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Abstract

We show that in the Silver model the inequality cov(C2) < cov(P2)
holds true, where C2 and P2 are the two-dimensional Mycielski ideals.

1 Introduction

Given any set X with at least two elements, b ∈ [ω]ω and A ⊆ ωX, let
ΓX(A, b) be the infinite game of two players in which both players choose the
consecutive elements of a sequence x ∈ ωX. The choice of x(n) is done by
the second player iff n ∈ b. The first player wins iff x ∈ A. By using such
games, Mycielski [7] introduced ideals on the space ωX as follows: Given a
family B = 〈bs : s ∈ <ω2〉 of infinite subsets of ω such that bs = bsa 0 ∪̇ bsa 1

(disjoint union), the Mycielski ideal MX,B is defined as the collection of
all A ⊆ ωX such that for all s ∈ <ω2 the second player has a winning
strategy in the game ΓX,bs . In [7], Mycielski proved, among other things,
that if X = 2 or X = ω, then MX,B is a translation invariant σ-ideal that
is orthogonal to M ∩ N , where M and N are the ideals of meager and
null sets, respectively (see [8, Theorem 2.2] for a list of Mycielski’s results).
Ros lanowski [8] introduced more ideals, denoted CX and PX , that are closely
related to Mycielski’s MX,B and are also called Mycielski ideals:

Definition 1.1 Let X be a set with at least two elements. Let CX be the
set of all A ⊆ ωX for which player II has a winning strategy in the game
ΓX(A, b) for every b ∈ [ω]ω, thus

CX =
⋂
B

MX,B.
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Moreover, let

PX = {A ⊆ ωX : ∀b ∈ [ω]ω A � b 6= bX}.

Here A � b = {x � b : x ∈ A}. Alternatively, PX is the set of those A ⊆ ωX
for which, for every b ∈ [ω]ω, player II has a winning strategy in the game
ΓX(A, b) that does not depend on the moves of player I. Clearly we have
PX ⊆ CX .

The Mycielski ideals CX and PX have been the object of intensive research
over the past decades. The main focus has been on their cardinal charac-
teristics. Recall the following cardinals associated to any ideal I on a set
Y :

add(I) = min{|F| : F ⊆ I ∧
⋃
F 6∈ I},

cov(I) = min{|F| : F ⊆ I ∧
⋃
F = Y },

non(I) = min{|Z| : Z ⊆ Y ∧ Z 6∈ I},

cof(I) = min{|F| : F ⊆ I ∧ ∀Z ∈ I ∃Z ′ ∈ F Z ⊆ Z ′}.

Trivially, if I, J are ideals such that I ⊆ J, then cov(J) ≤ cov(I).

There exists a close relation between Pk and Ck, where 2 ≤ k < ω, on the
one hand, and the tree ideals v0k, u

0
k associated to k-dimensional Silver forcing

SIk and forcing with k-dimensional uniform Sacks trees Uk, respectively, on
the other hand. See Definition 2.1 below for their definitions. This relation
comes from the fact that a winning strategy for player II in the game Γk(A, b),
where b is infinite and coinfinite, can be considered as a perfect tree ub ⊆ <ωk
with the property that for every t ∈ ub, t is a splitnode of ub iff |t| ∈ ω \b and
every splitnode splits into k successor nodes. Such trees are the k-dimensional
uniform Sacks trees. If ub does not depend on the moves of player II, then
ub is nothing else than a k-dimensional Silver function with domain b.

The inclusions Pk ⊆ v0k and Ck ⊆ u0k are pretty obvious (see [5, Lemma 4.1]);
however, no equality is provable here. Moreover, no inclusion between v0k and
u0k is provable (see [5, §4] for these results). By general knowledge, if j0 is
the tree ideal associated to some proper tree forcing P , then in the model
obtained by a countable support iteration of lenght ω2 of P over a model of
CH, which will be called the P -model for short below, cov(j0) = ℵ2 holds
true. E.g., see [4, Theorem 1.2] where this is proved for the two-dimensional
Sacks forcing.

We conclude from the above that in the SIk-model cov(Pk) = ℵ2 holds and
in the Uk-model cov(Ck) = cov(Pk) = ℵ2. A main result of [10] is that the
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equality cov(Pk) = cov(Pk+1) holds in ZFC, for every 2 ≤ k < ω. In [5,
Theorem 7.18] it has been shown that in the Uk-model cov(Ck+1) = ℵ1. By
the results just mentioned and as by [5, Proposition 6.8] cov(Ck+1) ≤ cov(Ck)
is always true, we conclude that in the U2-model we have cov(Ck) < cov(Pk)
for every 3 ≤ k < ω, but cov(C2) = cov(P2) = ℵ2. Hence the consistency of
cov(C2) < cov(P2) was left open.

Our main result here is that cov(C2) < cov(P2) is true in the SI2-model. For
this we have to define ℵ1-many C2-sets that cover ω2 in the Silver model. A
C2-set can be coded by a family C = 〈ub : b ∈ Ω〉, where Ω ⊆ [ω]ω is ⊆-dense
and every ub is a strategy for player II in the game Γ2(·, b), thus a uniform
Sacks tree with ω \ b as its set of split-levels, as described above. Such C will
be called coding system below. Then

A(C) = ω2 \
⋃
{[ub] : b ∈ Ω}

is the C2-set coded by C. Clearly, sets of this type form a base of C2. Clearly,
no dense Ω in the ground model will remain so in a forcing extension adding
reals. Indeed, given any new real x, say x ∈ ω2, the set {x � n : n < ω} ⊂
<ω2 does not contain any infinite subset from the ground model. Therefore,
one of our tasks will be to extend ℵ1-many partial coding systems cofinally
often during the forcing iteration.

There are two main ingredients for this construction to work. The first one
consists in a careful reading of a given Pω2-name ẋ for a new real, where
Pω2 is the CS-iteration of SI2. This process will produce (even for a name
for a member of ωω) a fusion sequence S̄ = 〈pn : n < ω〉 with limit pω
in Pω2 together with a 2-splitting tree T , i.e., every node of T has at most
two successor nodes, which is the tree of possibilities for ẋ below pω, such
that the family of refining finite maximal antichains below pω associated
to S̄ corresponds to the split-levels of T . For this we apply what we call
the Grigorieff dichotomy, i.e., an idea that appears in seminal form in
Grigorieff’s paper [3] where it is shown that SI2 (as well as many more forcings
of a similar type) adds a minimal real.

As a small digression let me mention that in [9] the property of some forcing
that in its extension every new real is a branch through some k-ary tree in
the ground model is called k-localization property. In [9] it is shown that
the CS-iteration of SIk has the k-localization property. For this, Shelah-
style preservation theorems are used and it is said that“maybe some old
wisdom got lost”, but that it seemed impossible to prove this by classical
methods. I think that this old wisdom are Grigorieff’s ideas, as building on
them the 2-localization property for Pω2 can be shown by using a classical
fusion construction. I conjecture that this can be generalized to every finite
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dimension. But then certainly some extra complexity is added, as SIk is no
longer minimal if k ≥ 3.∗

The second ingredient for our main result is a new idea by which it is possible
to define, for any Pω2-name ẋ for a real with fusion S̄ and limit pω as above,
a coding system C = 〈ub : b ∈ Ω〉 in the ground model such that

pω 
Pω2 ∀b ∈ Ω ẋ 6∈ [ub].

Moreover, the definition of C depends only on the isomorphism type of ẋ
(see Definition 4.2 below). As by CH in the ground model there are only
ℵ1-many such types, this will be a good start for the construction of the ℵ1
C2-sets we need to have in the final model. This new idea is inspired by the
well-known proof that SI2 adds a real which splits every infinite subset of ω
in the ground model.

In [6], the ideas of this work have been used to show that in the model
obtained by a CS-iteration of Sacks forcing the inequality cov(C2) < cov(s0)
holds true. The value of cov(P2) in the Sacks model is not known.

2 Basic definitions

Definition 2.1 Let 2 ≤ k < ω.

(1) Let SIk denote k-dimensional Silver forcing, i.e., the set of all partial
functions f from ω to k such that ω\ dom(f) is infinite, ordered by extension.
We shall denote ω \ dom(f) by com(f). So Silver forcing SI is SI2. By
ef we shall denote the increasing enumeration of com(f).

Given such k-dimensional Silver function f and s ∈ <ωk, by f s we de-
note the Silver function extending f such that we have dom(f s) = dom(f)∪
{ef (i) : i < |s|} and f s(ef (i)) = s(i) for every i < |s|.

Given f, f ′ ∈ SIk and n < ω, we define f ′ ≤n f iff f ′ ≤ f and com(f) and
com(f ′) agree on their first n + 1 elements. It is well-known that, equipped
with these orderings, SIk satisfies Axiom A (see [1] for this notion).

Given f ∈ SIk, by [f ] we denote its body, which is defined as

[f ] = {x ∈ ωk : f ⊆ x}.

The k-dimensional Silver ideal v0k is defined as the set of all X ⊆ ωk
such that

∀f ∈ SIk ∃f ′ ∈ SIk (f ′ ≤ f ∧ [f ′] ∩X = ∅).
∗ Added in proof: This conjecture has been confirmed recently by Fabian Kaak.

4

https://doi.org/10.1017/jsl.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.3


(2) By Uk we denote k-dimensional uniform (Sacks) tree forcing,
i.e., the set of all perfect trees u ⊆ <ωk such that there exists an infinite
and coinfinite set au ⊂ ω with the property that for every node t ∈ u, t is a
splitnode of u iff |t| ∈ au and every splitnode of u has full splitting, i.e., it
has k immediate successors. The order on Uk is inclusion. We shall denote
U2 by U.

If u ∈ Uk, by [u] we denote the body of u, i.e., the set of all its branches.
The tree ideal associated to Uk, denoted by u0k, is defined analogously as v0k:
It contains all X ⊆ ωk such that for every u ∈ Uk there is u′ ∈ Uk with
u′ ≤ u and [u′] ∩X = ∅.

