then an {a, b}-alternate colouring of X consists of keeping the colours on a, b,
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and colouring the vertices of X \ {a, b} (if any) as follows. We enumerate the vertices of

X from left to right as a, x1, . . . , xk, b. If k = 1, then x1 is coloured with colour 2 if both

a and b have colour 1; otherwise, x1 is coloured with colour 1. If k � 2, then x1 and

xk are coloured with the colour opposite to that of a and b, respectively, and for each

i ∈ {2, . . . , k − 1}, the vertex xi is coloured with the colour opposite to that of xi−1. Let us

point out some simple but useful properties of this colouring:

• no three consecutive vertices in a, x1, . . . , xk, b have the same colour,

• if k � 1 and a has colour 2, then x1 has colour 1, and

• if k � 1 and b has colour 2, then xk has colour 1.

These properties will be used repeatedly, and sometimes implicitly, in what follows.

Let F be the set of bounded faces of G. For f ∈ F , let ∂f denote the subgraph of G

which is the boundary of f. We note that, because of our assumptions on S , every edge

of P is included in the boundary of a triangular face of F .

Let ρ denote the unique bounded face of G which includes the vertex r in its boundary.

We define a rooted tree T with vertex set F and root ρ inductively as follows. First, let

s(ρ) = r and let

S(ρ) = (S ∩ V (∂ρ)) \ {r}.

Let the children of ρ in T be the faces distinct from ρ that are incident to some vertex in

S(ρ). Now, consider a face f ∈ F \ {ρ} with parent f∗ in T . Let s(f) be the unique vertex

of S included in V (∂f) ∩ V (∂f∗) (the existence and uniqueness of s(f) will be proved

below). Let

S(f) = (S ∩ V (∂f)) \ {s(f)}.

The children of f are then all the faces f′ 
= f incident to a vertex of S(f).

In order to show that T is well defined, we only need to prove that the vertex s(f)

defined above exists and is unique. The existence follows from the definition of T ,

since f and f∗ share a vertex of (S ∩ V (∂f∗)) \ {s(f∗)}. Note also that for any vertex

v ∈ (S ∩ V (∂f∗)) \ {s(f∗)}, the vertices v− and v+ just preceding and following v in a

boundary walk of f∗ both lie on P and any face incident to v distinct from f∗ is inside

the region bounded by v, v−, v+ and the subpath of P between v− and v+. It follows that

s(f) is unique.

The depth dp(f) of a face f ∈ F is its depth in T , the root ρ having depth 0. Observe

that, because of our assumptions on S , the leaves of T are precisely the triangular faces

sharing an edge with the outer face. Observe also that T can be equivalently defined as

the (unique) breadth-first search tree rooted at ρ of the graph with vertex set F in which

two vertices f, f′ ∈ F are adjacent if the corresponding faces in G share a vertex of S .

A face f ∈ F is uniquely determined by, and uniquely determines, the triplet [a, s, b]

where s = s(f) and a, b are the leftmost and rightmost neighbours of s on P included in

∂f, respectively. With a slight abuse of notation, we write f = [a, s, b] to denote the face

f with triplet [a, s, b].
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P

s = s(f)
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ψ(v)

fρ
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S(f)

Σ(f)

Π(f)

Figure 1. A face f = [a, s, b] and the corresponding sets S(f), Σ(f) and Π(f).

We define the following sets of vertices associated to a face f = [a, s, b] ∈ F (see Figure 1

for an illustration). The set

Σ(f) = (V (P ) ∩ V (∂f)) \ {a, b}

is the set of corners of f, and

Π(f) = N(S(f)) \ (Σ(f) ∪ {a, b})

is the set of pivots of f. Here, N(X) denotes the set of vertices of V (G) \X having a

neighbour in X.

Observe that the sets Σ(f),Σ(f′),Π(f),Π(f′) are pairwise disjoint for every two distinct

faces f, f′ ∈ F . Moreover,
⋃
f∈F

(Σ(f) ∪ Π(f)) = V (P ) \ {x, y}.

Thus every internal vertex of the path P is either a corner or a pivot of some uniquely

determined face f, which we denote by f(v). When v is a pivot, the unique neighbour of

v in S that is incident to f(v) is denoted by ψ(v). For each vertex v ∈ S \ {r}, similarly let

f(v) denote the unique face f ∈ F such that v ∈ S(f).

Consider two faces f = [a, s, b] and f′ such that f′ is inside the cycle formed by the

edges as, bs and the path from a to b on P . Note that f is an ancestor of f′ in T .

The following observation describes precisely the subgraph of T induced by all the faces

incident to a given internal vertex of P (see Figure 2 for an illustration).

Observation 3.2. Let w be an internal vertex of P . Let u1, . . . , uk be the neighbours of w in

clockwise order around w, with u1 and uk the left and right neighbours, respectively, of w

on P . For each i ∈ {1, . . . , k − 1}, let fi be the unique face in F with wui, wui+1 ∈ E(∂fi).

(a) If w is a corner of fj for some j ∈ {1, . . . , k − 1}, then f1, f2, . . . , fk−1 is a path in T ,

with fj = f(w) being the face of smallest depth. In particular,

dp(fi) − dp(f(w)) � d− 2

for each i ∈ {1, . . . , k − 1}.
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wu1 uk

f j
u j−1 u j

ukwu
(a) (b)

1

u j−1 u j+1

u j

Figure 2. The two configurations in Observation 3.2. The tree T is depicted in grey.

(b) If w is a pivot with ψ(w) = uj , then j ∈ {2, . . . , k − 1} and f1, . . . , fj−1, f(w), fj , . . . , fk−1

is a path in T , with f(w) being the face of smallest depth. In particular,

dp(fi) − dp(f(w)) � d− 2

for each i ∈ {1, . . . , k − 1}.