(3) Given any tree T , by split(T ) we denote the set of all splitnodes of T ,
i.e., those t ∈ T which have at least two immediate successors. By splitn(T )
we denote the nth splitlevel of T , i.e., the set of those t ∈ split(T ) which
have precisely n proper initial segments which are splitnodes of T .

Definition 2.2 Let Pα be the CS-iteration of SI of length α, in particular,
its elements are functions p with countable supp(p) := dom(p) ⊆ α such
that for every β ∈ supp(p) we have that p(β) is a Pβ-name and the maximal

condition in Pβ forces p(β) ∈ SIV
Pβ
.

As explained in detail in [1, §5], given β < α, Pα is forcing equivalent to an
iteration Pβ ∗ Pα/Ġβ, where Ġβ is the canonical Pβ-name for the Pβ-generic
filter, such that Pα/Ġβ is again (the Pβ-name of) a CS-support iteration
of SI. Using this identification, given p ∈ Pα and a Pβ-generic filter Gβ,
we can partially evaluate p[Gβ] as a pair of sequences (f, f) such that f =
〈fγ : γ ∈ supp(p) ∩ β〉 is a sequence of Silver functions fγ = p(γ)[Gβ] and
f = 〈ḟγ : γ ∈ supp(p)\β〉 is a condition of the CS-iteration of SI along α \β
in V[Gβ].

As is well-known from proper forcing, we may assume that all p ∈ Pα are
hereditarily countable (see [11, Chapter III, Definition 4.1] for this notion
and proof of this fact), hence in particular, for every β ∈ supp(p), the Pβ-
name p(β) can be evaluated as a Silver function by 〈gγ : γ ∈ supp(p) ∩ β〉,
where gγ is the Silver real added by the γth iterand.

Wlog we may assume 0, 1 ∈ supp(p) for every p.

(1) For p, q ∈ Pα, F ∈ [supp(p)]<ℵ0 and η : F → ω we call the triple (p, F, η)
a fusion condition and we write q ≤F,η p for

q ≤ p ∧ ∀β ∈ F q � β 
Pβ q(β) ≤η(β) p(β).

(2) A fusion sequence in Pα is a sequence S̄ = 〈(pn, Fn, ηn) : n < ω〉 of
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fusion conditions such that

(a) F0 = F1 = {0}, F2 = {0, 1} (as long as α > 1 of course), Fn ⊆ Fn+1

and |Fn+1 \ Fn| ≤ 1;

(b) η0(0) = 0, η1(0) = 1, ∀β ∈ Fn ηn(β) ≤ ηn+1(β) ≤ ηn(β) + 1 and there
is precisely one β ∈ Fn+1, which we call the active coordinate of
Fn+1, such that ηn+1(β) = ηn(β) + 1 in case β ∈ Fn, and ηn+1(β) = 0
in case β 6∈ Fn; we also call 0 ∈ F0 active;

(c) ∀β ∈ Fn ∃m ηm(β) ≥ n;

(d)
⋃
{Fn : n < ω} =

⋃
{supp(pn) : n < ω};

(e) pn+1 ≤Fn,ηn pn.

(3) Every fusion sequence 〈(pn, Fn, ηn) : n < ω〉 determines its fusion limit

pω = inf {pn : n < ω}

in Pα. Clearly, supp(pω) =
⋃
{Fn : n < ω}.

(4) For every f ∈ SI and s ∈ 2<ω we have defined f s ∈ SI (see Definition
2.1(1)). If (p, F, η) is a fusion condition, for σ ∈

∏
β∈F

η(β)2 we define p∗σ ∈ Pα

as follows: For every β ∈ F let (p ∗ σ)(β) a Pβ-name for a condition in SI
such that

p � β 
Pβ (p ∗ σ)(β) = p(β)σ(β).

For every β ∈ α \ F let (p ∗ σ)(β) = p(β).

(5) For β ∈ supp(pω) let Z(β) = Z(S̄, β) denote the set

{n < ω : β is the active coordinate of Fn} .

Clearly 〈Z(β) : β ∈ supp(pω)〉 is a partition of ω into infinite sets.

(6) For β ∈ supp(pω), the increasing bijection between Z(β) and com(pω(β))
will be denoted by the Pβ-name ċ(pω, β).

Remark 2.1 (1) The demand F0 = F1 = {0} and F2 = {0, 1} in Definition
2.2(2)(a) is only to avoid having to consider several cases in some proofs
below.

(2) If (p, F, η) is a fusion condition then

〈p ∗ σ : σ ∈
∏
β∈F

η(β)2〉
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is a (finite) maximal antichain below p.

(3) If S̄ = 〈(pn, Fn, ηn) : n < ω〉 is a fusion sequence with limit pω, then

〈pn+1 ∗ σ : σ ∈
∏
β∈Fn

ηn(β)+12〉

is a maximal antichain below pn+1 of size 2n+1 and it induces a maximal
antichain An+1(S̄) below pω of the same size, as

(pn+1 ∗ σ) ∧ pω = pω ∗ σ,

such that every member of An(S̄) gets refined by two members of An+1(S̄),
where we let A0(S̄) = {pω}. Hence we naturally enumerate An(S̄) by 〈as :
s ∈ n2〉 such that as

a0, as
a1 are the two members of An+1(S̄) below as and,

moreover, if γ is the active coordinate of Fn, thus n ∈ Z(γ), then as
ai = pω∗σ

for some σ ∈
∏
β∈Fn

ηn(β)+12 with the last digit of σ(γ) being i.

Definition 2.3 Let ẏ be a Pα-name for an element of ω and (p, F, η) a
fusion condition. We say that (p, F, η) weakly decides ẏ if for every σ ∈∏
β∈F

η(β)+12, p ∗ σ decides ẏ.

The following lemma is well-known (e.g., see [5, Lemma 7.6] where it is proved
for Uk).

Lemma 2.1 Suppose 
Pα ẋ ∈ ωω and p ∈ Pα. There exists a fusion se-
quence 〈(pn, Fn, ηn) : n < ω〉 in Pα such that the following hold:

(1) p0 = p;

(2) (pn, Fn, ηn) weakly decides ẋ � n, and hence, for every n < ω, (pω, Fn, ηn)
weakly decides ẋ � n.

3 The Grigorieff dichotomy

Definition 3.1 Let α ≤ ω2 and suppose that Pα is a CS-iteration of SI, ẋ
is a Pα-name such that 
Pα ẋ ∈ 2ω \V and p ∈ Pα. By ẋ [p] we denote the
longest t ∈ <ω2 such that

p 
Pα t ⊆ ẋ.
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Following Grigorieff [3] we say that k < ω is indifferent to p, ẋ, if k ∈
com(p(0)) and there is no q ≤ p such that k ∈ com(q(0)) and

ẋ
[
q(k,0)

]
⊥ ẋ

[
q(k,1)

]
,

where
q(k,i) = (q(0) ∪ {(k, i)})aq � [1, α) .

We have the following Grigorieff dichotomy: Either (G1) or (G2) holds,
where

(G1) ∀p∃q ≤ p∀r ≤ q∀k k is not indifferent to r, ẋ;

(G2) ∃p∀q ≤ p∃r ≤ q∃k k is indifferent to r, ẋ.

The following lemma, whose prototype is [3, Lemma 4.7], shows that if ẋ is
a name for a new real, then (G1) must hold.

Lemma 3.1 Suppose 
Pα ẋ ∈ ωω and p ∈ Pα witnesses that (G2) of Grig-
orieff’s dichotomy holds. Then p 
Pα ẋ ∈ V.

Proof: We construct a fusion sequence 〈(pn, Fn, ηn) : n < ω〉 in Pα and
families 〈nk : k < ω〉, 〈jk : k < ω〉 and 〈ξn : n < ω〉 such that p0 ≤ p and for
every n < ω the following hold:

(1) 〈nk : k < ω〉 increasingly enumerates Z(0) (hence n0 = 0 and n1 = 1);

(2) if Z(0)∩ n = {n0, ..., nk−1}, then {j0 < ... < jk−1} is an initial segment
of com(pn(0)) and j` is indifferent to pn, ẋ for every ` < k;

(3) if n = nk then {j0 < ... < jk} is an initial segment of com(pn(0)) and
j` is indifferent to pn, ẋ for every ` ≤ k;

(4) ξn ∈ n2 and pn 
Pα ẋ � n = ξn.

We present the first three steps of the recursive construction in detail to make
clear the crucial arguments in a simple situation. After that we shall give
the general step.

We apply (G2) and obtain p0 ≤ p and j0 ∈ com(p0(0)) such that j0 is
indifferent to p0, ẋ. Wlog we may assume j0 = min(com(p0(0))). Letting
ξ0 = ∅, (2), (3) and (4) hold for n = n0 = 0.

8

https://doi.org/10.1017/jsl.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.3


By Lemma 2.1, we can choose q1 ≤F0,η0 p0 (hence j0 ∈ com(q1(0))) such that
(q1, F0, η0) weakly decides ẋ � 1. Note that then q1 even decides ẋ � 1, say as
ξ1, as otherwise we had

ẋ [q1 ∗ σ0] ⊥ ẋ [q1 ∗ σ1] ,

where σi = 〈〈i〉〉, which contradicts the indifference of j0 (note that q
(j0,i)
1 =

q1 ∗ σi). By (G2) we can find p1 ≤F0,η0 q1 and j1 such that j1 is indifferent
to p1 ∗ σ0, ẋ. Hence j1 > j0 and wlog we may assume that j1 is the second
member of com(p1(0)).

We claim that j1 is indifferent even to p1, ẋ, and hence (2), (3) and (4) hold
for n = n1 = 1. Indeed, otherwise we could find q ≤F1,η1 p1 such that, letting
σij = 〈〈i, j〉〉 (recall that by Definition 2.2(2) F1 = {0} and η1(0) = 1),

ẋ [q ∗ σ10] ⊥ ẋ [q ∗ σ11] ,

say
ẋ [q ∗ σ10] (m) 6= ẋ [q ∗ σ11] (m)

for some m. Wlog we may assume that (q, F1, η1) weakly decides ẋ � m+ 1.
By the indifference of j1 to q ∗σ0, ẋ, as above we conclude that q ∗σ0 decides
ẋ(m). But now we can choose j such that

ẋ [q ∗ σ0j] ⊥ ẋ [q ∗ σ1j] ,

contradicting that j0 is indifferent to p0, ẋ.

In order to find p2 as desired we first choose q2 ≤F1,η1 p1 such that (q2, F2, η2)
weakly decides ẋ(1). Again we claim that q2 even decides ẋ(1). Otherwise,
as each σ ∈

∏
β∈F2

η2(β)+12 is of the form σijk = 〈〈i, j〉, 〈k〉〉, we find distinct

σ = σijk and σ′ = σi′j′k′ such that q2 ∗ σ and q2 ∗ σ′ force different values
to ẋ(1), say x and x′. The most interesting case is 〈i, j〉 = 〈i′, j′〉 and hence
k 6= k′. By indifference of j1 we have that, letting σ′′ = 〈〈i, 1− j〉, k〉, q2 ∗ σ′′
decides ẋ(1) as x. Now we can define r ≤F0,η0 q2 ∗ 〈i〉 such that r ∗ 〈1 − j〉
decides ẋ(1) as x while r ∗ 〈j〉 decides ẋ(1) as x′, which contradicts the
indifference of j1. Indeed, let r such that r(0) = (q2 ∗ 〈i〉)(0) (which is the
same thing as q2(0)〈i〉) and

r � [1, α) =

{
q2(1)〈k〉

a
q2 � [2, α) , if r(0)〈i,1−j〉 (belongs to the generic G(0))

q2(1)〈k
′〉aq2 � [2, α) , otherwise.

The other cases, i.e., 〈i, j〉 6= 〈i′, j′〉, are similar.

Now we can let p2 = q2 and ξ2 is what q2 decides about ẋ � 2. Then clearly
(2) and (4) hold for n = 2 and (3) does not apply.
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Now we consider the general recursive step, where we have to apply essen-
tially the same arguments we have seen above. Suppose that (p0, F0, η0), . . . ,
(pn, Fn, ηn), ξ0, . . . , ξn for n ≥ 2 have been constructed for some n < ω to-
gether with some initial segment 〈j` : ` ≤ k〉 of com(pn(0)), where k is such
that Z(0) ∩ (n+ 1) = {n0 < ... < nk} such that

pn 
Pα ẋ � n = ξn

and every j` (` ≤ k) is indifferent to pn, ẋ.

We have to distinguish two cases:

Case 1: n + 1 ∈ Z(0), thus n + 1 = nk+1 and clearly n > k, ηn(0) = k and
ηn+1(0) = k + 1.

Fix some τ ∈
∏
β∈Fn

ηn(β)+12. By (G2) and Lemma 2.1 we can find pn+1 ≤Fn,ηn
pn and jk+1 such that jk+1 is indifferent to pn+1∗τ, ẋ and pn+1 weakly decides
ẋ(n). Then clearly jk+1 > jk. Wlog we may assume that {j0, ..., jk+1} is an
initial segment of com(pn+1(0)).

At first we show that pn+1 even decides ẋ(n) (and hence ẋ � n+ 1). Then a
similar argument together with the one above showing indifference of j1 to
p1, ẋ will prove that jk+1 is even indifferent to pn+1, ẋ.

For σ ∈
∏
β∈Fn

ηn(β)+12 let xσ such that

pn+1 ∗ σ 
Pα ẋ(n) = xσ.

For σ, σ′ ∈
∏
β∈Fn

ηn(β)+12 let s = s(σ, σ′) be the size of the set

{` < ηn(0) + 1 : σ(0)(`) 6= σ′(0)(`)} .

We shall prove xσ = xσ′ by induction on s. Suppose first that s(σ, σ′) = 0
(thus σ(0) = σ′(0)) and σ 6= σ′. Let σ′1 be defined as follows: If (σ(0))(0) = i,
σ′1 equals σ′ except for (σ′1(0))(0) = 1− i.

As j0 is indifferent to pn+1 we must have xσ′ = xσ′1 . Hence if we had xσ 6= xσ′ ,
then also xσ 6= xσ′1 . But this leads to a contradiction to the indifference of
j0, as follows: Define r ∈ Pα such that

r(0) = pn+1(0)σ(0)�ηn(0)+1\{0}

(hence j0 = min(com(r(0))) and r(0) does not change if σ is replaced by σ′)
and, for j < 2,

r(0)(j0,j) 
SI r � [1, α) = pn+1 ∗ τj,
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where τi = σ � Fn \ {0} and τ1−i = σ′ � Fn \ {0}. Clearly r ≤ pn, but

ẋ
[
r(j0,i)

]
(n) = xσ 6= xσ′ = ẋ

[
r(j0,1−i)

]
(n),

a contradiction.

Now suppose s(σ, σ′) = m+1 and for s ≤ m the claim is true. Let `∗ ≤ ηn(0)
(hence `∗ ≤ k) be maximal such that (σ(0))(`∗) 6= (σ′(0))(`∗). Now define σ′1
as follows : If (σ(0))(`∗) = i let σ′1 be equal to σ′ except for (σ′1(0))(`∗) = i.

By the indifference of j`∗ we must have xσ′ = xσ′1 . By the inductive hypothesis
we have xσ = xσ′1 . Hence we conclude xσ = xσ′1 = xσ′ and thus pn+1 decides
ẋ � n+ 1 as claimed. Denote this decision by ξn+1. Then clearly (2), (3) and
(4) hold for n+ 1.

Now let us sketch why jk+1 is indifferent to pn+1, ẋ. Otherwise we could find
q ≤Fn+1,ηn+1 , τ

′ ∈
∏

β∈Fn
ηn(β)+12 and m < ω such that ẋ

[
q ∗ τ ′ a0

]
(m) 6=

ẋ
[
q ∗ τ ′ a1

]
(m) and q weakly decides ẋ � m + 1. Similarly as we showed

above that pn+1 decides ẋ(n), applying indifference of jk+1 to pn+1 ∗ τ , we
can show that q even decides ẋ(m), which is a contradiction.

Case 2: n+ 1 6∈ Z(0).

Choose pn+1 ≤Fn,ηn pn such that pn+1 weakly decides ẋ(n). Very similarly as
in Case 1 we can show that pn+1 even decides ẋ(n), hence also ẋ � n+ 1, and
we denote this decision by ξn+1. Then clearly (2) and (4) hold for n+ 1 and
(3) does not apply. �

By Lemma 3.1 we conclude that if ẋ is a Pα-name for a new real, then (G1)
of the Grigorieff dichotomy must hold. As Theorem 3.1 below will show,
this enables us to find a very precise form of continuous reading of ẋ. The
prototype of this result is [3, Lemma 4.6].

The following definition was introduced in [5] (see Definition 7.8):

Definition 3.2 Let ẋ be a Pα-name for an element of ωω. We say that a
fusion condition (p, F, η) splits ẋ at γ ∈ F if for every

σ ∈
∏

β∈F\{γ}

η(β)+12 and s0, s1 ∈ (η(γ)+1)2

with s0 � η(γ) = s1 � η(γ) and s0(η(γ)) < s1(η(γ)),

ẋ [p ∗ (σ ∪ {(γ, s0)})] ⊥ ẋ [p ∗ (σ ∪ {(γ, s1)})] .

11
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Theorem 3.1 Suppose p ∈ Pα and

p 
Pα ẋ ∈ ωω \
⋃
β<α

VPβ .

There exists a fusion sequence S̄ = 〈(pn, Fn, ηn) : n < ω〉 below p such that
for every n, if γ is the active coordinate of Fn then (pn, Fn, ηn) splits ẋ at γ.

Moreover, letting An(S̄) and 〈as : s ∈ n2〉 be defined as in Remark 2.1 and

letting ts the longest common initial segment of ẋ
[
as

a0
]

and ẋ
[
as

a1
]
, the

following hold:

(0) ẋ
[
as

a0
]

(|ts|) ⊥ ẋ
[
as

a1
]

(|ts|);

(1) if |s| < |s′| then |ts| < |ts′ |;

(2) if γ is the active coordinate of Fn and s, s′ ∈ n2 are such that

s � n \
⋃
{Z(β) : β ≥ γ} 6= s′ � n \

⋃
{Z(β) : β ≥ γ}

we have |ts| 6= |ts′ |. (For the definition of Z(β) see Definition 2.2(5).)

Proof: Our recursive construction will guarantee that the following demand
holds for every n:

(∗)n If γ is the active coordinate of Fn then

pn � γ 
Pγ ∀r ≤ pn � [γ, α)∀k k is not indifferent to r, ẋ.

For (∗)n to make sense we use the well-known fact that the quotient forcing
Pα/Ġγ is again a CS-support iteration of SI (see [1, §5]).

We have to find p0 such that (p0, F0, η0) splits ẋ at 0. For this we first
apply Lemma 3.1 and the assumption and conclude that (G2) of Grigorieff’s
dichotomy fails below p, hence (G1) holds below p and we obtain q as in
(G1). Let k = min(com(q(0))). As k is not indifferent to q, ẋ we find p0 ≤ q
as desired. By (G1) we also know that at every later stage n ∈ Z(0) we will
have (∗)n.

Now suppose we have gotten (p0, F0, η0), ..., (pn, Fn, ηn) as desired such that
(∗)m holds for every m ≤ n.

12
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Let γ be the active coordinate of Fn+1. We perform a recursion along the
lexicopraphic order of the set

Σ =
{
s � n+ 1 \

⋃
{Z(β) : β ≥ γ} : s ∈ n+12

}
.

Note that its members correspond to functions

(3) σ ∈
∏

β∈Fn+1∩γ

ηn+1(β)+12

which are then ordered accordingly, say by ≺.

We have two subcases according to whether n + 1 = min(Z(γ)) or not. In
the second case we shall apply (∗)m for some m < n+ 1 in Z(γ) and perform
the same resursion as will be done in the first case after some preliminary
step. Hence we treat only the first case.