An internal vertex v of P is said to be an isolated pivot if v is a pivot, degG(v) = 3, and

the two faces in F incident to v are triangular.

With these definitions in hand, we may now describe our colouring of the graph G.

First, recall that the vertices in S must be coloured with colour 2. So it remains to colour

the vertices of P . These vertices are coloured as follows. We perform a depth-first walk in

T starting from its root ρ, and for each face f ∈ F encountered we colour the vertices in

Π(f) and Σ(f). This ensures that, when considering a face f = [a, s, b] distinct from the

root ρ, the two vertices a and b are already coloured. Given f = [a, s, b]:

• if f = ρ, we colour both x and y with colour 2,

• if f 
= ρ, we perform an {a, b}-alternate colouring of Σ(f) ∪ {a, b},
• we colour each isolated pivot in Π(f) with colour 2, and

• we colour each non-isolated pivot in Π(f) with colour 1 if dp(f) mod 2d ∈ {0, . . . , d−
1}, and with colour 2 otherwise.

Let us consider the maximum size of monochromatic components in this colouring of

G, starting with colour 1. Since all vertices in S and the two endpoints x and y of P have

colour 2, each 1-component of G is a subpath of P \ {x, y}. We define a 1-path as a (not

necessarily maximal) subpath of P \ {x, y}, every vertex of which has colour 1.

Claim 3.3. If Q is a 1-path, then each vertex in S has at most two neighbours on Q, in

which case they are consecutive vertices of Q.

Proof. Let w1, . . . , wk be the vertices of Q enumerated from left to right. Arguing by

contradiction, suppose there exists u ∈ S adjacent to wi and wj with i+ 1 < j, and choose

such a triple (u, wi, wj) with j − i minimum, and with respect to this, dp(f(u)) maximum.

The vertices wi and wi+1 have a common neighbour u′ ∈ S . If u = u′, then the triple

(u, wi+1, wj) is a better choice than (u, wi, wj), unless j = i+ 2, in which case wi+1 is an

isolated pivot and has colour 2 (here we use the fact that there cannot be any vertex of
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Q
v1w1

u2

u1

wd+1 wd+3 w2d+2

Figure 3. Illustration of the proof of Claim 3.4.

S inside the cycles uwiwi+1 and uwi+1wi+2 since such a vertex would have degree exactly 2

and would be adjacent to two consecutive vertices of P ). Thus we obtain a contradiction

in both cases, and hence, u 
= u′. It follows that dp(f(u′)) > dp(f(u)) since u′ is inside the

cycle consisting of the edges uwi, uwj and the subpath of Q between wi and wj . Now, the

vertex u′ cannot have degree exactly 2, and thus u′w� ∈ E(G) for some � ∈ {i+ 2, . . . , j}.
However, the triple (u′, wi, w�) is then a better choice than (u, wi, wj), a contradiction

(indeed, either � < j, or � = j but dp(f(u′)) > dp(f(u))).

We deduce that 1-components have bounded size.

Claim 3.4. Every 1-path has at most 2d+ 1 vertices.

Proof. Arguing by contradiction, suppose that Q is a 1-path with 2d+ 2 vertices, and

let w1, . . . , w2d+2 be its vertices enumerated from left to right. Let u1 ∈ S be a common

neighbour of wd+1 and wd+2. By Claim 3.3, wd+1 and wd+2 are the only neighbours of u1

on Q, therefore u1 has a neighbour in V (P ) \ V (Q) by our assumption on S . Let v1 be

such a neighbour at minimum distance from wd+2 on P . Either v1 is on the right of Q or

on the left of Q; since wd+1, wd+2 are the two middle vertices of Q, these two cases are

symmetric, and thus we may assume without loss of generality that v1 is on the right of

Q. Then [wd+2, u1, v1] is a face distinct from the root face ρ. Let z be the right neighbour

of w2d+2 on P (thus z /∈ V (Q)), and let A denote the z–v1 subpath of P .

For i = 2, . . . , d+ 1, let ui ∈ S be a common neighbour of wd+i and wd+i+1 (see Figure 3).

By Claim 3.3, the vertices u1, . . . , uk are all distinct, and thus each such vertex has a

neighbour in V (P ) \ V (Q), which must then be on A because of the face [wd+2, u1, v1].

Moreover, for each i ∈ {1, . . . , d+ 1}, we have that wd+i+1 is a pivot, and ui = ψ(wd+i+1).

For each such index i, let fi = f(wd+i+1) = f(ui). It follows from Claim 3.2 that 1 �
dp(fi+1) − dp(fi) � d− 2. This in turn implies that there exists an index i ∈ {1, . . . , d+ 1}
such that dp(fi) mod 2d ∈ {d, . . . , 2d− 1}. But then the pivot vertex wd+i+1 was coloured

2 in our colouring of G, a contradiction.

We now bound the size of monochromatic components of colour 2. Therefore let K be

a 2-component of G. We start by gathering a few observations about K .

Observe that if f ∈ F with f = [a, s, b] then {a, b} separates all vertices v such that

v ∈ S(f′) ∪ Σ(f′) ∪ Π(f′) for some face f′ that is a descendant of f in T from the

remaining vertices of G. (Note that f is considered to be a descendant of itself.)
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Observation 3.5. Let f ∈ F with f = [a, s, b], and let Kf be the set of vertices v ∈ V (K)

such that v ∈ S(f′) ∪ Σ(f′) ∪ Π(f′) for some face f′ that is a descendant of f in T . If there

are two vertices u, v ∈ V (K) with u ∈ V (Kf) and v 
∈ V (Kf), then at least one of a, b is

in K .

Let FK be the set of faces f ∈ F such that S(f) ∪ Σ(f) ∪ Π(f) contains a vertex of K ,

and let TK denote the subgraph of T induced by FK . Suppose that TK is not connected.