In the first case, as for the construction of p0, (working in V[Ġγ]) we first
have to apply our assumption together with (G1) to extend pn � [γ, α) to
some p1 ∈ Pα/Ġγ such that p1 ≤Fn+1\γ+1,ηn+1�Fn+1\γ+1 pn � [γ, α) and

(4) pn � γ 
Pγ ∀r ≤ p1 ∀k k is not indifferent to r, ẋ.

Such p1 is obtained as the last element of a ≤Fn+1\γ+1,ηn+1�Fn+1\γ+1-decreasing
chain considering each

(5) τ ∈
∏

β∈Fn+1\γ+1

ηn+1(β)+12.

As pedantically, p1 is a only name for a condition in the quotient forc-
ing (hence (pn � γ, p1) is not a member of Pα), by properness we obtain
p0 ≤Fn∩γ,ηn�γ pn � γ which decides supp(p1), i.e., turns p1 into a countable
sequence of names so that (p0, p1) will be a member of Pα. (See [1, §5] for
more details about this.)

Now we start our recursion below (p0, p1). Let σ be the first sequence as in
(3). We have to construct q ≤Fn,ηn (p0, p1) such that for every pair of

u0, u1 ∈ ηn+1(γ)+12

and every τ as in (5), if u0 � ηn+1(γ) = u1 � ηn+1(γ) and u0(ηn+1(γ)) <
u1(ηn+1(γ)) then

ẋ [q ∗ (σ ∪ {(γ, u0)} ∪ τ)] ⊥ ẋ [q ∗ (σ ∪ {(γ, u1)} ∪ τ)] ,

and, letting
t(q, σ, (u0, u1), τ)

13
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denote the longest common initial segment of these two incompatible nodes,
we have

(6) |ts| < |t(q, σ, (u0, u1), τ)|

for every s ∈ n2. Note that t(q, σ, (u0, u1), τ) = ts for some s ∈ n+12.

This is easy to achieve. Simply build a finite ≤Fn,ηn-descending chain of
conditions r ≤ (p0, p1) taking care of every (u0, u1) and τ as above. More
precisely, if we have obtained r and have to consider (u0, u1) and τ , by (4)
we know

r � γ 
Pγ ∀r′ ≤ r � [γ, α)∀k k is not indifferent to r′, ẋ.

Choose Gγ a Pγ-generic filter with r � γ ∗ σ ∈ Gγ. Work in V [Gγ]. Let
u := u0 � ηn+1(γ) = u1 � ηn+1(γ). Choose r′ ≤ (r(γ)u, r � [γ + 1, α) ∗ τ)
deciding an initial segment of ẋ, say ξ, that is longer than all the ts for
s ∈ n2, and let k = min(com(r′(γ))). By (4) we can find r′′ ≤ r′ such that
k ∈ com(r′′(γ)) and

ẋ[(r′′(γ) ∪ {(k, 0)} , r′′ � [γ + 1, α)] ⊥ ẋ[(r′′(γ) ∪ {(k, 1)} , r′′ � [γ + 1, α)].

Then let r1 be such that r1(γ) is r(γ) except that r1(γ)u = r′′(γ) and

r1(γ)u 
Pα/Ġγ+1
r1 � [γ + 1, α) ∗ τ = r′′ � [γ + 1, α).

Finally choose r0 ≤Fn∩γ,ηn r � γ such that r0 ∗ σ ∈ Gγ forces all this, decides
ξ and also decides supp(r1) (see the above remark how to get (p0, p1)). Then
r = (r0, r1) is the next condition in our finite chain. Let q be its last element.
We denote q = (q � γ, q � [γ, α)) by (qσ, q

σ).

Now suppose we have already dealt with an initial segment of σ’s as in (3),
built a ≤Fn,ηn-descending chain of conditions below (p0, p1) with last element
q, and σ′ is the next sequence we have to consider. We essentially repeat the
above recursion below q, but this time deciding long enough initial segments
of ẋ so that

|t((qσ, qσ), σ, (u0, u1), τ)| < |t((qσ′ , qσ
′
), σ′, (u′0, u

′
1), τ

′)|

will hold for every σ ≺ σ′ and all (u0, u1), (u
′
0, u
′
1), τ, τ

′ as above. Suppose
now we have done this for every σ. We define pn+1 as the last condition we
have obtained. Then by construction we have

ẋ [pn+1 ∗ (σ ∪ {(γ, u0)}) ∪ τ ] ⊥ ẋ [pn+1 ∗ (σ ∪ {(γ, u1)} ∪ τ)]

for every σ, (u0, u1) and τ , and if σ ≺ σ′ then

|t(pn+1, σ, (u0, u1), τ)| < |t(pn+1, σ
′, (u′0, u

′
1), τ

′)|

for any (u0, u1), (u
′
0, u
′
1), τ, τ

′. Hence the theorem is proved. �
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Remark 3.1 Suppose that ẋ, the fusion sequence S̄ = 〈(pn, Fn, ηn) : n < ω〉
and 〈ts : s ∈ <ω2〉 are as in Theorem 3.1 and let pω be the fusion limit
of S̄. Moreover, associated with these we have the refining finite antichains
An(S̄) = 〈as : s ∈ n2〉 as explained in Remark 2.1(3).

(1) Let T = T (ẋ, S̄) be the tree generated by t̄ = 〈ts : s ∈ n2〉. By construc-
tion, T ⊆ <ωω is a 2-ary tree such that

pω 
Pα ẋ ∈ [T ]

and split(T ) = {ts : s ∈ <ω2}. Moreover

T = {t ∈ T : ¬ pω 
Pα ¬ t ⊆ ẋ}

is the tree of possibilities for ẋ below pω.

(2) If we step into V[Gγ] for some γ < ω2, where Gγ is Pγ-generic containing
pω � γ, then Gγ evaluates ẋ partially. More precisely, the generic reals 〈gβ :
β ∈ supp(pω)∩ γ〉 determine a possibly partial function Hγ = Hγ(S̄) : ω → 2
with

dom(Hγ) =
⋃
{Z(β) : β ∈ supp(pω) ∩ γ}

such that for every n < ω, only those as(S̄) in An(S̄) are compatible with
pω [Gγ] for which s is compatible with Hγ, and hence

Aγn(S̄) [Gγ] := {as(S̄) [Gγ] : s ∈ n2 ∧ ∀i ∈ dom(s) ∩ dom(Hγ) s(i) = Hγ(i)}

is a maximal antichain in the quotient forcing Pω2/Gγ below pω [Gγ]. More
explicitly, given β ∈ supp(pω) ∩ γ and i ∈ Z(β), we have

Hγ(i) = gβ ◦ ċ(pω, β)[Gβ](i).

(See Definition 2.2(6).)

Note that for any as(S̄) [Gγ] , a
s′(S̄) [Gγ] ∈ Aγn(S̄) [Gγ] we have

as(S̄) [Gγ] � γ = as
′
(S̄) [Gγ] � γ.

Clearly, Hγ is a total function iff supp(pω) ⊆ γ, otherwise Hγ is a Silver
function, and if β < γ, Hγ � Z(β) is completely determined by gβ, hence
belongs to VPβ+1.

Corollary 3.1 [9, Corollary 2.6] The CS-iteration of SI has the 2-localization
property.

As outlined in the introduction, [9, Corollary 2.6] proves the k-localization
property for the CS-iteration of SIk, as well as for Uk and k-dimensional
Sacks forcing Sk, for every 2 ≤ k < ω.
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4 C2-sets covering new reals

In this section we prove that, given any Pω2-name ẋ for a new real, where Pω2

is the CS-iteration of SI, it is possible to define a coding system 〈ub : b ∈ Ω〉
in the ground model such that 
Pω2 ∀b ∈ Ω ẋ 6∈ [ub]. Let me first explain
the core idea in the simple case where we replace Pω2 by SI and ẋ by the
SI-name ġ for the Silver real.

From now on let Ω denote the set of all infinite and coinfinite subsets of
ω. For b ∈ Ω we define ub ∈ U with au

b
= ω \ b (see Definition 2.1(2)) by

recursion on levels as follows: Suppose we have n ∈ b and t ∈ ub ∩ n2. For
any finite partial function s from ω to 2 we let

is = | {j ∈ dom(s) : s(j) = 1} | mod 2.

We stipulate that t a it is the (only) successor node of t in ub. Hence ub is
defined and thus also the coding system C = 〈ub : b ∈ Ω〉. Now we can prove:

(∗) 
SI ġ ∈ A(C).

Recall
A(C) = ω2 \

⋃
{[ub] : b ∈ Ω}.

For this, let f ∈ SI and b ∈ Ω. Let m = min(com(f)) and n = min(b\m+1).
Wlog we may assume that n+ 1 \ {m} ⊆ dom(f). Define

k =

{
0, if if�n\{m} = 1− f(n)
1, otherwise

and f ′ = f ∪{(m, k)}. Then clearly f ′ 
SI ġ 6∈
[
ub
]
, as f ′ � n+ 1 6∈ ub. This

proves (∗). In the general case, the correct definition of C is more complex.
It is given in the following definition. Then Lemma 4.1 will generalize the
above argument.

Definition 4.1 (1) Let Y be a nonempty set of ordinals and Z̄ = 〈Z(β) :
β ∈ Y 〉 a partition of ω into infinite sets. Let

Fn = {β ∈ Y : Z(β) ∩ n+ 1 6= ∅} .

Let T ⊆ <ω2 be a perfect tree such that t̄ = 〈ts : s ∈ <ω2〉 enumerates
canonically split(T ), hence {ts : s ∈ n2} = splitn(T ), such that the following
are satisfied:

(i) |ts| < |ts′ | whenever |s| < |s′|;
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(ii) if n ∈ Z(γ) and s, s′ ∈ n2 are such that

s � n \
⋃
{Z(β) : β ≥ γ} 6= s′ � n \

⋃
{Z(β) : β ≥ γ} ,

we have |ts| 6= |ts′ |.

Such a tree T will be called a coding tree and we write T = T (Z̄) to indicate
with respect to which Z̄ property (ii) is satisfied.

Given such T we define a coding system C = C(T ) = 〈ub : b ∈ Ω(T )〉 as
follows: For β ∈ Y let

L(β) = {|ts| : |s| ∈ Z(β)} .

Clearly, by (i) the L(β) are infinite and pairwise disjoint. We define Ω(T )
as follows:

Ω(T ) = Ω ∩ {b : [∃β ∈ Y b ⊆ L(β)] ∨ [b ⊆
⋃
β∈Y

L(β) ∧

∀β ∈ Y |b ∩ L(β))| ≤ 1] ∨ [b ∩
⋃
β∈Y

L(β) = ∅]}.

Clearly Ω(T ) is dense in [ω]ω and every b ∈ Ω(T ) is coinfinite.

We define C = 〈ub : b ∈ Ω(T )〉 such that for b ∈ Ω(T ) we have ub ∈ U with
au

b
= ω\b defined according to the three types of members of Ω(T ) as follows:

(I) Suppose b ⊆ L(β) for β ∈ Y . We determine whether t ∈ n+12 belongs
to ub by recursion on n ∈ b. Suppose t ∈ ub ∩ n2. Now we require the
following:

• if t 6∈ T let t a 0 ∈ ub;
• if t ∈ T \ split(T ) let t a i ∈ ub such that t a i 6∈ T ;

• if t ∈ split(T ), thus t = ts for some s ∈ <ω2, letting

i(t, β) := | {j ∈ |s| ∩ Z(β) : s(j) = 1} |mod 2,

we stipulate that
t a tsa i(t,β)(|t|) ∈ ub.

(II) Suppose ∀β ∈ Y |b ∩ L(β)| ≤ 1 and b ⊆
⋃
β∈Y

L(β). We require the

following:

• if t 6∈ T or t ∈ split(T ) let t a 0 ∈ ub;
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• if t ∈ T \ split(T ) let t a i ∈ ub such that t a i 6∈ T ;

(III) Suppose b∩
⋃
β∈Y

L(β) = ∅. Hence for no t ∈ split(T ) do we have |t| ∈ b.

We define ub as in case II.

(2) Suppose that the objects as in (1) are given and Y ′ is another countable set
of ordinals that is order isomorphic to Y . Let π : Y → Y ′ be the isomorphism.
Let Z̄ ′ = 〈Z ′(β) : β ∈ Y ′〉 be the partition of ω induced by π, i.e., Z ′(π(β)) =
Z(β) for every β ∈ Y . Similarly, we obtain the induced finite sets F ′n ⊆ Y ′

such that Y ′ =
⋃
{F ′n : n < ω} .

Then clearly (1)(ii) holds for F ′n, Z
′(β) as well and L(β) = L′(π(β)), where

L′(π(β)) = {|ts| : |s| ∈ Z ′(π(β))} .

Moreover, Ω(T (Z̄)) = Ω(T (Z̄ ′)) and we obtain the same trees ub if we replace
Z(β) by Z ′(π(β)) and L(β) by L′(π(β)).

Lemma 4.1 Suppose that Pα is a CS-iteration of SI, p ∈ Pα and

p 
Pα ẋ ∈ ωω \
⋃
β<α

VPβ .

Suppose also that S̄ = 〈(pn, Fn, ηn) : n < ω〉 is a fusion sequence below p with
limit pω for ẋ as in Theorem 3.1. Hence we have the associated partition
Z̄ = 〈Z(β) : β ∈ supp(pω)〉 and perfect tree T = T (ẋ, S̄) with splitnodes
t̄ = 〈ts : s ∈ n2〉. Clearly T = T (Z̄) is a coding tree as in Definition 4.1. If
the coding system C = C(T ) = 〈ub : b ∈ Ω(T )〉 is defined as there we have

pω 
Pα ∀b ∈ Ω(T ) ∩V ẋ 6∈ [ub].

Proof: Suppose that q ≤ pω and b ∈ Ω(T ) ∩V are arbitrary. We have to
find q′ ≤ q such that

q′ 
Pα ẋ 6∈
[
ub
]
.

Let the antichains An(S̄) = 〈as : s ∈ n2〉 be defined as in Remark 2.1(3).

Define
Rq = {s ∈ <ω2 : ¬ q ⊥ as}

and let
T q = {t ∈ T : ¬ q 
Pα ¬ t ⊆ ẋ}

be the tree of possibilities for ẋ below q. Clearly, Rq and T q are trees and T q

is generated by {ts : s ∈ Rq} . Also note that if t ∈ T q and t = ts for some s,
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then s ∈ Rq, as otherwise let s0 ∈ Rq be maximal with s0 ⊆ s. Hence every
s′ ∈ Rq that is not an initial segment of s0 either extends s0

a 1 − s(|s0|) or
is incompatible with s0. As the ts′ for s′ ∈ <ω2 are the splitnodes of T we
conclude that t 6∈ T q, a contradiction.

Note that wlog we may assume that for every l ∈ b and for every t ∈ T q of
length l there is s ∈ Rq such that t = ts. Indeed, otherwise we know by the
remark we just made that t is not a splitnode of T but there is q′ ≤ q forcing
ẋ � l = t and hence by definition of ub we have

q′ 
Pα ẋ � l + 1 6∈ ub,

and we are done.

Now the proof proceeds along the three cases of Definition 4.1:

Case I:

We consider b ⊆ L(β) for some β ∈ supp(pω).

ChooseGβ a Pβ-generic filter containing q � β. Hence q(β) [Gβ] ≤SI pω(β) [Gβ]
and there exist k and v ∈ k2 such that

stem(q(β) [Gβ]) = stem(pω(β) [Gβ]v).

Let m0 = |stem(q(β) [Gβ])|. By the bookkeeping we used for the fusion by
which we obtained pω we know the step at which coordinate β was active
for the kth time, say it was step n0. We choose l ∈ b larger than max{|ts| :
s ∈ n02}. By property (i) of a coding tree (see Definition 4.1) and by our
observation above (that every t ∈ T q of length l is of the form ts for some
s ∈ Rq), there is a unique n1 ∈ Z(β) such that for every t ∈ T q of length l
there exists s ∈ n12 with t = ts.

Moreover, in V[Gβ] the tree of possibilities for ẋ below q (with respect to
the forcing Pα/Gβ) has been further restricted to T q[Gβ] defined as follows:
Letting

Rq[Gβ] =
{
s ∈ <ω2 : as(S̄)[Gβ] � β ∈ Gβ ∧ ¬ as(S̄) ⊥Pα/Gβ q

}
,

T q[Gβ] is the tree generated by the set of all ts with s ∈ Rq[Gβ].

Given s ∈ Rq[Gβ] ∩ n12 and letting m1 = ċ(pω, β)[Gβ](n1) (see Definition
2.2(6)), the value of ẋ(|ts|) is determined by ġβ as tsa ġβ(m1)(|ts|), more pre-
cisely, we have

q ∧ as(S̄) 
Pω2/Gβ ẋ(|ts|) = tsa ġβ(m1)(|ts|).
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In V, we can find q̂ ≤ q in Pα as follows: q̂ � β ≤ q � β forces all the
facts we have noticed above after we fixed Gβ, and q̂ � β also decides
k, v,m0, n0, l, n1,m1 as above. Moreover,

q̂ � β 
Pβ com(q̂(β)) ∩m1 + 1 = {m0} ,

q̂ � β decides q̂(β) � m1 +1, thus ġβ � (m1 +1\{m0}), say as 〈g(0), ..., g(m0−
1), g(m0 + 1), ..., g(m1)〉, and we let q̂ � [β + 1, ω2) = q � [β + 1, ω2).

Now we can find s0, s1 ∈ Rq̂ ∩ n12 such that si(n0) = i and s0(j) = s1(j) for
every j ∈ Z(β) ∩ n1 \ {n0}, and hence

i(ts0 a g(m1), β) 6= i(ts1 a g(m1), β).

As remarked above, we know that both ts0 and ts1 are splitnodes of T of
length l. Now choose j such that i(tsj a g(m1), β) 6= g(m1) and a common
extension q′ of q̂ and asj . We conclude

q′ 
Pα tsj a g(m1) � |tsj |+ 1 ⊂ ẋ

and hence q′ 
Pα ẋ 6∈
[
ub
]
, by definition of ub.

Case II:

We have b ⊆
⋃

β∈supp(pω)
L(β) and ∀β ∈ supp(pω) |b ∩ L(β)| ≤ 1. In this case

we shall apply property (ii) of a coding tree (see Definition 4.1). As

{n ∈ Z(0) : c(pω, 0)(n) ∈ com(q(0))}

is infinite (see Definition 2.2(6)), certainly we can find a large enough β ∈
supp(pω) such that there are l ∈ b ∩ L(β), n ∈ Z(β) and s ∈ n2, s0, s1 ∈
n2 ∩Rq such that |ts| = l and

s0 � n \
⋃
{Z(γ) : γ ≥ β} 6= s1 � n \

⋃
{Z(γ) : γ ≥ β} .

By property (ii) of a coding tree we know that |ts0| 6= |ts1|. Hence we can
pick i < 2 such that |tsi | 6= l. We can find q′ extending both q and asi which
decides ẋ � l, say as t. By property (i) of a coding tree we know that t is not
a splitting node of T , and hence

q′ 
Pα ẋ � l + 1 6∈ ub

by definition of ub.

Case III:
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We have b∩
⋃

β∈supp(pω)
L(β) = ∅ and we know that no t ∈ split(T ) has |t| ∈ b.

Hence by definition of ub we conclude

pω 
Pα ẋ 6∈ [ub].

�

Definition 4.2 Suppose we are given two Pα-names for reals, ẋ and ẋ′, to-
gether with conditions p, p′, fusion sequences S̄, S̄ ′ below p, p′, respectively,
fusion limits pω, p′ω and associated partitions of ω, Z̄ and Z̄ ′, respectively, as
in Lemma 4.1, such that

p 
Pα ẋ ∈ ωω \
⋃
β<α

VPβ and p′ 
Pα′ ẋ
′ ∈ ωω \

⋃
β<α′

VPβ .