Then FK contains two faces f = [a, s, b] and f′ such that the parent f∗ of f is not in

FK and f′ is not a descendant of f. By Observation 3.5, this implies that at least one

of a, b is in K , and consequently s ∈ V (K). Since s ∈ S(f∗), we deduce that f∗ ∈ FK , a

contradiction.

Observation 3.6. TK is a subtree of T .

Let f̃ be the face in FK having smallest depth in T . We see TK as being rooted at f̃.

Our aim now is to bound the height of TK .

Claim 3.7. TK has height at most 3d− 5.

Proof. Let f1 be a leaf of TK farthest from f̃. We may assume that f1 
= f̃, since otherwise

TK has height 0 and the claim trivially holds. Let AK be a set of ancestors of f1 in TK ,

f1 included. Thus AK induces a path in TK with endpoints f1 and f̃. Starting with f1,

we define inductively a sequence f1, f2, . . . , ft of faces, with fi = [ai, si, bi] and fi ∈ AK for

each i ∈ {1, . . . , t}, as follows. For i � 2, if fi−1 is distinct from f̃, then by Observation 3.5,

at least one of ai−1, bi−1 is in K . Let hi−1 denote such a vertex, and let fi = f(hi−1). If

fi−1 = f̃ then fi is not defined, and fi−1 = ft becomes the last face in the sequence.

Let i ∈ {2, . . . , t}. By definition of TK , the face fi is in TK . By Observation 3.2, fi is an

ancestor of fi−1, which implies inductively that fi ∈ AK (since f1 ∈ AK). Moreover, dp(fi) <

dp(fi−1) since fi 
= fi−1. Since fi = f(hi−1) and fi−1 is incident to hi−1, Observation 3.2

also implies that dp(fi−1) � dp(fi) + d− 2.

Let i ∈ {2, . . . , t− 1}. The vertex hi has to be connected to hi−1 by a path in K . It follows

from the definition of an {ai, bi}-alternate colouring that hi−1 cannot be a corner of fi. (In

fact, this is the key property of an {ai, bi}-alternate colouring.) Therefore, hi−1 is a pivot

of fi. Since

S(fi−1) ∪ Σ(fi−1) ∪ Π(fi−1) 
= ∅,

the face fi−1 is not triangular, and hence hi−1 is not an isolated pivot. It follows that

dp(fi) mod 2d ∈ {d, . . . , 2d− 1}.
Write dp(f2) = 2kd+ �2, with d � �2 � 2d− 1, and for each i ∈ {3, . . . , t− 1}, let �i =

dp(fi) − 2kd. Since

dp(fi) < dp(fi−1) � dp(fi) + d− 2
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for each i ∈ {2, . . . , t− 1}, and

dp(fi) mod 2d ∈ {d, . . . , 2d− 1},

we have

d � �t−1 < �t−2 < · · · < �2 � 2d− 1.

In particular, �2 − �t−1 � d− 1. Now, the height of TK is precisely

dp(f1) − dp(ft) =

t∑
i=2

(dp(fi−1) − dp(fi))

= dp(f1) − dp(f2) + �2 − �t−1 + dp(ft−1) − dp(ft).

By Observation 3.2,

dp(ft−1) − dp(ft) � d− 2 and dp(f1) − dp(f2) � d− 2.

Using that �2 − �t−1 � d− 1, we obtain that the height of Tk is at most 3d− 5.

Consider a face f = [a, s, b] of TK . By the definition of an {a, b}-alternate colouring, there

are at most two consecutive vertices with colour 2 in Σ(f). Therefore, using Observation 3.5,

Σ(f) contains at most 2 vertices of K and S(f) contains at most 3 vertices of K . It follows

that |K ∩ Π(f)| � 3(Δ − 2), which implies that S(f) ∪ Σ(f) ∪ Π(f) contains at most 3Δ − 1

vertices of K . Also, we deduce that f has at most 3Δ children in TK . Using Claim 3.7, we

then obtain

|TK | �
3d−5∑
i=0

(3Δ)i =
(3Δ)3d−4

3Δ − 1

and hence

|K| � (3Δ − 1)|TK | � (3Δ)3d−4,

as desired. This concludes the proof of Lemma 3.1.

At the expense of a slightly larger bound on the size of monochromatic components,

we may relax the requirements in Lemma 3.1 as follows.

Lemma 3.8. Let G be a connected plane graph whose vertex set is partitioned into a

chordless cycle C and a stable set S such that the cycle C bounds a face of G. Let d

be the maximum degree of a vertex in C , and let Δ := Δ(G). Then there exists a 2-colouring

of G in which each vertex in S has colour 2, each 1-component has size at most 2d+ 5, and

each 2-component has size at most d(6Δ)3d+2.

Proof. We may assume without loss of generality that C bounds the outer face of G.

Let S∗ be the set of vertices v ∈ S such that either degG(v) � 1, or degG(v) = 2 and the

two neighbours of v are adjacent. Let G∗ = G \ S∗, and remove from S the vertices in S∗.
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(We will treat the vertices in S∗ at the very end.) We construct a new graph G′ from G∗

in two steps as follows.

Step 1. Take a maximal stable set Z of the vertices {v ∈ V (C), degG∗ (v) = 2} (Z might

be empty), and for each vertex v ∈ Z add a vertex sv in S adjacent to v and its two

neighbours in C .

Note that this can be done so that the embedding stays planar and C still bounds the

outer face of the graph. By our choice of Z , after Step 1 every vertex of C has degree at

least 3 (and thus has at least one neighbour in S).

Step 2. For each pair of consecutive vertices u, v in C in anticlockwise order having no

common neighbour in S , do the following. Let f be the inner face incident to uv, and let

s be the unique neighbour of u in S that is incident to f. Add an edge between s and v.