We call ẋ and ẋ′ isomorphic if there is an order isomorphism

π : supp(pω)→ supp(p′ω)

such that Z(β) = Z ′(π(β)) and T (ẋ, S̄) = T (ẋ′, S̄ ′) with the same sequence
t̄ = 〈ts : s ∈ <ω2〉 of splitnodes. Then Definition 4.1(2) applies and we
know that Ω(T (ẋ, S̄)) = Ω(T (ẋ′, S̄ ′)) and C(T (ẋ, S̄)) = C(T (ẋ′, S̄ ′)), i.e.,
isomorphic names are associated with the same coding system. Clearly, under
CH there are only ℵ1-many isomorphism types of names.

5 Extending the coding systems

As our goal is to prove cov(C2) = ℵ1 in the iterated Silver model, we need to
construct a family of ℵ1-many coding systems coding C2-sets covering 2ω. For
this, Lemma 4.1 is a good start, as any two isomorphic names of reals give
rise to the same coding system as we have noticed at the end of Definition
4.2.

However, whenever by some forcing new reals are added then no dense
Θ ⊆ [ω]ω in V will be dense in the extension (see the argument in the
introduction). Hence the coding system C(T (Z̄)) = 〈ub : b ∈ Ω(T (Z̄))〉 de-
fined in Definition 4.1 where T (Z̄) = T (ẋ, S̄) as in Lemma 4.1 has to be
extended cofinally often during the iteration so that it will code a C2-set A
in the final model. This extension has to be done in such a way that Lemma
4.1 will remain true for every name belonging to the equivalence class K of
ẋ, i.e., the evaluation of every ẋ′ ∈ K belongs to A.
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As is well-known, new reals appear only in intermediate models VPγ where
γ > 0 and cf(γ) is countable (i.e., finite and hence 1, or countably infinite).
Hence at stages γ ≤ ω2 of uncountable cofinality we can take unions of the
coding systems we already constructed. Hence we actively extend the coding
systems only at steps γ > 0 of countable cofinality. In order to make sure
that no old real is a branch through some new tree we are adding to the
system at that stage, we make use of the γ-th Silver real ġγ. Hence this
extension will be completed only in the model VPγ+1 .

We let Ω0(T (Z̄)) = Ω(T (Z̄)) and C0(T (Z̄)) = C(T (Z̄)). So both belong to

V. Now we define Ωγ(T ) and the coding system Cγ(T (Z̄)) = 〈uḃ : ḃ ∈ Ωγ(T )〉
for every 0 < γ < ω2 such that Ωγ(T ) ∈ VPγ always and Cγ(T (Z̄)) ∈ VPγ if
cf(γ) = ω1 and Cγ(T (Z̄)) ∈ VPγ+1 if cf(γ) is countable.

Suppose we have already extended C(T (Z̄)) to a coding system Cβ(T (Z̄)) =

〈uḃ : ḃ ∈ Ωβ(T )〉 in VPβ+1 for every β < γ, for some 0 < γ < ω2. If γ is a
limit of uncountable cofinality we let

Ωγ(T (Z̄)) =
⋃
{Ωβ(T (Z̄)) : β < γ}

and
Cγ(T (Z̄)) =

⋃
{Cβ(T (Z̄)) : β < γ}.

If γ has countable cofinality, let

Ωγ(T (Z̄)) = {ḃ ∈ Ω(T (Z̄))V
Pγ

: ¬ ∃c ∈ [ω]ω ∩
⋃
β<γ

VPβ c ⊆ ḃ}.

(For the definition of Ω(T (Z̄)) see Definition 4.1(1).) Clearly, Ωγ(T (Z̄)) is
dense in [ω]ω ∩VPγ . In this case, in VPγ+1 we shall define a coding system

〈uḃ : ḃ ∈ Ωγ(T (Z̄))〉 such that for every ẋ′ ∈ K (with associated isomorphism
π′, fusion sequence S̄ ′ and limit p′ω), its evaluation in the final model is not

a branch through any of the uḃ.

As in Definition 4.1, the definition of uḃ will depend on the three types of
members of Ωγ(T (Z̄)). But now, the two first ones of these (i.e., ḃ ⊂ L(β) for
some β ∈ supp(pω) or ḃ ⊆

⋃
β∈supp(pω) L(β) and ∀β ∈ supp(pω) |ḃ∩L(β)| ≤ 1)

split into two subcases taking care of how supp(p′ω) and π′(β) are positioned
with respect to γ. For this, disjoint infinite subsets ḃ0, ḃ1 of ḃ are chosen and
then, on levels from ḃ0, u

ḃ is defined in VPγ , whereas on levels from ḃ1 we
need the Silver real ġγ to define it.

For our main result we shall need to know that in the Silver model, the
ground model reals are a P2-set. This seems to be proved by [2, Corollary
4.4] by using the Sacks property of SI. Let us give a direct proof here:
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Lemma 5.1 Suppose that f0 ∈ SI and ḃ is a SI-name such that f0 
SI ḃ ∈
[ω]ω. There exist SI-names ċ, ẏ and a condition f ∈ SI such that f ≤ f0 and

f 
SI ċ ∈ [ḃ]ω ∧ ẏ ∈ ċ2 \ {x � ċ : x ∈ ω2 ∩V} .

Proof: By a simple fusion we can find f ∈ SI and a one-to-one family
〈ks : s ∈ <ω2〉 in ω such that f ≤ f0 and

f s 
SI ks ∈ ḃ

for every s ∈ <ω2. Letting ġ be the canonical name for the Silver real and
defining

ċ := {ks : f s ⊆ ġ} ,

clearly f 
SI ċ ∈ [ḃ]ω. Now we define ẏ on ċ such that

ẏ(ks) = 0 iff ksa i ∈ ċ ∧ ksa i < ksa 1−i.

Given any f ′ ≤ f and x ∈ ω2 ∩V, let s be maximal with f ′ ≤ f s and let
j = min(com(f ′)). Hence f ′ 
SI ks ∈ ċ, and ẏ(ks) depends on ġ(j), thus has
not yet been decided by f ′. Hence we can find f ′′ ≤ f ′ forcing ẏ(ks) 6= x(ks).
Note that the lemma is nontrivial only if ḃ is forced to be outside V. �

Corollary 5.1 (1) VSI |= ω2 ∩V ∈ P2.

(2) If Pω2 is the CS iteration of SI of length ω2 then VPω2 |= ω2 ∩V ∈ P2.

Proof: (1) In VSI, let Θ ⊆ ω[ω] be dense such that for every b ∈ Θ we have
[b]ω ∩V = ∅. By Lemma 5.1, for every b ∈ Θ find a Silver function f b with
dom(f b) = b such that for no x ∈ ω2∩V, x � b = f b. Then C = 〈f b : b ∈ Θ〉
codes the P2-set

A(C) = ω2 \
⋃{

[f b] : b ∈ Θ
}

which has the property ω2 ∩V ⊆ A(C).

(2) For every γ < ω2, in VPγ+1 we can choose a dense Ωγ+1 ⊆ [ω]ω such that
for every b ∈ Ωγ+1, [b]ω∩VPγ = ∅, and then, as in (1), define a coding system
Cγ+1 = 〈f b : b ∈ Ωγ+1〉 such that ω2 ∩ VPγ ⊆ A(Cγ+1). In VPω2 we have the
coding system C = 〈f b : b ∈ Ωγ+1, γ < ω2〉 defining the P2-set A(C) which
covers ω2 ∩V. �

Remark 5.1 In [2, Proposition 4.13] it is shown that Corollary 5.1(1) is
false for Laver as well as for Miller forcing.
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Now the precise crucial definition of how we extend our coding systems along
the iteration is as follows:

Definition 5.1 Suppose that in V we are given some coding tree T (Z̄). Re-
call that in particular Z̄ = 〈Z(β) : β ∈ Y 〉 is a partition of ω into in-
finite sets, t̄ = 〈ts : s ∈ <ω2〉 canonically enumerates split(T (Z̄)) and
L(β) = {|ts| : |s| ∈ Z(β)}. Let ẋ with fusion S̄ and limit pω be associ-
ated to T (Z̄), so in particular supp(pω) = Y and T (Z̄) = T (ẋ, S̄). Let
An(S̄) = 〈as = as(S̄) : s ∈ n2〉 for n < ω be the associated refining maximal
antichains below pω (see Remark 2.1(3)). Let π = idY .

Let K be the isomorphism class of names associated to T (Z̄). For ẋ′ ∈ K let
S̄ ′ be the associated fusion, p′ω its limit, π′ : Y → supp(p′ω) the isomorphism
and An(S̄ ′) = 〈as(S̄ ′) : s ∈ n2〉 the associated maximal antichains below p′ω.
Moreover, let ġγ ∈ VPγ+1 be the Silver real added by the iterand Q̇γ of the
iteration.

Given any b ⊆ ω, define Z(b) = {|s| : |ts| ∈ b} . Note that it may happen that
there are s with |s| ∈ Z(b) but |ts| 6∈ b (see property (ii) of a coding tree).

For every γ < ω2, in VPγ we have already defined Ωγ(T (Z̄)) at the beginning
of this section. Now let us define the coding system

Cγ(T (Z̄)) = 〈uḃ : ḃ ∈ Ωγ(T (Z̄))〉

in VPγ+1. For ḃ ∈ Ωγ(T (Z̄)), uḃ will be defined according to the three types

of members of Ωγ(T (Z̄)). Always, uḃ will be defined as a uniform tree with

au
ḃ

= ω \ ḃ.

(I) Suppose ḃ ∈ Ωγ(T (Z̄)) is such that ḃ ⊆ L(β) for some β ∈ Y . In VPγ ,

let ḃ = ḃ0 ∪ ḃ1 be a partition into two infinite sets. Levels of uḃ in ḃ0 are
defined in VPγ while levels in ḃ1 are defined in VPγ+1. More precisely, for
every l ∈ ḃ0 and t ∈ l2, at first we define a next digit d(t) < 2 (in VPγ).
Then, in VPγ+1, for every l ∈ ḃ1 and t ∈ l2 a next digit d(t) will be defined.