Again, this can be done so that the embedding stays planar and C still bounds the

outer face of the graph. (How the degrees of vertices increased will be considered later.)

Let G′ be the graph obtained after Step 2. Note that G′ is a supergraph of G∗.

Let x, y be two arbitrarily chosen consecutive vertices of C , and let P denote the x–y

path in C that avoids the edge xy. Subdivide the edge xy by adding a vertex r between x

and y, and add r to S . Observe that the graph G′′ obtained after this operation together

with the set S satisfy the assumptions of Lemma 3.1. Indeed, P is an induced path in G′′

with endpoints x and y, and r ∈ S is only adjacent to x, y, while all other vertices in S are

inside the cycle induced by V (P ) ∪ {r}. Moreover, every vertex in S has degree at least 2;

if u ∈ S has degree exactly 2, then the two neighbours of u on P are not adjacent, and

every two consecutive vertices of P have at least one common neighbour in S .

The degree of each vertex of P increased by at most two during Steps 1 and 2, while

the degree of each vertex in S can at worst be doubled at Step 2 (we might add an edge

sv for every neighbour u of s). It follows that G′′ has maximum degree at most 2Δ and

vertices of P have degree at most d+ 2. By Lemma 3.1, G′′ has a 2-colouring such that

1-components have size at most 2d+ 5, 2-components have size at most (6Δ)3d+2, and

x, y, r have colour 2 (in particular, x and y are in the same 2-component).

We now add back the edge xy and the vertices of S∗, which we connect to their original

neighbours in G, and colour them with colour 2. By the definition of S∗ and the remark

above, this does not connect different 2-components of G′′. Since each vertex of C had

at most d neighbours in S∗, in the resulting graph G′′′ the size of each 2-component is

at most d(6Δ)3d+2, while 1-components still have size at most 2d+ 5 since they remain

unchanged. Since the graph G is a subgraph of G′′′, these two bounds obviously hold for

this colouring restricted to G.

Let g1 : N → N and g2 : N × N → N denote the bounds on the sizes of 1- and 2-

components, respectively, appearing in Lemma 3.8; namely g1(d) := 2d+ 5 and g2(d,Δ) :=

d(6Δ)3d+2.

For a plane graph G, we denote by O(G) the set of vertices lying on the boundary of

the outer face of G, and by O2(G) the set of vertices not in O(G) that are adjacent to

a vertex in O(G). A plane graph is near-triangulated if all its faces are triangular, except
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possibly for the outer face. Note that if G is near-triangulated, then O2(G) is precisely the

set of vertices on the outer face of G \ O(G).

We will use the following simple observation.

Observation 3.9. Let � � 1 be an integer. Suppose we have a colouring of a graph with

maximum degree at most Δ � 1 in which every i-component has size at most k, for some

colour class i. Then, if we recolour at most � vertices of the graph, in the new colouring

every i-component has size at most �Δk + � � 2�Δk.

We now use Lemma 3.8 to prove the following result by induction.

Theorem 3.10. Every connected near-triangulated plane graph G with maximum degree at

most Δ � 1 has a 3-colouring such that:

(i) no vertex of O(G) is coloured with colour 3,

(ii) no vertex of O2(G) is coloured with colour 1,

(iii) each 1-component intersecting O(G) has size at most f1(Δ) = 16Δ2g1(Δ),

(iv) each 2-component intersecting O(G) ∪ O2(G) has size at most

f2(Δ) = 16Δ2f1(Δ) g2(Δ,Δ f1(Δ)),

and

(v) each monochromatic component has size at most 6Δ2f2(Δ).

Proof. We prove the theorem by induction on |G|. The proof is split into five cases,

depending on the structure of the outerplanar graph J induced by O(G). In fact, to make

induction work, we will need to prove additional properties in some of the cases. Instead

of giving the exact statement that we prove by induction (which would be lengthy), we

describe at the beginning of each case below the extra properties we wish to guarantee in

that case (if any).

Case 0. |G| = 1.

This is the base case of the induction, which trivially holds. Let us now consider the

inductive case |G| > 1.

Case 1. G has a vertex of degree one.

Let v be such a vertex. Since G is near-triangulated, v and its neighbour u both lie

on the boundary of the outer face. We can colour G \ v by induction and assign to

v a colour (1 or 2) different from that of u. This does not affect the sizes of existing

monochromatic components, and the newly created monochromatic component has size

1. Thus the resulting colouring of G satisfies conditions (i)–(v). In the rest of the proof we

assume that G has minimum degree at least two.

Case 2. The outerplanar graph J is a chordless cycle.

In this case we show a strengthened version of (iii) and (iv) where a multiplicative factor

of 16Δ2 is saved in the bounds, as well as a better bound for 3-components intersecting
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O2(G):

(a) each 1-component intersecting O(G) has size at most g1(Δ),

(b) each 2-component intersecting O(G) ∪ O2(G) has size at most f1(Δ) g2(Δ,Δ f1(Δ)), and

(c) each 3-component intersecting O2(G) has size at most f2(Δ).

Since G is near-triangulated and J is a chordless cycle, the graph H = G \ O(G) is

connected and near-triangulated, or it is empty. If H is empty then G = J is a cycle, and

G can trivially be 2-coloured in such a way that monochromatic components have size

at most 2. We may thus suppose that H is not empty. Observe that O(H) = O2(G). By

induction, H has a 3-colouring such that:

(i′) no vertex of O(H) is coloured with colour 1,

(ii′) no vertex of O2(H) is coloured with colour 2,

(iii′) every 2-component intersecting O(H) has size at most f1(Δ),

(iv′) every 3-component intersecting O(H) ∪ O2(H) has size at most f2(Δ), and

(v′) every monochromatic component has size at most 6Δ2f2(Δ).

Our aim now is to extend this colouring of H to one of G by colouring the vertices

of O(G) using colours 1 and 2. Let G′ be the graph obtained from G by removing all

vertices of H coloured with colour 3 and all monochromatic components of H that are

disjoint from O(H), and contracting each 2-component of H intersecting O(H) into a

single vertex. Note that G′ is a plane graph as in Lemma 3.8, with S the set of contracted

2-components.

Observe that vertices of G′ in O(G′) = O(G) still have degree at most Δ, and that vertices

in S have degree at most Δ · f1(Δ) by property (iii′) of H . We colour G′ using Lemma 3.8.

In this colouring, 1-components of G′ have size at most g1(Δ), while 2-components of G′

have size at most g2(Δ,Δ f1(Δ)).

The colouring of G′ induces a colouring of the vertices of O(G) that extends the

colouring of H we previously obtained to the graph G. In this colouring of G, since

no vertex of O(H) is coloured with colour 1 by property (i′) of H , each 1-component

intersecting O(G) has size at most g1(Δ) by the previous paragraph, which proves (a).

Also, each 2-component of G intersecting O(G) ∪ O2(G) corresponds to a 2-component of

G′ of size at most g2(Δ,Δ f1(Δ)). Hence, each such 2-component of G has size at most

f1(Δ) g2(Δ,Δ f1(Δ)), showing (b). Moreover, 3-components intersecting O2(G) = O(H) have

size at most f2(Δ) by (iv′), which proves (c). Finally, every monochromatic component of

G not considered above has size at most 6Δ2f2(Δ) by (v′), which concludes this case.

Case 3. All bounded faces of J are triangular.

Let uv be an arbitrarily chosen edge of J lying on the boundary of its outer face. Let

φ(u) and φ(v) be colours for u and v, respectively, arbitrarily chosen among 1 and 2. We

show that G has a 3-colouring satisfying (i)–(v) and the following three extra properties:

(1) each monochromatic component of G intersecting O(G) is contained in O(G) and has

size at most 2Δ,

(2) all vertices in O2(G) have colour 3, and

(3) u and v are coloured with colours φ(u) and φ(v), respectively, and moreover no

neighbour of u in V (G) \ {v} is coloured with colour φ(u).
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For each bounded face f of J , let Hf be the subgraph of G induced by the vertices

lying in the proper interior of f. As in Case 2, these graphs Hf are either connected and

near-triangulated, or are empty. Using induction, for each bounded face f of J such that

Hf is not empty, we colour Hf with colours 1, 2, 3 in such a way that:

(i′) no vertex of O(Hf) is coloured with colour 1,

(ii′) no vertex of O2(Hf) is coloured with colour 2,

(iii′) every 2-component intersecting O(Hf) has size at most f1(Δ),

(iv′) every 3-component intersecting O(Hf) ∪ O2(Hf) has size at most f2(Δ), and

(v′) every monochromatic component has size at most 6Δ2f2(Δ),

and we recolour with colour 3 the at most 3Δ vertices of O(Hf) (i.e., the vertices of Hf

that are adjacent to some vertex in the boundary of f). Next, we colour u and v with

colours φ(u) and φ(v), respectively, and colour the remaining vertices of J according to

the parity of their distances to {u, v} in J: we use colour φ(u) if the distance is even, and

the colour opposite to φ(u) if it is odd. (As before, the colour opposite to 1 is 2, and vice

versa.)

Clearly, the resulting colouring of G satisfies (2) and (3). Also, each monochromatic

component K of G that includes a vertex of some graph Hf is contained in Hf . The

bounds on the size of K are then guaranteed by (i′)–(v′), except possibly in the case where

K is a 3-component intersecting O(Hf). In that case, since we recoloured with colour

3 at most 3Δ vertices of Hf , using (iv′) and Observation 3.9 (with � = 3Δ) we obtain

that K has at most 6Δ2f2(Δ) vertices, as desired. Hence, properties (ii)–(v) are satisfied

for monochromatic components of G avoiding O(G). Since the remaining monochromatic

components are contained in J , and since we only used colours 1 and 2 when colouring

that graph, it only remains to establish property (1).

Consider thus a monochromatic component K of J . First suppose that K contains

v. Here there are two possibilities: either φ(u) = φ(v), in which case V (K) = {u, v}, or

φ(u) 
= φ(v), in which case all vertices in V (K) \ {v} are neighbours of u or v. Note that

|V (K) \ {v}| � 2Δ − 2 in the latter case since uv ∈ E(G). Hence |K| � 2Δ holds in both

cases.

Now assume that K avoids the vertex v. Then by the definition of our colouring, all

vertices in K are at the same distance i from {u, v} in J . If i = 0 then V (K) = {u}, and

(1) trivially holds, so assume i > 0. Let X be the set of vertices of J at distance i− 1

from {u, v} and having a neighbour in K . If |X| � 3, then considering the union of three

shortest paths from u to three distinct vertices in X together with the connected subgraph

K , we deduce that J contains K2,3 as a minor. However, this contradicts the fact that J

is outerplanar. Hence, we must have |X| � 2, and therefore K has at most |X| · Δ � 2Δ

vertices, showing (1). This concludes Case 3.

Before proceeding with the final case we need to introduce some terminology. First,

note that each bounded face of J is bounded by a cycle of J (since J is outerplanar), and

that each vertex of J is in the boundary of at least one bounded face of J (since G has

minimum degree at least 2). In particular, every such vertex is contained in a cycle of J .

These basic properties will be used implicitly in what follows.
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Since neither Case 2 nor Case 3 applies, J has at least two bounded faces, and at least

one of them is not triangular. For a bounded face f of J , let Gf denote the subgraph of

G induced by the union of the vertices in the boundary of f and the vertices lying in the

proper interior of f.