Then, in VPγ+1, uḃ will be the non-empty uniform tree such that for every
t ∈ uḃ, if |t| ∈ ḃ, then its next digit is d(t).

(0) (On levels from ḃ0 we make sure that we can deal with ẋ′ ∈ K with
associated isomorphism π′ such that γ ≤ π′(β).) On levels in ḃ0 we

define uḃ in VPγ analogously as in Definition 4.1(1)(I): Suppose l ∈ ḃ0
and t ∈ l2. Then d(t) is determined as follows:

• if t 6∈ T (Z̄) let d(t) = 0;
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• if t ∈ T (Z̄) \ split(T (Z̄)) let d(t) be such that t a d(t) 6∈ T (Z̄);

• if t ∈ split(T (Z̄)), thus t = ts for some s ∈ <ω2, letting

i(t, β) := | {j ∈ |s| ∩ Z(β) : s(j) = 1} |mod 2,

we stipulate that
d(t) = tsa i(t,β)(|t|).

(1) (On levels from ḃ1, we take care of those ẋ′ with π′(β) < γ.) In VPγ+1

we can choose a real ḣ : Z(ḃ1)→ 2 such that ḣ 6∈ VPγ , e.g., if ρ̇ : Z(ḃ1)
→ ω is a bijection in VPγ , let ḣ = ġγ ◦ ρ̇.

Now suppose l ∈ ḃ1 and t ∈ uḃ ∩ l2. Define d(t) < 2 as follows:

• if t 6∈ T (Z̄) let d(t) = 0;

• if t ∈ T (Z̄) \ split(T (Z̄)) let d(t) such that t a d(t) 6∈ T (Z̄);

• if t ∈ split(T (Z̄)), hence t = ts for some s, and |s| = i ∈ Z(ḃ1)
for some i, we let

d(t) = tsa h(i)(|t|).

(II) Suppose ḃ ∈ Ωγ(T (Z̄)) is such that ∀β ∈ Y |ḃ ∩ L(β)| ≤ 1 and ḃ ⊆⋃
{L(β) : β ∈ Y }. For b∗ ⊆ ḃ let

Y (b∗) = {β ∈ Y : b∗ ∩ L(β) 6= ∅} .

Clearly, Y (ḃ) ∈ VPγ is infinite. Note that for any ẋ′ ∈ K we have

Y (b∗) = {β ∈ Y : b∗ ∩ L′(π′(β)) 6= ∅} .

(See Definition 4.1(2).) Let δ̇ be the largest accumulation point of Y (ḃ). It
is easy to choose ḃ0 and ḃ1 in VPγ such that ḃ0 and ḃ1 are disjoint infinite
subsets of ḃ with sup(Y (ḃ0)) = sup(Y (ḃ1)) = δ̇ and δ̇ 6∈ Y (ḃ0 ∪ ḃ1). As in

Case I, on the levels in ḃ0, u
ḃ will be defined in VPγ , while its levels in ḃ1 will

be defined in VPγ+1, by defining a next-digit-function d on
⋃
l∈ḃ0

l2,
⋃
l∈ḃ1

l2,⋃
l∈ḃ\(ḃ0∪ḃ1)

l2, respectively, and then letting uḃ be the non-empty tree such

that for every t ∈ uḃ with |t| ∈ ḃ, its next digit is d(t).

(0) (On levels from ḃ0 we take care of ẋ′ ∈ K such that we have sup(π[Y (ḃ0)])

≥ γ+1, and hence sup(π[Y (ḃ0)]) > γ+1.) We define uḃ on levels from
ḃ0 as in Definition 4.1(II): Given t ∈ l2 with l ∈ ḃ0, d(t) is determined
such that

• if t 6∈ T (Z̄) or t ∈ split(T (Z̄)) then d(t) = 0;
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• if t ∈ T (Z̄) \ split(T (Z̄)), d(t) < 2 is defined such that t a d(t) 6∈
T (Z̄).

(1) (On levels from ḃ1 we take care of ẋ′ ∈ K such that we have sup(π′[Y (ḃ0)])
≤ γ.) Then Z(ḃ1) ∈ VPγ (see the beginning of the present definition
for its definition). We choose ḣ : Z(ḃ1)→ 2 in VPγ+1 such that for no
x : Z(ḃ1) → 2 in VPγ we have x = ḣ. Now suppose l ∈ ḃ1 and t ∈ l2.
Then d(t) is defined as follows:

• if t 6∈ T (Z̄) let d(t) = 0;

• if t ∈ T (Z̄) \ split(T (Z̄)) let d(t) < 2 such that t a d(t) 6∈ T (Z̄);

• if t ∈ split(T (Z̄)), thus t = ts for some s ∈ <ω2 (and |s| ∈ Z(ḃ1)),
we let

d(t) = tsa ḣ(|s|)(|t|).

(2) For t ∈ uḃ with |t| ∈ ḃ \ (ḃ0 ∪ ḃ1), its next digit in uḃ is irrelevant, we
require that it is 0.

(III) Suppose ḃ ∈ Ωγ(T (Z̄)) is such that ḃ ∩
⋃
{L(β) : β ∈ Y } = ∅. Hence

no splitnode of T (Z̄) has its length in ḃ. We define uḃ in VPγ such that for

every l ∈ ḃ and t ∈ l2 ∩ uḃ the following hold:

• if t 6∈ T (Z̄) t a 0 ∈ uḃ;

• if t ∈ T (Z̄) let t a i ∈ uḃ such that t a i 6∈ T (Z̄).

This completes the definition of Cγ(T (Z̄)) = 〈uḃ : ḃ ∈ Ωγ(T (Z̄))〉.

Finally, we define a coding system C(T (Z̄)) in VPω2 as

C(T (Z̄)) = 〈uḃ : ḃ ∈
⋃{

Ωγ(T (Z̄)) : γ < ω2

}
〉.

The following main lemma shows that the coding system constructed in Def-
inition 5.1 has the desired property.

Lemma 5.2 If T (Z̄), K and C(T (Z̄)) are as in Definition 5.1, ẋ′ ∈ K is
arbitrary and S̄ ′ is the associated fusion with limit p′ω, then

p′ω 
Pω2 ∀b ∈
⋃{

Ωγ(T (Z̄)) : γ < ω2

}
ẋ′ 6∈ [ub].
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Proof: Let q ≤ p′ω, γ < ω2 and ḃ be arbitrary such that

q 
Pω2 ḃ ∈ Ωγ(T (Z̄)).

We have to find q′ ≤ q such that q′ 
Pω2 ẋ′ 6∈
[
uḃ
]
.

Wlog we may assume that q forces that t is a split node of T (Z̄) whenever
|t| ∈ ḃ and t is a possible initial segment of ẋ′ below condition q, as otherwise,

by the definition of uḃ, some q′ ≤ q clearly forces that ẋ′ � |t| + 1 6∈ uḃ. It
follows that we can ignore Case III.

We need to consider the different cases in Definition 5.1.

Case I:

Wlog we may assume that q 
Pω2 ḃ ⊆ L(β), for some β ∈ Y , hence we have

π′(β) ∈ supp(p′ω) and in VPγ we have fixed the partition ḃ = ḃ0 ∪ ḃ1 for the

definition of uḃ.

Let Gγ+1 be a Pγ+1-generic filter containing q � γ + 1. Moreover, we let
b = ḃ[Gγ] and bi = ḃi[Gγ] for i < 2.

Subcase I(0): We have π′(β) ≥ γ. We can proceed essentially as in the first
case of the proof of Lemma 4.1 with b0 in place of b, as ġπ′(β) is generic over
V[Gγ], where we have defined the levels from b0 of ub.

In V [Gγ], we obtain the partial evaluations T q [Gγ] and Rq [Gγ] of the trees
T q = T q(ẋ′) and Rq = Rq(ẋ′) defined accordingly for ẋ′ and q as in the proof
of Lemma 4.1, i.e.:

Rq[Gγ] = {s ∈ <ω2 : as(S̄ ′) [Gγ] � γ ∈ Gγ ∧ ¬ q [Gγ] ⊥Pω2/Gγ a
s(S̄ ′) [Gγ]}

and T q [Gγ] is the subtree of T q generated by all ts ∈ T q where s ∈ Rq[Gγ].

Wlog we may assume that in V [Gγ] there are k, v,m0, n0, l, n1,m1 such that
q � π′(β) forces (with respect to the forcing Pω2/Gγ) the following:

• v ∈ k2, stem(q(π′(β))) = stem(p′ω(π′(β))v) and m0 = |stem(q(π′(β)))|;

• at step n0 of the fusion S̄ ′ that produced p′ω, π′(β) was active for the
k-th time;

• l ∈ b0 is bigger than max {|ts| : s ∈ n02};

• n1 ∈ Z(β) is such that ∀ t ∈ T q [Gγ] ∩ l2∃ s ∈ Rq [Gγ] ∩ n12 t = ts;
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• ċ(p′ω, π′(β))(n1) = m1, and

• for every s ∈ Rq [Gγ] with |s| = n1, we have

q [Gγ] ∧ as(S̄ ′) [Gγ] 
Pω2/Gγ ẋ
′(|ts|) = tsa ġπ′(β)(m1)(|ts|).

Analogously as in the proof of Lemma 4.1, in V we find q̂ ≤ q in Pω2 such that
q̂ � π′(β) forces all these facts and q̂ � π′(β) also decides k, v,m0, n0, l, n1,m1

as above. Moreover,

q̂ � π′(β) 
Pπ′(β) com(q̂(π′(β))) ∩m1 + 1 = {m0}

and q̂ � π′(β) decides q̂(π′(β)) � m1 + 1, thus ġπ′(β) � (m1 + 1 \ {m0}), say as
〈g(0), ..., g(m0 − 1), g(m0 + 1), ..., g(m1)〉.