We define a rooted tree T whose vertices are the bounded faces of J . First, choose

arbitrarily a bounded face of J and make it the root of T . The tree T is then defined

inductively as follows. If f is a vertex of T then its children in T are the bounded faces

f′ of J that are distinct from the parent of f in T (if f is not the root), and such that

the boundaries of f and f′ intersect in a non-empty set Xf′ of vertices which separates

Gf \Xf′ from Gf′ \Xf′ in G. The set Xf′ is then said to be the attachment of the face

f′. Observe that, since J is outerplanar, Xf′ consists either of a single vertex or of two

adjacent vertices. For definiteness, we let the attachment of the root of T be the empty set.

A bounded face f of J is bad if f is triangular and |Xf | = 2, otherwise f is good.

Observe that, in particular, the root of T is good.

Case 4. None of the previous cases apply.

Let f be a good face maximizing its depth in T . Thus all strict descendants of f in

T are bad (if any). Let T0, T1, . . . , Tk be the trees resulting from the removal of f in T ,

where T0 contains the parent of f if f is not the root and is otherwise empty, and each

Ti (i ∈ {1, . . . , k}) contains a different child of f in T . (Note that possibly k = 0 if f is

not the root.) Let X0 denote the attachment of f, and for each i ∈ {1, . . . , k} let Xi denote

the attachment of the unique child of f contained in Ti. By the choice of f, each Xi

(i ∈ {1, . . . , k}) consists of two adjacent vertices ui, vi of the boundary of f, and at least

one of them, say vi, is not in X0.

For each i ∈ {0, . . . , k}, let

Gi := G[∪f′∈V (Ti)V (Gf′)].

Notice that, for each i ∈ {1, . . . , k}, all bounded faces of Gi are triangular. Let us also

recall once again that G0 is the empty graph if f is the root of T (in which case X0 is

empty as well).

We proceed in three steps.

Step 1. We start by colouring G0 using induction (if G0 is not empty), and Gf using

Case 2 of the induction, so the resulting colouring of Gf also satisfies (a)–(c).

Step 2. We recolour three sets of vertices of Gf . First, recolour in Gf the vertices of

X0 to match their colour in G0. Next, recolour the at most two vertices in O(Gf) \X0

having a neighbour in X0 with a colour (1 or 2) distinct from the colour of their unique

neighbour in X0. Note that the latter can be done precisely because f is good. (Indeed,

either |X0| � 1, or |X0| = 2 and the cycle bounding the outer face of Gf has length at

least 4.) Finally, recolour with colour 3 all vertices in Gf \ O(Gf) having a neighbour in

X0 (note that there are at most 2Δ − 4 such vertices).

Step 3. For each i ∈ {1, . . . , k}, colour Gi using Case 3 of the induction, choosing

respectively ui and vi as u and v in (3), and φ(ui) and φ(vi) as the colours of ui and vi after

Step 2 above. Recall that vi /∈ X0.
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We claim that the colouring of G obtained by taking the union of colourings of

Gf, G0, . . . , Gk satisfies (i)–(v). First we remark that, because of the recolouring of X0 at

Step 2 and the use of property (3) in Step 3, the colourings of Gf, G0, . . . , Gk coincide on

the pairwise intersection of the vertex sets of these graphs, so the union of these colourings

is well defined.

After Steps 2 and 3, no vertex in X0 is coloured with a colour that is used for some of its

neighbours in Gf \X0 (after Step 3, this follows from properties (2) and (3)). This implies

that every monochromatic component of G intersecting V (G0) is contained in V (G0), and

therefore satisfies (i)–(v) by induction. Similarly, monochromatic components intersecting

V (Gi) but avoiding Xi for some i ∈ {1, . . . , k} satisfy (i)–(v) by induction. Hence, it only

remains to consider monochromatic components of G avoiding G0 (and in particular,

avoiding X0) and intersecting V (Gf).

Since we recoloured at most two vertices of O(Gf) \X0, it follows from Observation 3.9

(with � = 2) that the size of 1-components after Step 2 of the graph Gf intersecting

O(Gf) \X0 is at most 4Δ times the maximum size of 1-components of Gf intersecting

O(Gf) before we recoloured vertices of Gf , which was at most g1(Δ) by property (a) from

Case 2. Now, a 1-component K of the graph G which intersects O(Gf) \X0 is the union

of a single 1-component K ′ of Gf after Step 2 intersecting O(Gf) \X0 with at most 2|K ′|
1-components from the graphs G1, . . . , Gk (since every vertex of V (K ′) ∩ O(Gf) lies in at

most two such graphs). It follows from (1) in Case 3 and the observation above that

|K| � 2|K ′| · 2Δ � 16Δ2g1(Δ). This proves (iii).

Similarly, using property (b) from Case 2, we deduce that after Step 2, 2-components of

Gf intersecting (O(Gf) \X0) ∪ O2(Gf) have size at most 4Δ · f1(Δ)g2(Δ,Δ f1(Δ)). Applying

the same reasoning as for 1-components of G intersecting O(Gf) \X0 above, we deduce

that 2-components of G intersecting (O(Gf) \X0) ∪ O2(Gf) have size at most 16Δ2 ·
f1(Δ)g2(Δ,Δ f1(Δ)), which proves (iv).

Finally, using property (c) from Case 2 and the fact that at most 2Δ − 4 � 2Δ vertices

of O2(Gf) have been recoloured with colour 3 in Step 2, we have that 3-components of

G intersecting O2(Gf) have size at most 4Δ2f2(Δ) � 6Δ2f2(Δ) by Observation 3.9 (with

� = 2Δ). Therefore, (v) also holds.

From Theorem 3.10 we easily derive our main theorem, Theorem 1.2, with an explicit

bound.

Corollary 3.11. Every plane graph G with maximum degree Δ � 1 can be 3-coloured in such

a way that:

(i) each monochromatic component has size at most (15Δ)32Δ+8,

(ii) only colours 1 and 2 are used for vertices on the outer face,

(iii) each 1-component intersecting O(G) is included in O(G) and has size at most 64 Δ3.

Proof. If G is not connected we can colour each component of G separately, so we

may suppose that G is connected. We may further assume that Δ � 3 since otherwise

G is properly 3-colourable. If G is not near-triangulated, we do the following for every

bounded face f of G. Let x1, x2, . . . , xk be a boundary walk of f (note that a vertex appears
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at least twice in the walk if and only if it is a cut-vertex of G). We add a cycle u1, u2, . . . , uk
of length k inside f and link each vertex ui to xi and xi−1 (indices are taken modulo

k). Next, for each i ∈ {1, . . . , �k/2� − 1} we add the edges uiuk−i and uiuk−i+1 (if they are

not already present). The graph obtained is near-triangulated and every new vertex has

degree at most 6. For every original vertex v of G, we added at most two edges incident

to v in between every two consecutive original edges in the cyclic ordering of the edges

around v. Hence the maximum degree of the new graph is at most max(6, 3Δ) � 3Δ and

the result follows from Theorem 3.10 (with Δ replaced by 3Δ).

4. Extension to surfaces of higher genus

In this section we extend our main result to graphs embeddable in a fixed surface. In this

paper, a surface is a non-null compact connected 2-manifold without boundary. Recall

that the Euler genus of a surface Σ is 2 − χ(Σ), where χ(Σ) denotes the Euler characteristic

of Σ. We refer the reader to the monograph by Mohar and Thomassen [11] for basic

terminology and results about graphs embedded in surfaces.

Let f(Δ) = (15Δ)32Δ+8 be the bound on the size of monochromatic components in

Corollary 3.11.

Theorem 4.1. Every graph G with maximum degree Δ � 1 embedded in a surface Σ of Euler

genus g can be 3-coloured in such a way that each monochromatic component has size at

most (5Δ)2
g−1f(Δ)2

g

.

Proof. The proof proceeds by induction on g. If g = 0 then G is planar, and the result

follows from Corollary 3.11. Assume now that g > 0.

We may suppose that some cycle of G is not contractible (as a closed curve on the

surface), since otherwise G can be embedded in the plane. Let C be a shortest non-

contractible cycle of G. If C has a chord e, then at least one of the two cycles obtained

from C using the edge e is not contractible, as follows from the so-called 3-Path Property

(see [11, p. 110]). However, this contradicts the minimality of C . Thus the cycle C is

induced.

Each connected component of G′ := G \ V (C) can be embedded in a surface of Euler

genus strictly less than g (see [11, Chapter 4.2]). Thus, applying induction on each

connected component of G′, we deduce that G′ can be 3-coloured in such a way that each

monochromatic component has size at most s = (5Δ)2
g−1−1f(Δ)2

g−1
.

Let t := |C|. We extend the colouring of G′ obtained above to a colouring of G by

colouring the vertices of C as follows. We divide them into k circular intervals I1, . . . , Ik
(where the circular ordering is of course given by C), each of length s+ 1, except I1 whose

length is t if t � s, and s+ 1 + (t (mod s+ 1)) � 2s+ 1 if t > s. We colour all vertices in

I1 with colour 1, and for each i ∈ {2, . . . , k}, we colour vertices in Ii with colour 2 if i is

even, and colour 3 if i is odd.

If some monochromatic component K of G′ has a neighbour u in some interval Ii and

another neighbour v in an interval Ij with i 
= j that are coloured the same as K , then

one can find a path P from u to v having all its internal vertices in K , and thus being
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internally disjoint from C . Recall that |K| � s, and that by our colouring of the intervals,

there are at least s+ 1 vertices between u and v on both sections of the cycle C . Hence,

the two cycles obtained by shortcutting C using the path P are shorter than C . However,

by the 3-Path Property, at least one of them is not contractible, contradicting our choice

of C .

It follows that each monochromatic component of G′ has neighbours in at most one

interval Ii in the graph G. Using Observation 3.9 (with � = 2s+ 1), we deduce that

monochromatic components of G have size at most

2(2s+ 1)Δ · s � 5s2Δ � 5Δ · (5Δ)2
g−2 · f(Δ)2

g

= (5Δ)2
g−1f(Δ)2

g

,

as desired.

We note that using the cutting technique introduced recently by Kawarabayashi and

Thomassen [6] together with the stronger property from Corollary 3.11 that one colour

can be omitted on the outer face, it is possible to obtain a bound that is linear in the

genus (instead of doubly exponential). We only sketch the proof in the remainder of this

section (we preferred to present the full details of the simple and self-contained proof of

Theorem 4.1, at the expense of a worst bound).

Kawarabayashi and Thomassen [6, Theorem 1] proved that any graph G embedded

on some surface of Euler genus g with sufficiently large face-width (say, more than 10t,

for some constant t) has a partition of its vertex set in three parts H,A, B, such that A

has size at most 10tg, B consists of the disjoint union of paths that are local geodesics†

and are pairwise at distance at least t in G, and H induces a planar graph having a plane

embedding such that the only vertices of H having a neighbour in A ∪ B lie on the outer

face of H .

Recall that by Corollary 3.11 every plane graph of maximum degree Δ can be

coloured with colours 1, 2, 3 so that no vertex of the outer face is coloured 3 and

each monochromatic component has size at most f(Δ) = (15Δ)32Δ+8. We now prove by

induction on g that for every graph G of Euler genus g and maximum degree Δ there

is a set of at most 10(f(Δ) + 2) g vertices in G whose removal yields a graph that

has a 3-colouring where each monochromatic component has size at most Δf(Δ) + 1.