Now we can find s0, s1 ∈ Rq̂ ∩ n12 such that si(n0) = i and s0(j) = s1(j) for
every j ∈ Z(β) ∩ n1 \ {n0}, and hence

i(ts0 a g(m1), β) 6= i(ts1 a g(m1), β).

We know that both ts0 and ts1 are splitnodes of T (Z̄) of length l. We can
choose j such that i(tsj a g(m1), β) 6= g(m1) and a common extension q′ of q̂
and asj(S̄ ′). We conclude

q′ 
Pω2 tsj a g(m1) � |tsj |+ 1 ⊂ ẋ′

and hence q′ 
Pω2 ẋ′ 6∈
[
uḃ
]
, by the definition of uḃ.

Subcase I(1): We have π′(β) < γ. In the intermediate model V[Gγ] we have
the restricted tree of possibilities for ẋ′, T q(ẋ′)[Gγ] (which is analogously
defined as in Subcase I(0) above). We know that every

t ∈ T q(ẋ′)[Gγ] ∩
⋃{

l2 : l ∈ b1
}

is a splitnode of T (Z̄), hence t = ts for some

s ∈
⋃{

i2 : i ∈ Z(b1)
}
.

Now we have that if l ∈ L(β), t ∈ T q(ẋ′)[Gγ], |t| = l and t = ts, then ts is no
longer a splitnode of T q(ẋ′)[Gγ], and its successive digit is

tsa gβ′◦ċ(p′ω ,β′)[Gγ ](|s|)(l).

If in addition l ∈ b1, we have |s| ∈ Z(b1). Note that by property (i) of a
coding tree, |s| does not depend on t (but on l of course).
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Hence in V[Gγ] we can define a function F = F (ẋ′) : Z(b1) → 2 as follows:
Given i ∈ Z(b1), we let

F (i) = gβ′ ◦ ċ(p′ω, β′)[Gγ](i).

For the definition of ub on levels in b1 in the present case we applied some
new function h = ḣ[Gγ+1] ∈ V [Gγ+1] \V [Gγ], h : Z(b1)→ 2. Hence clearly
we have

(∗) ∃∞i ∈ Z(b1) h(i) 6= F (i).

By construction we can find s with |s| = i, i ∈ Z(b1), h(i) 6= F (i) and
ts ∈ T q(ẋ′)[Gγ]. Letting l = |ts|, hence l ∈ b1, we get that

tsa F (i)(l) 6= tsa h(i)(l).

Hence, as tsaF (i) ∈ T q(ẋ′)[Gγ], there exists q′ ≤ q in Pω2 (with q′ � γ ∈ Gγ)
such that

q′ 
Pω2 ẋ′ � l + 1 = tsaF (i) � l + 1,

and therefore, by the definition of uḃ on levels in ḃ1, we conclude

q′ 
Pω2 ẋ′ 6∈ [uḃ].

Note that the proof here, in particular the correct choice of s that leads to
a contradiction, is quite subtle. On the one hand we have that for every
t ∈ T q(ẋ′)[Gγ] such that t = ts′ for some s′ of same length as s we have

ts′ a F (i)(|ts′|) 6= ts′ a h(i)(|ts′ |).

Note that this does not imply that, letting l = |ts| and l′ = |ts′|,

tsa F (i)(l) = ts′ a F (i)(l
′)

(which is generally false). On the other hand, such other s′ might be useless
for our purpose as not necessarily |ts′| ∈ b1 (see the remark after the the
definition of Z(b) at the beginning of Definition 5.1).

Case II:

Let ḃ ∈ Ωγ(T (Z̄)), δ̇ and ḃ0, ḃ1 ⊆ ḃ be as there, and let Gγ+1 be a Pγ+1-generic
filter containing q � γ + 1. Let b, δ, b0, b1 be the evaluations of ḃ0, ḃ1, ḃ by Gγ,
respectively.
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Subcase II(0): We have sup(π′[Y (b0)]) > γ. We proceed essentially as in the
second case in the proof of Lemma 4.1. We argue in V[Gγ]. The set

{β ∈ Y (b0) : π′(β) > γ}

is infinite, so we can find a large enough β ∈ Y (b0), l ∈ b0 ∩ L(β), n ∈ Z(β)
and s ∈ n2, s0, s1 ∈ n2 ∩Rq(ẋ′)[Gγ] such that |ts| = l and

s0 � n ∩ {ν ∈ Y : π′(ν) ∈ (γ, π′(β))} 6= s1 � n ∩ {ν ∈ Y : π′(ν) ∈ (γ, π′(β))} .

As in the proof of Lemma 4.1 we can apply properties (i) and (ii) of the
coding tree T (Z̄) to find q′ ≤ q, j < 2 and t ∈ l2 compatible with tsj such
that t is not a splitnode of T (Z̄) and

q′ 
Pω2 ẋ′ � l = t,

and hence
q′ 
Pω2 ẋ′ � l + 1 6∈ [uḃ].

Subcase II(1): This is similar to Subcase I(1). We have sup(π′[Y (b0)]) ≤ γ.
In the intermediate model V[Gγ] we have the restricted tree of possibilities
for ẋ′, T q(ẋ′)[Gγ] (which is analogously defined as in Subcase I(0) above).
We know that every t ∈ T q(ẋ′)[Gγ] ∩

⋃{
l2 : l ∈ b1

}
is a splitnode of T (Z̄),

hence t = ts for some s ∈
⋃
{ i2 : i ∈ Z(b1)}.

Now we have that if β ∈ dom(pω), β′ = π′(β) < γ, l ∈ L(β), t ∈ T q(ẋ′)[Gγ],
|t| = l and t = ts, then ts is no longer a splitnode of T q(ẋ′)[Gγ], and its
successive digit is

tsa gβ′◦ċ(p′ω ,β′)[Gγ ](|s|)(l).

If in addition l ∈ b1, we have |s| ∈ Z(b1).

By what we noticed so far, in V[Gγ] we can define a function F = F (ẋ′) :
Z(b1)→ 2 as follows: Given i ∈ Z(b1), letting β′ ∈ supp(p′ω) with i ∈ Z(β′),
we let

F (i) = gβ′ ◦ ċ(p′ω, β′)[Gγ](i).

As h 6= F (h = ḣ[Gγ+1] where ḣ is from the Definition 5.1(II)(1)) there is
i ∈ Z(b1) such that h(i) 6= F (i). By construction we can find s and β′ with
|s| = i and i ∈ Z(β′) such that |ts| ∈ b1 and ts ∈ T q(ẋ′)[Gγ]. We get that

tsa F (i)(|ts|) 6= tsa h(i)(|ts|).

Hence, letting l := |ts|, as tsaF (i) ∈ T q(ẋ′)[Gγ] there exists q′ ≤ q in Pω2 (with
q′ � γ ∈ Gγ) such that
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q′ 
Pω2 ẋ′ � l + 1 = tsaF (i) � l + 1,

and therefore, by the definition of uḃ on levels in ḃ1, we conclude

q′ 
Pω2 ẋ′ 6∈ [uḃ].

Case III:

In this case we have that no splitnode of T (Z̄) has its length in ḃ, and
therefore, as we have noticed already,

p′ω 
Pω2 ẋ′ 6∈ [ub]

follows immediately by the definition of ub.

We have completed the proof of Lemma 5.2. �

6 Conclusion

By Lemma 5.2 we obtain our main result:

Theorem 6.1 If V |= ZFC + CH and Pω2 is the CS-iteration of Silver forc-
ing SI of length ω2, then

VPω2 |= cov(C2) < cov(P2).

Proof: Given any Pω2-name ẋ and p ∈ Pω2 such that

p 
Pω2 ẋ ∈ ω2 \V,

by Theorem 3.1 we obtain a fusion sequence S̄ with limit pω ≤ p and a tree
T = T (ẋ, S̄) with properties (0), (1) and (2), which is the tree of possibilities
of ẋ below pω. Let K be the isomorphism type of ẋ as defined in Definition
4.2. Moreover, every ẋ′ ∈ K produces the same tree.

In Definition 4.1 we have defined a coding system C0(T ) = 〈ub : b ∈ Ω0〉
depending only on K such that, by Lemma 4.1, in V

pω 
Pα ∀b ∈ Ω0 ẋ 6∈
[
ub
]
.
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In Definition 5.1, for every 0 < γ < ω2 of countable cofinality we have defined
a coding system Cγ(T ) = 〈ub : b ∈ Ωγ(T )〉 in VPγ+1 , where Ωγ(T ) ⊆ [ω]ω is
dense in VPγ with Ωγ(T ) ∩

⋃
β<γ VPβ = ∅, such that by Lemma 5.2 we have

pω 
Pω2 ∀b ∈
⋃
{Ωγ(T ) : 0 < γ < ω2} ẋ 6∈ [ub].

For γ < ω2 of uncountable cofinality, Ωγ(T ) and Cγ(T ) were defined by
taking the union of the Ωβ(T ), Cβ(T ), respectively, for β < γ. Hence in
VPω2 we have the C2-set A(C), where C = 〈ub : b ∈ Ωγ, γ < ω2〉, such that

pω 
Pω2 ẋ ∈ A(C).

As A(C) only depends on T , and as by CH in the ground model there are
only ℵ1-many isomorphism types K, we have proved that in VPω2 , ω2\V can
be covered by ℵ1-many C2-sets. By Corollary 5.1(2) we know that ω2 ∩V is
even in P2. Hence cov(C2) = ℵ1 holds in VPω2 .

As we have explained in the introduction, VPω2 |= cov(v0) = ℵ2, where v0

is the Silver ideal. As P2 ⊆ v0, we have VPω2 |= cov(P2) = ℵ2. �

Acknowledgement: I would like to thank Martin Goldstern for bringing
Grigorieff’s paper to my attention.

Moreover, I am indebted to the referee for his several very careful and sharp
reports which forced me to clear up several obscure or faulty arguments.

References

[1] James E. Baumgartner. Iterated forcing. Surveys in Set Theory (Adrian
R. D. Mathias, ed.) vol. 87, London Mathematical Society Lecture Notes
Series, 1–59. Cambridge University Press, London, 1983.
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