Using Observation 3.9, this will directly imply that G has a 3-colouring in which every

monochromatic component has size at most

f(Δ) + 20Δ(f(Δ) + 2)(Δf(Δ) + 1) g,

a bound that is linear in g.

If g = 0 the graph is planar, and we can apply Corollary 3.11. If the face-width is

at most 10(f(Δ) + 2) g, we remove the vertices intersecting a noose of length at most

10(f(Δ) + 2), and apply induction on the resulting graph (since each of its components

can be embedded in a surface of Euler genus at most g − 1). If the face-width is more

than 10(f(Δ) + 2) g we apply the result of Kawarabayashi and Thomassen. Let H,A, B

† In the sense that each subpath with at most t vertices is a shortest path in G.
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be the corresponding partition of G (with H having its specific plane embedding). The

set A is the set of vertices we remove from G. We now colour H using Corollary 3.11,

avoiding colour 3 on its outer face. Recall that each component of B is a path. For each

such path P , choose arbitrarily an endpoint v of P and colour all the vertices of P with

colour 3, except v and the vertices whose distance to v in P is a multiple of f(Δ) + 2. The

latter vertices are coloured with colour 2. It can easily be checked that monochromatic

components of colour 1 have size at most f(Δ) and monochromatic components of colour

3 have size at most f(Δ) + 1. Note that every monochromatic component of colour 2

in H has at most one neighbour coloured 2 in B, since otherwise two paths of B, or

two vertices that are at distance f(Δ) + 2 on some path of B, would be at distance at

most f(Δ) + 1 in G. Hence every monochromatic component of colour 2 has size at most

Δf(Δ) + 1 in G, as desired.

5. Conclusion

We proved that planar graphs with maximum degree Δ can be 3-coloured in such a way

that each monochromatic component has size at most f(Δ) = (15Δ)32Δ+8. It is thus natural

to look for lower bounds on the best possible value for f(Δ). The examples constructed

in [7] and [1] give a lower bound of Ω(Δ1/3) (see also a related construction in [9]). We

remark that this bound can be slightly improved as follows. Let k � 3 and let Gk be the

graph obtained from a path P on k vertices v1, . . . , vk by adding, for each i ∈ {2, . . . , k}, a

path Pi on k(2k − 3) new vertices, and making all of them adjacent to vi−1 and vi. Note

that this graph is planar and has maximum degree Δ = 2k(2k − 3) + 2. Consider any 3-

colouring of Gk . We now prove that there is a monochromatic component of size at least

k = Ω(
√

Δ). If the path P itself is not monochromatic, then there exists j ∈ {1, . . . , k − 1}
such that vj and vj+1 have distinct colours, say 1 and 2. If colour 1 or colour 2 appears

k − 1 times in Pj then we have a monochromatic star on k vertices. Otherwise there is a

subpath of Pj with k vertices, all of which are coloured with colour 3.

As mentioned in Section 1, Alon, Ding, Oporowski, and Vertigan [1] proved that for

every proper minor-closed class of graphs G there is a function fG such that every graph

in G with maximum degree Δ can be 4-coloured in such way that every monochromatic

component has size at most fG(Δ). On the other hand, for every t, there are graphs with

no Kt-minors that cannot be coloured with t− 2 colours such that all monochromatic

components have bounded size. So in this case again, the assumption that the size

depends on Δ cannot be dropped. We ask whether Theorem 1.2 holds not only for graphs

of bounded genus, but more generally for all proper minor-closed classes of graphs.

Question 5.1. Is it true that for each proper minor-closed class of graphs G there is a

function fG : N → N such that every graph in G with maximum degree Δ can be 3-coloured

in such way that each monochromatic component has size at most fG(Δ)?

Note that the example of graphs with no Kt-minors that cannot be coloured with

t− 2 colours in such a way that all monochromatic components have bounded size
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shows that the famous Hadwiger conjecture, stating that graphs with no Kt-minor have

a proper colouring with t− 1 colours, is best possible even if we only ask the sizes

of monochromatic components to be bounded by a function of t (instead of being of

size 1). On the other hand, Kawarabayashi and Mohar [5] proved the existence of a

function f such that every Kt-minor-free graph has a colouring with � 31
2
t� colours in

which each monochromatic component has size at most f(t). This bound was recently

reduced to � 7
2
t− 3

2
� colours by Wood [13]. This is in contrast with the best known bound

of O(t
√

log t) colours for the Hadwiger conjecture (see [8, 12]).

A well-known result of Grötzsch [3] asserts that triangle-free planar graphs are 3-

colourable. A natural question is whether there exists a constant c such that every

triangle-free planar graph can be 2-coloured such that every monochromatic component

has size at most c. The following construction shows that the answer is negative. Fix an

integer k � 2 and consider a path x1, . . . , xk . For each i ∈ {1, . . . , k}, add a set Si of 2k − 3

vertices which are adjacent to xi only, and finally add a vertex u adjacent to all vertices

in
⋃

1�i�k Si. This graph Gk is planar and triangle-free. Take a 2-colouring of Gk and

assume that the path x1, . . . , xk is not monochromatic. Then some vertex xi has a colour

distinct from that of u. Since u and xi have 2k − 3 common neighbours, one of u and

xi has k − 1 neighbours of its colours, and then lies in a monochromatic component of

size k. It follows that in every 2-colouring of Gk there is a monochromatic component of

size at least k. Note that this construction has unbounded maximum degree. Hence, the

following natural question remains open.

Question 5.2. Is there a function f : N → N such that every triangle-free planar graph

with maximum degree Δ can be 2-coloured in such a way that each monochromatic

component has size at most f(Δ)?
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